
Citation: Kao, C.-Y.; Lin, T.-L.; Lin,

Y.-H.; Lee, A.K.-X.; Ng, S.Y.; Huang,

T.-H.; Hsu, T.-T. Synergistic Effect of

Static Magnetic Fields and

3D-Printed Iron-Oxide-Nanoparticle-

Containing Calcium Silicate/Poly-

ε-Caprolactone Scaffolds for Bone

Tissue Engineering. Cells 2022, 11,

3967. https://doi.org/10.3390/

cells11243967

Academic Editors: Günter

Finkenzeller, Bernd Rolauffs and

Ebrahim Mostafavi

Received: 4 November 2022

Accepted: 7 December 2022

Published: 8 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Article

Synergistic Effect of Static Magnetic Fields and 3D-Printed
Iron-Oxide-Nanoparticle-Containing Calcium
Silicate/Poly-ε-Caprolactone Scaffolds for Bone
Tissue Engineering
Chuan-Yi Kao 1,2,†, Tsung-Li Lin 3,4,5,†, Yen-Hong Lin 6, Alvin Kai-Xing Lee 7 , Sing Yee Ng 8,
Tsui-Hsien Huang 9,10,* and Tuan-Ti Hsu 6,*

1 School of Medicine, Chung Shan Medical University, Taichung 406040, Taiwan
2 Department of Psychiatry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
3 Department of Sports Medicine, College of Health Care, China Medical University, Taichung 406040, Taiwan
4 Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
5 Department of Orthopedics, China Medical University Hospital, Taichung 40447, Taiwan
6 x-Dimension Center for Medical Research and Translation, China Medical University Hospital,

Taichung 404332, Taiwan
7 Department of Education, China Medical University Hospital, Taichung 404332, Taiwan
8 Department of Internal Medicine, Hospital Kuala Lumpur, Kuala Lumpur 50586, Malaysia
9 School of Dentistry, Chung Shan Medical University, Taichung 406040, Taiwan
10 Department of Stomatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
* Correspondence: thh@csmu.edu.tw (T.-H.H.); nakohsu@gmail.com (T.-T.H.)
† These authors contributed equally to this work.

Abstract: In scaffold-regulated bone regeneration, most three-dimensional (3D)-printed scaffolds do
not provide physical stimulation to stem cells. In this study, a magnetic scaffold was fabricated using
fused deposition modeling with calcium silicate (CS), iron oxide nanoparticles (Fe3O4), and poly-ε-
caprolactone (PCL) as the matrix for internal magnetic sources. A static magnetic field was used as
an external magnetic source. It was observed that 5% Fe3O4 provided a favorable combination of
compressive strength (9.6± 0.9 MPa) and degradation rate (21.6± 1.9% for four weeks). Furthermore,
the Fe3O4-containing scaffold increased in vitro bioactivity and Wharton’s jelly mesenchymal stem
cells’ (WJMSCs) adhesion. Moreover, it was shown that the Fe3O4-containing scaffold enhanced
WJMSCs’ proliferation, alkaline phosphatase activity, and the osteogenic-related proteins of the
scaffold. Under the synergistic effect of the static magnetic field, the CS scaffold containing Fe3O4

can not only enhance cell activity but also stimulate the simultaneous secretion of collagen I and
osteocalcin. Overall, our results demonstrated that Fe3O4-containing CS/PCL scaffolds could be
fabricated three dimensionally and combined with a static magnetic field to affect cell behaviors,
potentially increasing the likelihood of clinical applications for bone tissue engineering.

Keywords: static magnetic fields; iron oxide; calcium silicate; bone regeneration; 3D scaffolds

1. Introduction

Large bone defects present a major clinical challenge and hurdle for surgeons due to
the limited intrinsic regenerative capabilities of bones [1]. Scaffolds play a role in bone
regeneration owing to their ability to act as a supportive bridge between a suitable microen-
vironment and a regenerative niche for osteogenesis [2]. Traditionally, ideal scaffolds for
bone regeneration should have high bioactivity, biodegradability, and mechanical proper-
ties sufficient for structural support [3]. These properties have been extensively studied
over the last few decades, and traditional studies on bone regeneration scaffolds frequently
emphasize the importance of pore size, porosity, pore structure, and pore interconnectivity,
which are all critical factors for efficient bone tissue regeneration [4,5]. The development
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and emergence of three-dimensional (3D) printing and fabrication technologies have en-
abled the fabrication of scaffolds with specific designs and parameters [6,7]. Calcium
silicate (CS)-based bioceramics have become an area of interest for bone tissue engineering
because of their excellent bioactivity, biocompatibility, and high mechanical properties [8].
In addition, CS scaffolds have been shown to release silicate ions (Si) in a stable and gradual
manner. Si is an important trace element in the human body, and the presence of Si ions
stimulates the osteogenic differentiation of stem cells in the absence of osteogenic-related
factors [9]. Furthermore, Si ions have also been shown to induce the proliferation and
differentiation of human umbilical vein endothelial stem cells by inducing the secretion of
vascular endothelial growth factors [9,10]. However, we have now reached a stalemate in
bone tissue regeneration, necessitating additional research to bring CS scaffolds closer to
clinical applications [11].

Recent studies have demonstrated that mechanical force stimulation is an effective
promoter and inducer of bone formation and regeneration [12–14]. This concept stemmed
from clinical observations that patients who were less active or paralyzed had poor bone
regeneration capabilities, as well as muscle atrophy and osteoporosis, as a result of disuse-
induced bone loss with a lack of mechanical stimulation [15,16]. Therefore, various studies
have attempted to study the relationship between mechanical stimulation and bone tissue
regeneration, with the majority focusing on determining the optimal extrinsic stimulation
for efficient bone growth and regeneration. Extrinsic mechanical stimulations, such as
vibration, ultrasound, and electrical stimulation, have been shown to promote bone re-
generation and enhance fracture healing [17–20]. Because of the development of magnetic
nanoparticles (MNPs), magnetic stimulation has been reported to have the best potential for
effective bone regenerative capabilities [21–23]. MNPs have been introduced into various
matrices and platforms in order to induce stimuli-responsive regenerative properties for
osteogenesis [24–26]. Interestingly, MNPs incorporated into calcium phosphate or poly-
caprolactone (PCL) polymer scaffolds have been shown to increase protein adsorption,
resulting in increased cellular attachment and subsequent cellular proliferation [27–29]. A
PCL polymer used to prepare bone scaffolds with ceramic powder, such as apatite and
calcium phosphate, not only had a favorable mechanical performance but also enhanced
bioactivity [30,31]. Furthermore, hydroxyapatite and chitosan/collagen scaffolds incor-
porated with MNPs have also been shown to have increased mechanical and osteogenic
properties. According to the findings of these studies, MNPs can provide paramagnetic
effects, which can then induce osteoblast differentiation and proliferation in a manner
similar to the mechano-related pathways of extrinsic mechanical stimulation. MNPs have
shown potential for bone tissue regeneration, and further studies are warranted to confirm
their clinical application in bone regeneration [32].

To the best of our knowledge, there are currently no studies combining CS and
MNPs for bone tissue regeneration. In this study, we fabricated porous CS scaffolds with
Fe3O4 nanoparticles using 3D printing and evaluated their capability to regenerate bone
tissue. We hypothesized that the paramagnetic effects of Fe3O4 would further enhance the
regenerative capabilities of the CS scaffolds. In this study, we fabricated nano-Fe scaffolds
of varying concentrations and determined their basic physicochemical properties and
osteogenic capabilities by evaluating osteogenic-related markers. Our results showed that
the incorporation of Fe3O4 into CS scaffolds further enhanced the mechanical strength and
increased the secretion of osteogenic-related markers, such as alkaline phosphatase (ALP),
bone sialoprotein (BSP), collagen I (COLI), and osteocalcin (OC). Taken together, we hope
that this study will serve as a platform for future Fe3O4-related studies, bringing bone
tissue regeneration a step closer to clinical applications.

2. Materials and Methods
2.1. Fabrication of Scaffolds

The protocols for the CS scaffold fabrication were adopted from our previous stud-
ies [33]. To obtain pure CS powder, CaO (99.9%, Sigma-Aldrich, St. Louis, MO, USA), SiO2



Cells 2022, 11, 3967 3 of 11

(1 µm, 99.99%, Sigma-Aldrich), and Al2O3 (99.5%, Sigma-Aldrich) were added and mixed in
proportions of 70%, 25%, and 5%, respectively, followed by sintering in a high-temperature
furnace at 1400 ◦C for 2 h. Subsequently, varying amounts of Fe3O4 nanoparticles (100 nm,
97%, Sigma-Aldrich) were added to the CS powder (0, 2.5, and 5 wt. %) and ball-milled
at 300 rpm for 12 h. The ball-milled product was then dried and mixed in a 1:1 ratio with
poly-ε-caprolactone (PCL; Mw 43,000; Polysciences, Warrington, PA, USA). First, PCL was
melted at 180 ◦C, then alcohol was added and uniformly stirred before being placed in an
oven for 12 h of dehydration. The CS-PCL-Fe pastes were stored in a remodified storage
until further use. Prior to printing, the pastes were placed into the printing cartridge with a
20G nozzle, heated to 80 ◦C, and printed at 2 mm/s and 240 kPa. The various groups were
named according to the concentration of Fe3O4 used, namely Fe0, Fe2.5, and Fe5.

2.2. Physicochemical Properties of the Scaffolds

The scaffolds for physicochemical properties analysis were designed to be a height of
10 mm and were stacked to each other at a 0°–90° orientation. The first two layers of the
scaffold were both filled by seven parallel struts with a diameter of 500 µm and separated
by 500 µm. Subsequent third and fourth layers were filled by six parallel struts which
were located above the gaps of first and second layers, respectively. The compressive
strength of the printed scaffolds was measured using a universal material-testing machine
(EZ-TEST, Shimadzu, Kyoto, Japan) at a compression speed of 1 mm/min. The scaffolds
were compressed until fracturing, and the final compressive strength was recorded. Six
samples per group were tested, and the average values are presented. Furthermore, the
surface morphology was observed using an optical microscope, and the microstructures
were analyzed using field-emission scanning electron microscopy (FE-SEM; JSM-7800F,
JEOL, Tokyo, Japan).

2.3. In Vitro Immersion Experiment

The scaffolds were placed in 15 mL of simulated body fluid (SBF) and placed in a
water bath at 37 ◦C for different durations. The weights of the scaffolds were recorded
before and after immersion, and the differences in weight were recorded as the percentage
weight loss. Six samples per group were tested, and the average values are presented. The
microstructures of the scaffolds were observed using FE-SEM.

2.4. Magnetic Stimulation

Each group received 20 min of magnetic stimulation daily. The control group, without
Fe3O4 (Fe0), was also stimulated and cultured under similar conditions.

2.5. Cell Proliferation and Morphology

In the in vitro study, we used a scaffold with a diameter of 6 mm and a height of 2 mm
which followed the same structural design. The cell proliferation, osteogenic differentiation,
and cytokine secretion were tested using Wharton’s jelly mesenchymal stem cells (WJM-
SCs) purchased from the Bioresource Conservation and Research Center (BCRC; Hsinchu,
Taiwan). Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) containing
10% fetal bovine serum (FBS) and 1% antibiotics in an incubator with 5% CO2 at 37 ◦C,
with medium change every two days. Cellular proliferation was determined after 1 and
7 d of culture using PrestoBlue® (Invitrogen, Grand Island, NY, USA). Briefly, the reagent
was mixed at 1:9 PrestroBlue to DMEM ratio, and the scaffolds were left to react for 1 h.
After being removed from the reagent, the scaffolds were rinsed with phosphate-buffered
saline (PBS) and then fixed with 4% paraformaldehyde. The absorbance of the reagent was
measured at 570 nm using a Tecan Infinite 200 PRO microplate reader (Tecan, Männedorf,
Switzerland) with a reference wavelength of 600 nm. Six samples per group were tested,
and the average values are presented.

For morphological analysis, scaffolds were fixed with 4% paraformaldehyde for 20 min
and permeabilized with 1% Triton X-100. The cytoskeleton was stained with a fluorescent
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dye (Alexa Fluor 488, Invitrogen) conjugated with phalloidin, and the nucleus was stained
using DAPI (4′,6-diamidino-2-phenylindole, dilactate). Images were captured and analyzed
using a Leica TCS SP8 X white light laser confocal microscope (Leica Microsystems GmbH,
Wetzlar, Germany).

2.6. Osteogenic Differentiation

Alkaline phosphatase activity (ALP), bone sialoprotein (BSP), collagen I (COLI), and
osteocalcin (OC) expression were measured at different time points to evaluate the os-
teogenic capabilities of the scaffolds. For ALP evaluation, cells were lysed in 100 µL of
1% NP40 buffer and evaluated using a pNPP alkaline phosphatase assay kit (BioAssay
Systems, Biocore, New South Wales, Australia). The total protein content was measured
using a BCA Protein Assay Kit (Thermo Scientific, Waltham, MA, USA). ALP activity was
calculated as the difference in absorbance divided by the total protein content. Protein
levels were determined using an enzyme-linked immunosorbent assay (ELISA) according
to the manufacturer’s instructions for BSP, COLI, and OC evaluations.

2.7. Statistical Analysis

In each experiment, a one-way statistical analysis of variance (ANOVA) was used
to analyze the significance of the differences between the different experimental groups.
Significant deviation of each sample was determined using Scheffe’s multiple comparison
test. A p-value < 0.05 was considered statistically significant, as indicated by “*” or “#” in
the different group comparisons.

3. Results and Discussion
3.1. Characterization of the Physicochemical Properties of the Scaffolds

In this study, we used direct ink writing (DIW) to fabricate porous CS/PCL scaffolds
with various concentrations of iron oxide (Fe3O4) nanoparticles. As shown in Figure 1A,
the addition of Fe3O4 gave the scaffolds a brownish appearance depending on the con-
centration of Fe3O4 added. Furthermore, the addition of Fe3O4 did not affect the printing
quality of the scaffolds, as indicated by the uniform porosity of the scaffolds. It was
earlier reported that 400–600 µm pores were optimal for bone tissue regeneration; thus,
the scaffolds used in this study had pore sizes of approximately 500 ± 10 µm [34]. As
shown in Figure 1A, the scaffolds with Fe3O4 MNPs exhibited magnetic properties and
could be attracted using hand-held magnets. Additive manufacturing is a layer-by-layer
fabrication technique that has become popular in the last decade for producing 3D porous
biodegradable magnetic scaffolds with interconnected pores for bone substitutes. Com-
pared with traditional manufacturing methods, additive manufacturing has the potential
to fabricate porous scaffolds with complex geometries and flexibility [35]. However, due
to the magnetic capabilities of MNPs, it was discovered during the fabrication phase that
traditional magnetic stirring could not be used in such studies involving MNPs. Therefore,
we added high-molecular-weight PCL to CS to increase the viscosity, allowing the MNPs to
be distributed uniformly and eliminating external environmental influences [36]. It can be
observed from the appearance of the printed scaffolds that the MNPs were homogeneously
distributed throughout the scaffold [27].

Since both CS and Fe3O4 are crystalline compounds, X-ray diffraction (XRD) was
used for the phase identification of the scaffolds. As shown in Figure 1B, the characteristic
peaks at 32.5◦, 38.7◦, and 47.6◦ correspond to C2S, whereas the characteristic peaks at 32.7◦,
34.32◦, and 41.2◦ correspond to C3S [37]. The characteristic peaks at 30.1◦ and 36.2◦ corre-
spond to Fe3O4 [38]. Furthermore, the peak intensities of Fe3O4 increased with increasing
MNP content, indicating that different concentrations of Fe3O4 could be added to CS/PCL
scaffolds. Furthermore, no other peaks were observed in the scaffolds, indicating that
Fe3O4 modification did not alter or influence the original structural properties of CS/PCL.
The compressive strength of the scaffold samples was evaluated by compression testing,
and the results are shown in Figure 1C. The Fe0 scaffolds had a compressive strength of
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approximately 5.2 ± 0.2 MPa. In Fe2.5, the compressive strength increased significantly to
11.5± 0.6 MPa, which was similar to the compressive strength of native cancellous bone [39].
However, the compressive strength of Fe5 is 9.9 ± 0.4 MPa, which is not significantly dif-
ferent from Fe2.5 (p > 0.05), but still significantly higher than that of the Fe0 scaffold
(p < 0.05). The results indicate that adding MNPs significantly improved the compressive
performance of the scaffolds because of their effective resistance to polymer chain deforma-
tion under external forces as rigid particles [40]. In general, nanoparticles, as nanofillers,
can improve the mechanical properties of polymer matrices owing to their nano-enhancing
or rigidity-enhancing effects [41]. Fe3O4 MNPs are known to have a high level of stiff-
ness and mechanical strength, which can be used to improve the mechanical properties
of scaffolds owing to their stiffness-enhancing effects. In addition, the MNPs were ho-
mogenously distributed throughout the scaffolds, further increasing their weight-bearing
and stress distribution effects [42]. This can be characteristic of the reinforced interactions
between uniformly dispersed inflexible Fe3O4 particles in the CS/PCL composites which
reduced the stress concentration and improved the ultimate stress [43]. From our results,
it is worth noting that this effect could only be achieved when the nanoparticles were
homogenously dispersed in the matrix, and that an excessive addition of nanoparticles can
cause agglomeration, thus reducing the mechanical strength of the scaffolds.
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3.2. Immersed Behaviors

Figure 2A shows the surface morphology of the porous scaffolds after immersion in
SBF for seven days. Prior to immersion (day 0), the surfaces of the scaffolds were relatively
flat with slight elevations because of the native appearance of PCL after cooling. The
entrapment of CS and MNPs by macromolecules resulted in numerous notches on the
surface, which is consistent with our previous studies. After three days of immersion,
the surfaces of the scaffolds were covered with a layer of precipitated hydroxyapatite
aggregates several micrometers in size. Furthermore, the precipitated aggregates grew in
size as the immersion time increased. However, unlike the typical “grape-like” morphology
of hydroxyapatite aggregates on the surfaces of Fe0, the aggregates on the Fe2.5 and Fe5
surfaces were less dense and not closely packed [44]. In addition, the XRD profiles further
verified the appearance of the HA peak at 25.9◦ in all the scaffolds which demonstrated that
the CS-based scaffolds had high bioactivity [45]. Interestingly, the density of the precipitated
products decreased as MNP concentration increased. Regardless, after immersion for three
days, the surfaces of all groups were covered with a layer of precipitated hydroxyapatite,
indicating that the scaffolds still had good bioactivity, even with the addition of MNPs.
Figure 2C shows that the degradation rates remained constant and stable over the four
weeks of immersion, and the final weight losses of Fe0, Fe2.5, and Fe5 were 19.4 ± 2.1%,
20.5 ± 2.0%, and 21.6 ± 1.9%, respectively. These results indicate that we could control and
regulate in vitro degradation rates by altering and adjusting the MNP concentrations in
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porous scaffolds [46]. The biocompatibility of biodegradable implants is directly affected
by their degradation properties (degradation rate and degradation products), which mainly
depend on the material composition and structural characteristics [47]. The presence of
MNPs in the scaffold was hypothesized to cause structural laxity among the CS, resulting
in the increased degradation rate of the MNP scaffolds.
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3.3. Cell Proliferation of Wharton’s Jelly Mesenchymal Stem Cells (WJMSCs) Cultured
on Scaffolds

To examine the morphology and viability of WJMSCs, the scaffolds were tested for
cytocompatibility in vitro using a PrestoBlue assay (Figure 3). A time-dependent increase
in cellular proliferation was observed in all scaffolds. However, cellular proliferation was
significantly higher on Fe2.5 and Fe5 on days 3 and 7 of culture, respectively (Figure 3A). In
addition, on day 7 of culture, Fe5 had a significantly higher cellular proliferation than that of
Fe2.5 and Fe0. The cellular morphology was observed using immunofluorescence staining,
as shown in Figure 3B. Cells on all three scaffolds adhered well to the scaffold surfaces after
day 1 of culture, as seen from their elongated and flattened morphology [48]. However,
on day 7 of culture, cells on Fe2.5 and Fe5 showed an enhanced cellular attachment
compared to those on Fe0, as seen from their morphologies. These results confirmed that the
incorporation of MNPs into the scaffolds significantly improved the cell viability, adhesion,
and spreading [49]. The biocompatibility of Fe3O4-containing scaffolds may be due to
its surface energy and intrinsic magnetic properties, which have been shown to promote
cellular adhesion and attachment. Our findings on MNPs and cellular responses were
consistent with previous findings that magnetic hydroxyapatite scaffolds could improve
the viability and proliferation of MG63 and MC3T3-E1 cells [50].

3.4. Effect of Ionic Scaffold Products on WJMSCs’ Differentiation

The ALP activity was used as an indicator of the early stages of osteogenic differen-
tiation, as shown in Figure 4A. As expected, the cells grown on all the scaffolds showed
a time-dependent increase in their ALP activity. Cells grown on culture plates without
scaffolds were used as controls. There were no significant differences in the ALP activity
between the Fe0 and Ctl groups after day 3 of culture. However, after days 3 and 7 of
culture, the ALP activity on the Fe2.5 and Fe5 scaffolds was significantly higher than that
on the Fe0 scaffolds (p < 0.05). Notably, after day 7 of culture, the ALP activity of Fe5
was approximately 1.2-times higher than that of the Fe2.5 scaffolds (p < 0.05). Similar
trends were noted for BSP and OC, which are both known markers of late-stage bone
differentiation. These results indicate that the magnetic microenvironment provided by
Fe3O4 nanoparticles in Fe3O4 scaffolds promoted cell proliferation and differentiation in a
time- and dose-dependent manner [21]. Moreover, the stem cells cultured on the scaffold
experienced increased osteogenic differentiation, ALP secretion, and calcium deposition
compared to those seeded on scaffolds without Fe3O4, indicating that the osteogenic dif-
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ferentiation of stem cells was significantly regulated by the incorporation of Fe3O4 into
ceramics [21]. Xia et al. demonstrated that Fe3O4-containing bioceramic scaffolds stimu-
lated the osteogenic differentiation of stem cells and significantly upregulated the gene
expression of WNT1, RUNX2, ALP, COL1, and OCN [51]. Moreover, β-catenin protein
expression increased, which indicated that Fe3O4-containing bioceramic scaffolds activated
Wnt/β-catenin signaling and downstream target genes. This result has been reported by
other researchers using other biomaterials and cell types. Recent reports have also indicated
that static magnetic stimulation can induce viability and osteogenesis both in vitro and
in vivo [52]. Based on our results, we hypothesized that magnetic stimulation disrupted
the arrangement of cellular membranes, influencing cellular adhesion and attachment and,
as a result, increasing the secretion of osteogenesis-related markers. Magnetic stimulation
has also been reported to regulate calcium regulation and secretion, thereby activating
several downstream intercellular signaling pathways for osteogenesis [53].
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3.5. Static Magnetic Fields Enhanced Cell Proliferation and Differentiation on FeCS Scaffold

We further evaluated the cellular proliferation and Col I and OC secretion cultured on
the Fe-containing scaffolds with a static magnetic field (MF). The viability of WJMSCs on
Fe0 and Fe5 with and without the application of a MF is shown in Figure 5A. After one
day of culture, there was no significant difference in the cell viability between Fe0, Fe0_M,
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and Fe5. Notably, the cellular proliferation was significantly higher on Fe5_M (p < 0.05)
on day 1 than on Fe5 without a MF. After day 3, the groups with an applied MF (Fe0_M
and Fe5_M) showed significant differences from Fe0. On the other hand, cells cultured on
Fe5_M exhibited more COL1 secretion (Figure 5B), which is the main organic component
of the bone extracellular matrix, than the cells cultured on other scaffolds after days 3
and 7 of culture. Fe5_M also differed significantly from Fe0 and Fe5. In the later stage of
osteogenesis, after days 7 and 14 of seeding, more abundant OC was distributed throughout
Fe5_M compared with Fe5, and their trends were similar for both ALP and COLI. These
results indicate that MNPs combined with a MF can promote osteogenic differentiation [54].
In vitro biocompatibility studies showed that the incorporation of MNPs was beneficial
for the viability, proliferation, and differentiation of WJMSCs. Recent reports indicate that
static magnetic fields not only enhance cell viability but also stimulate bone formation
in vitro and in vivo [55,56]. From the above results, it can be reasonably inferred that MNPs
can be regarded as a single magnetic domain that provides an intrinsic nanoscale magnetic
field [57]. Thus, a microenvironment is constructed on a scaffold consisting of a large
number of nanoscale magnetic fields. As a result, increasing the MNP content may improve
overall stimulation of cell adhesion, proliferation, and differentiation [58]. One possible
mechanism is that magnetic-stimulation-induced membrane phospholipid rearrangement
activates further cell adhesion molecules, thereby enhancing cell adhesion. In addition,
magnetic fields can modulate calcium ion levels, activate various signaling pathways, and
improve the expression of osteogenesis-related growth factors, which are beneficial for
enhancing and maintaining cell viability and inducing cell proliferation and differentiation.
The interaction mechanism of MNPs with cell viability, proliferation, and differentiation
requires further investigation.
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difference (* p < 0.05) when compared to Fe0; “#” indicates a significant difference (# p < 0.05) when
compared to Fe5.

4. Conclusions

In this study, a 3D-printed Fe3O4-containing CS/PCL scaffold with a biodegradable
porous framework was fabricated using DIW. The porous scaffold not only exhibited can-
cellous bone-like mechanical properties but its mechanical properties could be adjusted
by the addition of Fe3O4. In addition, the degradation rate of porous scaffolds can be
tuned by varying the Fe3O4 concentration. The scaffolds were covered in a thick layer of
precipitated hydroxyapatite, indicating that even with the addition of Fe3O4, the scaffolds
retained good bioactivity. Cell viability assays showed the nontoxic properties of Fe3O4 at
most concentrations, confirming its possible systemic application in medical applications.
Most importantly, magnetized superparamagnetic scaffolds generate mechanical forces that
drive WJMSCs’ growth toward an osteogenic lineage in scaffolds. Magnetic stimulation
interferes with the arrangement of cellular membranes, leading to an increased secretion of
osteogenic-related markers. We believe that this 3D print design for an Fe3O4-containing
CS/PCL matrix could be used to interweave different biomaterials into a scaffold that com-
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bines static magnetic fields which play a vital role in bone tissue regeneration, improving
the potential for use of these materials in bone tissue engineering and bringing it a step
closer to clinical applications.
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