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Abstract: Cholangiocarcinomas (CCAs) are rare but aggressive tumours with poor diagnosis and
limited treatment options. Molecular targeted therapies became a promising proposal for patients
after progression under first-line chemical treatment. In light of an escalating prevalence of CCA,
it is crucial to fully comprehend its pathophysiology, aetiology, and possible targets in therapy.
Such knowledge would play a pivotal role in searching for new therapeutic approaches concerning
diseases’ symptoms and their underlying causes. Growing evidence showed that fibroblast growth
factor/fibroblast growth factor receptor (FGF/FGFR) pathway dysregulation is involved in a variety
of processes during embryonic development and homeostasis as well as tumorigenesis. CCA is
known for its close correlation with the FGF/FGFR pathway and targeting this axis has been proposed
in treatment guidelines. Bearing in mind the significance of molecular targeted therapies in different
neoplasms, it seems most reasonable to move towards intensive research and testing on these in
the case of CCA. However, there is still a need for more data covering this topic. Although positive
results of many pre-clinical and clinical studies are discussed in this review, many difficulties lie
ahead. Furthermore, this review presents up-to-date literature regarding the outcomes of the latest
clinical data and discussion over future directions of FGFR-directed therapies in patients with CCA.
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1. Introduction

The last decade has seen intensive developments in cancer genome research, which
have become the basis for the use of specific small molecules targeting disturbed cellular
processes. Dysregulation of FGFR signalling is observed in a subset of many cancers,
making activated FGFRs a highly promising potential therapeutic target, supported by
multiple pre-clinical studies and clinical trials [1]. The FGF/FGFR signalling pathway
is mainly affected by gene amplification, gain-of-function coding mutations, and gene
fusion [2]. Consequently, novel treatment opportunities have arisen, including the use of
FGFR inhibitors in tumours with poor prognosis and limited treatment options, such as
cholangiocarcinoma (CCA) [3,4]. Because of its rare occurrence, CCA remains a diagnostic
and therapeutic challenge. CCA patients’ estimated 5-year survival rate oscillates around
5% [5]. Multiple studies proved the importance of FGFR gene mutations in the development
of this cancer, especially FGFR2 fusion with the essential p.V565F gate-keeper mutation [6].
Management of CCA currently is based on a surgical approach and chemotherapy which
have limited effectiveness; therefore, the need for improvement is seen among clinicians
and researchers. Food and drug administration (FDA) approved three main molecules
for managing previously treated, unresectable, locally advanced, or metastatic, CCA with
an FGFR2 fusion or another rearrangement [7,8]. However, at this phase of research, a
constant interplay between cancer resistance mechanisms and novel therapies is crucial for
efficient treatment [9].
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This review comprehensively summarises today’s CCA management means and their
limitations. Pivotal issues such as resistance, side effects, and combined therapies have
been discussed with emphasis on the need for further in-depth research to increase the
effectiveness of the FGFR inhibitor usage.

2. Cholangiocarcinoma—In a Summary

CCA is a heterogeneous group of malignancies, currently being one of the most urgent
issues of gastrointestinal oncology. It consists of various malignant tumours that arise from
any point along the biliary ducts [3,10]. Based on the most common anatomical features,
cholangiocarcinoma can be divided into intrahepatic (iCCA), perihilar (pCCA), and distal
(dCCA) [11–13]. According to this division, iCCA arises proximally to the second-order
bile ducts [14], pCCA is localized between the second-order bile ducts and the insertion of
the cystic duct into the common bile duct, whereas dCCA is found distal from the cystic
duct insertion [14]. Notably, pCCA and dCCA can be referred to as extrahepatic (eCCA),
which corresponds to different pathogenesis and genetics from iCCA [13,15] (Figure 1).
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Although CCA is the most common cancer in the biliary duct, the general incidence
is relatively low and varies depending on the geographic region. CCA makes up 3% of
gastrointestinal malignancies [4,16]. Based on the anatomical division, pCCA is the most
common type of CCA and accounts for up to 50–60% of all CCA [4,17]. dCCA (20–30%) and
iCCA (10%) occur less commonly, comprising around 9% of all primary liver cancers [18].
Furthermore, in the last few years, an increase in the incidence of iCCA and a decrease in
that of eCCA has been observed [19,20]. The latest epidemiology findings showed that
the incidence of iCCA increased from 0.44 to 1.18 cases per 100,000 [21]. The occurrence
is the highest in the 6–7th decade of life [19]. Based on work by Banales et al., worldwide
trends state that the highest incidence rate is reported in Thailand, South Korea, and China,
reaching nearly 10 cases per 100,000 [3]. Lower incidence rates are reported in Western
countries; however, the diagnosis there is made on more advanced stages [12]. Despite the
low incidence rates of CCA, it is one of the most deadly cancers, with a median overall
survival (OS) of around 20 months [22]. Late diagnosis, suboptimal treatment, and frequent
tumour recurrence after resection account for only 7 to 20% of 5-year survival rates in
patients with CCA [23–25].

The most crucial risk factor for both iCCA and eCCA is chronic inflammation and
irritation of the biliary epithelium [26]. The most common and best-documented risk factors
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include, but are not limited to: biliary diseases (such as primary sclerosing cholangitisand
primary or secondary biliary cirrhosis); cholelithiasis; cholecystitis; liver flukes; cirrhosis;
alcoholic liver disease; type II diabetes; and chronic pancreatitis [27–29]. Fundamental
differences between iCCA and eCCA are also visible in the risk factors. Often correlated
with iCCA, but not with eCCA, are hepatitis B and C; tobacco use; human immunode-
ficiency virus (HIV); inflammatory bowel disease; obesity; and chemical toxins (dioxins,
vinyl chloride, nitrosamines) [30,31]. However, despite well-defined risk factors, 50% of
cases are still diagnosed without any identifiable cause [32].

CCA is often diagnosed in advanced stages, mainly due to its asymptomatic course.
The most typical symptoms are painless jaundice, abdominal pain, nausea, and weight
loss [33]. They are associated with an advanced stage and are particularly observed
in eCCA [34]. Around 20% of iCCA are incidental findings in control ultrasonography
(USG) [3]. The basis of diagnosis and perioperative management is computed tomography
(CT) imaging, providing a comprehensive evaluation of the primary tumour, the relation-
ship with adjacent structures, and the spread to other organs [35]. Other techniques used
during diagnosis are magnetic resonance imaging (MRI) with cholangiopancreatography
(MRCP) option, USG, or contrast-enhanced ultrasonography (CEUS) [36,37]. However,
histopathological examination is required for a definite diagnosis, allowing classification
and defining specific genetic aberrations [12,38].

Management of CCA strictly depends on the clinical stage, tumour features, and
localization, yet eCCA and iCCA have many distinct features, especially in management
and treatment. Only 25% of patients are diagnosed in the early stages with the possibility
of radical surgical resection, even if the recurrence rate remains high [39]. For patients
with metastatic or locally advanced disease, treatment options are limited. CCA shows
relative resistance to both chemotherapy and radiotherapy. Thus chemical treatment is
still the primary option [40]. The first-line chemotherapy is based on gemcitabine and
cisplatin, and the second-line treatment is the FOLFOX regiment [41–44]. It is also worth
noting that less applied but promising options have arisen, e.g., liver transplantation has
become an alternative in iCCA. Multicentre studies have shown that liver transplantation
preceded by chemotherapy results ina 5-year disease-free survival (DFS) rate of 65% [45,46].
Immunotherapy alone did not show efficiency in CCA. To date, clinical trials have evaluated
the benefits of combining chemotherapy and immunotherapy [47,48]. Concurrently, the
discovery of the CCA genome enabled targeting tumour-specific mutations as a palliative
therapy option for advanced stages of the disease [49,50]. FGFR inhibitors are mainly
considered for iCCA treatment as disorders of this pathway appear most frequently in
this type of CCA [51]. Many clinical trials showed the benefits of targeting, especially of
FGFR2 [52]. Pemigatinib, a potent, selective inhibitor of FGFR1–3, was approved by FDA
based on its beneficial effect in patients with advanced or metastatic CCA that had been
previously treated [8]. The results of numerous clinical trials in favour of molecular-targeted
therapy have intensified research into potential FGFR inhibitors used in CCA. However, it
is necessary to explore the topic with a focus on the effectiveness of such an approach, the
potential adverse effects, and resistance to therapy [53].

3. Genetic Aberrations in Cholangiocarcinoma

In this review, the focus remains mainly on the FGFR pathway and genes related to its
activation. However, CCA is a tumour with a high mutation burden. Thus, some of these
mutations have become desirable therapy targets. Nakamura et al. showed that 40% of
CCA cases harboured genetic alterations; approximately 39 non-synonymous mutations
per tumour in iCCA and 35 in eCCA [54]. Lowery et al. tested 195 samples of CCA, high-
lighting that the most frequently altered genes in CCA were IDH1 (30%), ARID1A (23%),
BAP1 (20%), TP53 (20%), and FGFR2 gene fusions (14%) [55]. Less common yet significant
mutations are in the RAS, PTEN, and APC genes, found in 1–6% of tumours [55–57]. The
landscape of genetics and epigenetics varies across iCCA and eCCA, as many studies
have documented [54,55,58]. While iCCA is mainly characterised by IDH, EPHA2, and
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BAP1 mutations and FGFR2 fusions, extrahepatic tumours express mainly PRKACA and
PRKACB fusions along with mutations in ELF3 and ARID1B [59,60] (Figure 2). Interest-
ingly, harboured mutations vary not only depending on their localisation but also their
etiopathogenesis. Thus, TP53 and ARID1A mutations are more common in fluke-related
CCA [57,61]. At the same time, specific mutations correlate with crucial carcinogenesis
pathways, e.g., PTEN with the RAS–RAF–MAPK pathway or APC with the WNT pathway.
Moreover, recent years have shown that the origin of CCA carcinogenesis can also be found
in epigenetic modulation. Growing evidence supports the thesis that dysregulated methy-
lation may play a crucial role in the impaired differentiation of bile duct epithelium [62].
Azpitarte et al. demonstrated that the SOX17 promoter is downregulated in CCA compared
to healthy tissue [62]. This downregulation activated WNT-dependent proliferation and led
to decreased survival among patients after tumour resection [62]. Other studies highlight
that histone modifications and aberrant expression of non-coding RNAs can also disturb
the balance and cell homeostasis as a result of malignant transformation [63–65]. Taking
into account all of the alterations mentioned above, Jusakul et al. divided CCA into four
clinically significant clusters: fluke-positive CCAs (clusters 1/2) characterised by ERBB2
amplifications and TP53 mutations; fluke-negative CCAs (clusters 3/4) with PD-1/PD-L2
expression; epigenetic mutations; and FGFR gene rearrangements [58]. Clusters underline
the basis of possible use for targeted molecular therapies in CCAs. To sum up, a broad
spectrum of mutations in CCA creates multiple possibilities for novel therapies. Therefore,
in current clinical trials, a pivotal role is played by IDH mutations and FGFR2 fusions [66],
which have found a lasting place in treatment guidelines [67].

Cells 2022, 11, x FOR PEER REVIEW 5 of 20 
 

 

 

Figure 2. Mutations in CCA, both in iCCA and eCCA, and processes to which they lead. 

4. FGF/FGFR Interplay in Cholangiocarcinoma 

The family of FGFRs consists of four tyrosine kinase receptors, FGFR1-4. They play 

an essential role in carcinogenesis and a range of physiological signalling pathways. At 

the early stages of embryonic development, FGFRs are primarily engaged in fundamental 

cellular interactions and functions [68–70]. It is also known that fundamental metabolic 

functions are controlled by this pathway, such as the regulation of bile acid, fatty acid, 

glucose, and mineral metabolism [71,72]. Furthermore, FGF23 and FGFR regulation is cru-

cial for bone development and homeostasis by controlling systemic phosphate homeosta-

sis and vitamin D metabolism [73]. Interestingly, angiogenesis can be stimulated by FGFR 

both in physiological and neoplastic processes. Activation of FGFR1 or FGFR2 has been 

demonstrated to affect vascular endothelial proliferation positively [74]. At the same time, 

four FGF receptors need eighteen FGF ligands that activate them for proper signalling 

[75]. FGFRs are folded with three extracellular-binding ligand domains, a transmembrane 

domain, and an intracellular tyrosine kinase domain [75]. Depending on the cell charac-

teristics, extracellular domain D3 can alternatively be spliced and formatted as the epithe-

lial (“b” form) or mesenchymal (“c” form) [76]. Interestingly, novel studies showed the 

presence of FGFR5/FGFRL1 with unknown functions and different morphology [77,78]. 

Activation of the receptor results in downstream signalling covering pivotal cellular path-

ways. Binding the proper ligand to FGFR monomers results in dimerization and intracel-

lular phosphorylation with conformational changes. Activated FGFRs phosphorylate 

FRS2, which opens the way for PI3K, AKT, mTOR, or the RAS/RAF/MEK/MAPK cascade. 

Activated FGFRs also phosphorylate JAK kinases, which lead to STAT activation. FGFRs 

can also recruit and phosphorylate PLCγ, thereby initiating signalling through the 

DAG/PKC or IP3-Ca2+ pathway. Those pathways have a crucial role in tumour develop-

Figure 2. Mutations in CCA, both in iCCA and eCCA, and processes to which they lead.

4. FGF/FGFR Interplay in Cholangiocarcinoma

The family of FGFRs consists of four tyrosine kinase receptors, FGFR1-4. They play
an essential role in carcinogenesis and a range of physiological signalling pathways. At the
early stages of embryonic development, FGFRs are primarily engaged in fundamental cellular
interactions and functions [68–70]. It is also known that fundamental metabolic functions
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are controlled by this pathway, such as the regulation of bile acid, fatty acid, glucose, and
mineral metabolism [71,72]. Furthermore, FGF23 and FGFR regulation is crucial for bone
development and homeostasis by controlling systemic phosphate homeostasis and vitamin D
metabolism [73]. Interestingly, angiogenesis can be stimulated by FGFR both in physiological
and neoplastic processes. Activation of FGFR1 or FGFR2 has been demonstrated to affect
vascular endothelial proliferation positively [74]. At the same time, four FGF receptors need
eighteen FGF ligands that activate them for proper signalling [75]. FGFRs are folded with
three extracellular-binding ligand domains, a transmembrane domain, and an intracellular
tyrosine kinase domain [75]. Depending on the cell characteristics, extracellular domain
D3 can alternatively be spliced and formatted as the epithelial (“b” form) or mesenchymal
(“c” form) [76]. Interestingly, novel studies showed the presence of FGFR5/FGFRL1 with
unknown functions and different morphology [77,78]. Activation of the receptor results in
downstream signalling covering pivotal cellular pathways. Binding the proper ligand to FGFR
monomers results in dimerization and intracellular phosphorylation with conformational
changes. Activated FGFRs phosphorylate FRS2, which opens the way for PI3K, AKT, mTOR,
or the RAS/RAF/MEK/MAPK cascade. Activated FGFRs also phosphorylate JAK kinases,
which lead to STAT activation. FGFRs can also recruit and phosphorylate PLCγ, thereby
initiating signalling through the DAG/PKC or IP3-Ca2+ pathway. Those pathways have a
crucial role in tumour development [79–81]. The final effects of these pathways are distinct
for the cell and include mitogenesis in the MAPK pathway, cell survival in the PI3K pathway,
and mobility in the PKC pathway [82] (Figure 3).

The described pathways are present in CCA as well. Dysregulation at any point may
result in the initiation of carcinogenesis, regulate tumour cell proliferation, and activate
antiapoptotic pathways or chronic inflammation in bile ducts [83–85]. Multiple studies
covering different types of cancers showed that FGFRs have a strict correlation with tumour
growth and tumour cell proliferation [86,87]. For instance, Sungeun et al. proved that
FGFR2 promotes breast cancer tumorigenicity by maintaining tumour-initiating cells [87].
Moreover, the FGFR1 signalling pathway may be crucial in tumour cell invasion [88]. As an
essential step in cancer development, angiogenesis can also be affected by FGFR pathway
dysregulation [89]. Wang et al. showed that blocking FGFR1 could completely prevent the
growth of tumours by blocking angiogenesis [90]. To sum up, every pivotal step in cancer
development can be affected crucially by gene amplification or gain-of-function coding
mutations, leading to dysregulation of the FGF/FGFR signalling pathway.

As previously mentioned, around 14% of CCA are defined by FGFR2 fusions, which
may lead to the development of this cancer. Moreover, in many cases, mutations of FGFR1
and FGFR3 were found, as well as overexpression of FGFR4 [91]. FGFR4 overexpression
and FGFR2 alteration are the most important genetic alterations in CCA. Xu et al. showed
that this overexpression might lead to the proliferation and invasion of CCA cells in vitro
after FGF19 stimulation [92]. The most characteristic translocations of FGFR2 genes result
in constant activation of the pathway. Multiple studies documented that the most prevalent
partners in these fusions are BICC1, PPHLN1, TACC3, and MGEA5 [93]. Ross et al. indicated
that the FGFR2-BICC1 fusion results in the abbreviation of the 3′UTR of FGFR2 and probably
an upregulation of the FGFR2 protein [94]. The FGFR2-TACC3 mutation was found in CCA
by Borad et al. At the same time, inhibition by pazopanib showed efficacy in inhibiting
tumour growth [95]. Sia et al. reported a novel FGFR2-PPHLN1 fusion in CCA, based on the
chromosomal translocation t(10;12)(q26;q12), which has both transforming and oncogenic
activity [96]. The characteristic FGFR2 mutations in CCA can not only be targeted in therapy
but also predictb patient prognosis. Pu et al. showed that low-level amplification of FGFR2
implies specific tumour features such as mass-forming, improved overall survival (OS), and
lower stage [97]. The novel study documented that the exact type of fusion and its protein
products may directly influence therapy results. Protein products of FGFR2 fusions can be
classified into three subtypes: classical fusions that retain the tyrosine kinase (TK) and the
Immunoglobulin (Ig)-like domains; sub-classical fusions that retain only the TK domain;
and non-classical fusions that lack both [98]. Interestingly, the kinase-deficient fusion lost its
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sensitivity to FGFR-specific inhibitors [98]. Moreover, Yoo et al. tested 46 iCCAs and found
that FGFR4-related genes were significantly associated with improved DFS in iCCA [99].
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Figure 3. The FGF signalling pathway. The ligand binds to an FGFR monomer, which leads to
dimerization and intracellular phosphorylation. This provides the means to start signalling pathways
for FGFRs. Activated FGFRs open the way for PI3K, AKT, mTOR or the RAS/RAF/MEK/MAPK
cascade. Activated FGFRs also phosphorylate JAK kinases, which lead to STAT activation. FGFRs can
also recruit and phosphorylate PLCγ, thereby initiating signalling through the DAG/PKC or IP3-Ca2+
pathway. All of those pathways have a crucial role in tumour development. FGFR (fibroblast growth
factor receptors); PI3K (phosphoinositide 3-kinase); AKT (protein kinase B); mTOR (mammalian target
of rapamycin); JAK (Janus kinase); STAT (signal transducer and activator of transcription); PLCγ

(phospholipase C gamma); DAG (dystroglycan); PKC (protein kinase C); IP3 (inositol trisphosphate).

5. Targeted Therapies

Considering the quantity of possible FGFRs alterations in CCA and their pivotal
role, not only in molecular targeted therapy but subsequently in prognosis and possible
resistance to the treatment, the primary focus should also be on further clinical trials using
multiple available inhibitors. Currently, intensive research is conducted not only in the field
of monotherapy, but also in multimodal approaches. To date, the most intensively studied
molecules are ponatinib, debio 1347, derazantinib, erdafitinib, infigratinib, futibatinib, and
pemigatinib. Pemigatinib, infigratinib, and futibatinib are already approved by the FDA
as a second-line therapy for advanced CCA [100]. Furthermore, based on the results of
clinical trials, molecules can be divided into: non-selective inhibitors (such as lenvatinib,
pazopanib, regorafenib, and dovitinib); and novel selective inhibitors (infigratinib, der-
azantinib, erdafitinib, pemigatinib, futibatinib, and debio 1347) [101,102]. Selective FGFR
inhibitors allowed the reduction of side effects resulting from the inhibition of other ki-
nases. Thus their means of action are similar, and rely on reversable bonding with a highly
conserved P-loop cysteine residue in an ATP pocket [6,103,104]. The main highlights and
information covering specific inhibitors are described below (Table 1).
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5.1. Ponatinib

Ponatinib is a third-generation kinase inhibitor, primarily applied in chronic myeloid
leukaemia (CML) in every phase of the disease and Philadelphia chromosome-positive
acute lymphoblastic leukaemia (ALL) [105]. Phase 2 PACE trial proved that this small
molecule showed efficiency in inhibiting native and mutant BCR-ABL1, including BCR-
ABL1T315I; at the same time, the estimated 5-year survival was 73% [106]. The capability of
inhibiting numerous tyrosine kinases became the basis of trials with ponatinib in CCA. The
first pilot study with ponatinib was completed in early 2022. Ahn et al. included patients
with advanced or refractory CCA with FGFR alterations; the primary endpoint was overall
response rate (ORR), and secondary endpoints were OS and progression-free survival (PFS)
with Health-Related Quality of Life (HRQoL) assessment [107]. The research established
partial response in 1 out of 12 patients. Median PFS was 2.4 months, and median OS was
15.7 months. Toxicities were mild and tolerable, with the most common being rash, fatigue,
and lymphopenia [107]. Considering this novel approach, more trials with bigger patient
groups are needed to establish ponatinib’s place in CCA treatment.

5.2. Debio 1347

Debio 1347 is a highly selective, oral FGFR1-3 inhibitor. Primarily, it was tested in
various solid tumours with FGFR aberrations, including CCA. The study aimed to establish
the tolerated dose (NCT01948297), which was reported to be 80 mg daily with acceptable
side effects and encouraging results [108]. In the phase II trial, a daily dose of 80 mg was
administered to the patients, including five with CCA. Debio 1347 was well tolerated;
furthermore, in the group with FGFR2 fusions, two patients had stable disease (SD), and
two patients achieved partial response (PR). The patient with an FGFR1 fusion did not
respond to treatment and showed progressive disease (PD) [109]. In 2019, the FUZE
clinical trial started recruitment for evaluation of Debio 1347 for patients with advanced,
progressive solid tumours (NCT03834220), however low antitumor activity resulted in
termination of this study in 2022 [110].

5.3. Derazantanib

Derazantanib (ARQ087) is another oral FGFR inhibitor tested in patients with CCA.
This molecule is a pan-FGFR inhibitor simultaneously able to inhibit several kinases, such
as RET, VEGFR1, DDR, and KIT. The Phase I study (NCT01752920) estimated a dose of
300 mg daily as recommended for the phase II study [111]. Subsequently, an open-label
phase I/II trial (NCT01752920) conducted in 29 patients with iCCAs harbouring FGFR2
fusion reported a disease control rate (DCR) and ORR of 82.8% and 20.7%, respectively [112].
Following the results, an open-label, single-arm, phase II FIDES-01 (NCT03230318) trial of
derazantinib 300 mg is now ongoing. The trial enrolled previously treated iCCA patients
with various FGFR alterations. The primary endpoint to assess the antitumor activity of
derazantanib is the proportion of patients with PFS at three months [113].

5.4. Erdafitinib

Erdafitinib (Balversa™/JNJ-42756493) is an oral small molecule with activity against
all four FGFRs and other related kinases (e.g., VEGFR) to a lesser extent [114]. During
the phase IIa study conducted in China, Korea, and Taiwan (NCT02699606), adults with
advanced CCA harbouring FGFR alterations who had failed at least one prior systemic
treatment received erdafitinib 8 mg daily. Strict observations and dose escalation depended
on phosphate levels. Among 17 enrolled patients, 15 had a significant response to treatment,
7 achieved PR, and 5 had SD. The ORR was 47%, and the DCR was 80% [115].

5.5. Infigratinib

Infigratinib (BGJ398) is an oral ATP-competitive FGFR1–3-selective inhibitor [116]. The
first evaluation stage was a dose-escalation and dose-expansion study with patients with
advanced malignancies harbouring FGFR genetic aberrations (NCT01004224). According
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to the results of the phase II study, the recommended dose for the FGFR inhibitor was
125 mg once daily (three weeks on, one week off schedule) [117]. The final discussed trial
conducted by Javle et al. showed that an ORR of 23.1%, with median duration of response
of 5.0 months and a median PFS of 7.3 months, was achieved among 108 cases of pre-treated
CCA patients with FGFR2 fusion or rearrangement [118]. The most common treatment-
emergent adverse events (TEAEs) were hyperphosphatemia, eye disorders, stomatitis,
and fatigue. Based on the results of clinical trials on 28 May 2021, the FDA granted
accelerated approval to infigratinib for adults with previously treated, unresectable, locally
advanced or metastatic CCA with FGFR2 fusion or another rearrangement [7]. Currently,
further trials are being conducted, including the PROOF-301 phase III study of infigratinib
versus chemotherapy which has a chance to establish the new first-line, chemotherapy-free,
targeted therapy option for these patients (NCT03773302) [119].

5.6. Futibatinib

Futibatinib (TAS-120) is the only oral FGFR1-4 selective inhibitor with a unique mechanism
of action, binding covalently and irreversibly to FGFR [120]. Sootome et al. evaluated the
anti-cancer activity of futibatinib, whose oral administration led to significant dose-dependent
tumour reduction in various FGFR-driven human tumour xenograft models [121]. Furthermore,
the frequency of drug-resistant clones was lower with futibatinib than with a reversible ATP-
competitive FGFR inhibitor, and futibatinib inhibited several drug-resistant FGFR2 mutants [121].
These results may indicate the potential use of futibatinib in cases of resistance to other FGFRs
inhibitors. The FOENIX-101 first-in-human, phase I dose-escalation trial (NCT02052778) eval-
uated the safety of futibatinib in advanced solid tumours [122]. A daily dose of 20 mg was
established as the recommended phase II dose, with PR reported in five patients and SD in
41 [123]. FOENIX-CCA2, an open-label, multicentre phase II registrational trial in patients with
iCCA harbouring FGFR2 gene fusions or other rearrangements (NCT02052778), was conducted
based on FOENIX-1 results. The initial outcomes from the FOENIX-CCA2 study were reported
from 103 patients who had progressed on previous standard therapies or for whom standard
therapy was not tolerated [124]. The ORR was 37.3%, and the DCR was 82.1% [124]. Further-
more, based on the results of FOENIX trials, futibatinib was approved by FDA this year for
the treatment of locally advanced or metastatic cholangiocarcinoma whose tumours harbor an
FGFR2 rearrangement or fusion [125]. There is a FOENIX-CCA3 trial planned for futibatinib
versus chemotherapy with gemcitabine and cisplatin as the first-line treatment in patients with
FGFR2 alterations (NCT04093362) [126].

5.7. Pemigatinib

Pemigatinib is the first molecule used in targeted therapy for CCA and was first
approved for treatment in 2020 [127]. Pemigatinib is an oral selective inhibitor of FGFR1–3,
with weaker activity against FGFR4 [128]. In pre-clinical models, Liu et al. showed that,
even with the use of small oral doses, pemigatinib suppressed the growth of xenografted
tumour models with FGFR1, 2, or 3 alterations [129]. This therapeutic agent was proven
efficient both in monotherapy and in combination with cisplatin [129]. The phase I/II
FIGHT-101 trial evaluated pemigatinib in patients with previously treated solid tumours
with or without FGFR aberrations (NCT02393248) [130]. The estimated daily dose was
13.5 mg, and no dose-limiting toxicities were observed. Pemigatinib showed both efficacy
and tolerability in monotherapy and in combination with other drugs [130]. The FIGHT-101
trial became the cornerstone for the FIGHT-202 trial, which enrolled patients with CCA
harbouring FGFR2 gene fusions or rearrangements, other FGFR aberrations, or without
FGFR aberrations (NCT02924376) [8]. Outlining the main findings, Abou et al. showed that
35% of patients with FGFR2 fusions or rearrangements had an objective response, including
three cases with complete response. Moreover, median PFS and median OS of 6.9 months
and 21.1 months were achieved, respectively. The main adverse events associated with
this therapy were hypophosphatemia (12%), arthralgia (6%), stomatitis (5%), hyponatremia
(5%), abdominal pain (5%), and fatigue (5%). Nevertheless, spectacular results in the cohort
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with FGFR2 fusions grew to be the foundation for the future use and approval of this
compound [8]. At the same time, the phase III trial (FIGHT-302) with pemigatinib versus
chemotherapy as the first-line treatment in CCA is ongoing (NCT03656536) [131].

Table 1. Current status of FGFRi in clinical development for CCA.

The Current Stage of
Development

Inhibitor
Generation/Potency Efficacy Results Adverse Events and

Disadvantages of the Therapy NCT/Reference

Ponatinib

The first study was
conducted, based on the

results of 12 patients
with CCA.

Third-generation TKI;
FGFR1-4; VEGFR2; RET;

c-KIT; BCR-ABL1

mPFS 2.4 months;
mOS 15.7 months Rash, fatigue, lymphopenia [107]

Debio 1347

Two main clinical trials
with mixed results;

phase II study showed
great results in patients
with CCA, however, the

FUZE study has been
terminated due to low

antitumor activity.

Third generation TKI;
highly selective for

FGFR1-3
mPFS 18.3 weeks

fatigue, hyperphosphatemia,
anaemia, alopecia, nausea,

vomiting, constipation, and
palmar-plantar

erythrodysesthesia syndrome

NCT01948297
[108,109]

Derazantanib

Trial with hopeful
results followed by

ongoing FIDES-01 trial
with tumours

harbouring FGFR2
alterations.

FGFR1-3,
RET, VEGFR1, DDR,

KIT
mPFS 5.7 months

hyperphosphatemia,
dry mouth and nausea,

asthenia, fatigue, dysgeusia,
vomiting, dry eye,

conjunctivitis,
blurred vision,
photophobia

NCT01752920
NCT03230318

[111–113]

Erdafitinib

Trial for patients
harbouring FGFR2

mutations in the Asian
population.

First-generation TKI
inhibitor;

FGFR1-4 and to lesser
extent VEGFR

mPFS 2.35 months

Hyperphosphatemia,
stomatitis,

dry mouth, elevated AST,
elevated ALT

NCT02699606
[115]

Infigratinib

Approved by FDA for
unresectable, locally

advanced, or metastatic
CCA with FGFR2 fusion

or another
rearrangement.

Ongoing phase III trial
versus chemotherapy in

patients with CCA.

FGFR1-3 selective
inhibitor mPFS 7.3 months

hyperphosphatemia, eye
disorders, stomatitis, and

fatigue

NCT01004224
NCT03773302

[117–119]

Futibatinib

Approved by FDA for
locally advanced or

metastatic CCA
harbouring an FGFR2

rearrangement or
fusion. Phase III

FOENIX-CCA3 trial
recruiting.

FGFR1-4 selective
inhibitor mPFS 9 months

Hyperphosphatemia,
diarrhoea,
dry mouth

NCT02052778
NCT04093362
[122,124–126]

Pemigatinib

Approved by FDA for
previously

treated, unresectable,
advanced/

metastatic CCA with
FGFR2 alterations.

Phase III trial
(FIGHT-302) versus

chemotherapy as
first-line treatment in

CCA is ongoing.

FGFR1-3 and weaker
activity against FGFR4

mOS 21.1 months
mPFS 6.9 months

Hyperphosphatemia,
alopecia,

diarrhoea,
fatigue,

dysgeusia

NCT02393248
NCT02924376
NCT03656536

[8,128–130]

6. Key Questions and How to Address Them

In the last decade, FGFR inhibitors have become an integral part of CCA treatment,
eventually permanently entering the guidelines. However, two main issues should be
addressed after analysing data from both pre-clinical and clinical studies. Firstly, most
patients with FGFR2 mutations failed to achieve an overall response. Moreover, the median
duration of response was only 5–6 months [132]. That may indicate both primary and
acquired resistance, as seen in different types of cancer [9]. Secondly, the vast majority
of FGFR inhibitors showed numerous side effects in clinical trials, which often lead to
treatment discontinuation. To incorporate FGFR inhibitors even more efficiently on a
treatment basis, those key questions about resistance and disadvantages must be answered.
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6.1. Primary and Acquired Resistance Mechanisms

Primary resistance is often expressed in specific fusions with other co-occurring tumour-
suppressing genes. As stated by Silverman et al., there is a tendency in CCA towards a shorter
progression-free survival amongst patients with FGFR2 fusions with BAP1, CDKN2A/B,
PBRM1, and TP53 [133]. Furthermore, Person et al. showed that primary resistance might
depend on FGFR amplification in various cancers [134]. Significant response to treatment
was seen only in high-level FGFR-amplified cancers, with copy-number level dictating the
response to FGFR inhibition in vitro, in vivo, and in the clinic [134].

Acquired resistance was mainly observed in clinical trials, which resulted from incom-
plete or no response in some cases. In 2017, Goyal et al. for the first time reported for the
first time the genetic mechanisms of clinically-acquired resistance to FGFR inhibition in
patients with FGFR2 fusion-positive ICC [135]. The study, conducted with serial analysis
of cell-free circulating tumour DNA (cfDNA) from three patients, showed that acquired
resistance to infigratinib is correlated with point mutations in the FGFR2 kinase domain
during progression [135]. The most common mutation found in every sample was the
p.V565F gate-keeper mutation, and two patients developed polyclonal secondary mutations
in the FGFR2 kinase domain. Furthermore, this research documented that cfDNA analysis
can distinguish more evident mutations than a single tumour biopsy, concluding that
heterogeneity of the tumour possibly plays a role in the resistance to FGFR inhibitors [135].
Moreover, other mutations in FGFR may lead to resistance. For instance, tumour cells
harbouring activating V561M mutation in the FGFR1 kinase domain showed resistance
to both specific inhibitors AZD4547 and infigratinib; and non-specific inhibitors, such as
ponatinib, TKI258, and lucitanib (E3810) [136]. Interestingly, other pathways correlated
with FGFR can be involved in the secondary resistance mechanism. Thus, Cowell et al.
showed that mutational inactivation of PTEN resulted in increased PI3K/AKT activity
and resensitization to FGFR inhibitors [136]. Moreover, Datta et al. documented that AKT
activation mediates resistance to infigratinib, and that adding an AKT inhibitor or small
interfering RNA (siRNA) can restore sensitivity to infigratinib in resistant cell lines [137].
The above-mentioned mechanisms indicate the urgent need for investigation into the use of
combined therapies in CCA to overcome this resistance. However, another solution may lie
in an inhibitor with a unique mechanism of action; futibatinib. Futibatinib showed signifi-
cant activity in CCA with FGFR2 gene fusions, and efficacy in patients with progression on
prior FGFR inhibitors. Goyal et al. showed that futibatinib led to clinical benefits in patients
primarily treated with infigratinib or Debio 1347, overcoming several FGFR2 mutations in
iCCA models [138]. Futibatinib retained activity against several mutations by altering the
conformational dynamics of FGFR2. In the analysis of the most common mutations in cell
lines, futibatinib was active against all except the FGFR2 p.V565F gatekeeper mutation [138].
Furthermore, a clinical trial conducted in 2018 (NCT02052778) in 45 patients previously
treated with chemotherapy or prior FGFR inhibitors showed definitive clinical activity of
futibatinib against resistance to primary therapy [122]. Tran et al. proved that in 28 patients
with FGFR2 gene fusions, 20 (71%) experienced tumour shrinkage, and 7 had confirmed
partial responses [122].

6.2. Crucial Disadvantages of FGFR-Targeted Therapy

Molecular targeted therapy was intended to bring less systematic toxic effects com-
pared to chemotherapy. However, the FGFR signalling pathway is also involved in many
cellular physiological processes, hence this approach’s numerous side effects. Even though
FGFR inhibitors are well-tolerated, these drugs are associated with disadvantages that
are distinct from other small-molecule tyrosine kinase inhibitors and other drugs used in
this indication. As reported in clinical trials, these toxicities can result in dose reductions,
interruptions, and even drug discontinuation. Hyperphosphatemia is most commonly
associated with this therapy, resulting from the influence of FGFR1 and FGF23 on the organ-
ism’s phosphate metabolism [81,139]. Clinical trials showed that up to 60% of patients are
affected by this complication; however, rarely did these patients experience grade ≥ 3 side
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effects [102]. There are numerous management options for patients who develop hyper-
phosphatemia during the treatment, including dietary changes with a low-phosphate diet
and phosphate-binding agents [53]. This approach allows limiting-dose reduction or dis-
continuation of the treatment. Ophthalmological toxicity includes retinal pigment epithelial
detachment (RPED) and central serous retinopathy (CSR) as the most severe, though rare
(5%), complication; but more commonly, dry eye occurs in clinical trials (19–21%) [8,66,124].
Unfortunately, if symptoms are significant, they may be the reason for discontinuing the
therapy. Moreover, dermatological toxicities, including hand-foot syndrome, hair loss,
nail-bed infections, onycholysis, dry skin, and xerostomia, may occur [8,66]. Management
of these adverse events is based on symptomatic treatment, using glucocorticosteroids,
antibiotics, topical urea, nail avulsion, and improving the patient’s quality of life [140].
Indeed, significant results are achieved with FGFR inhibitorsbut the side-effect profile may
limit their utility. Therefore, particular attention should be focused on preventing and
effectively managing FGFR-inhibitor-induced adverse events.

7. Conclusions

The occurrence of CCA is mainly associated with the mutations that lead to the up-
regulation of the FGF/FGFR signalling pathway. Thus, researchers continuously strive
to develop such inhibitors and targeted therapies that would specifically inhibit the car-
cinogenic effects of this disturbed pathway. Three molecular-specific drugs are already
approved, while other therapies are still undergoing investigation. Considering current
interventions, the use of FGFR inhibitors seems to be beneficial. However, a potential
side effect of therapy should be addressed before accepting this therapy into the canon of
practice. Another issue constitutes the molecular characterization of a patient’s CCA to
introduce the most effective therapeutic approach. Furthermore, some tumours might de-
velop drug resistance during therapy, significantly decreasing the overall clinical outcome
with the necessity of implementing other treatment strategies. For this reason, there is a
need for other drugs to be investigated in clinical trials, especially novel inhibitors with
different mechanisms of action, such as futibatinib, whose irreversible mechanism of action
has proven to be effective in clinical trials. Combined therapies, in the first place, are more
effective managing the CCA. Moreover, they allow for the minimization of potential side
effects. The breakthrough would allow the development of therapies that could inhibit the
major carcinogenic pathway leading to break-off CCA growth and progression.

In conclusion, FGFR inhibitors have taken a permanent place in the treatment of many
cancers, especially CCA, allowing for more favourable treatment outcomes. However,
despite the huge therapeutic success, the range of side effects and relapses have become
their main limitation. The solution seems to be to look further for new molecular targets
and new drug combinations if we want to minimalize the devastating impact of CCA.
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Abbreviations

CCA cholangiocarcinoma
iCCA intrahepatic cholangiocarcinoma
pCCA perihilar cholangiocarcinoma
dCCA distal cholangiocarcinoma
eCCA extrahepatic cholangiocarcinoma
FGFR fibroblast growth factor receptor
FGF fibroblast growth factor
TK tyrosine kinase
TKI tyrosine kinase inhibitor
FDA Food and Drug Administration
IDH1 Isocitrate dehydrogenase 1
ARID1A/ARID1B AT-Rich Interaction Domain 1A/1B
BAP1 BRCA1 Associated Protein 1
TP53 tumour protein p53
RAS rat sarcoma viral proto-oncogene
PTEN Phosphatase And Tensin Homolog
APC Regulator Of WNT Signalling Pathway
EPHA2 Epithelial Cell Receptor Protein Tyrosine Kinase A2
PRKACA/PRKACB Protein Kinase CAMP-Activated Catalytic Subunit Alpha/Beta
ELF3 E74 Like ETS Transcription Factor 3
PD-1/PD-L1 Programmed cell death protein 1/Programmed death-ligand 1
ERBB2 Erb-B2 Receptor Tyrosine Kinase 2
PI3K phosphoinositide 3-kinase
AKT kinases protein kinase B family
mTOR Mammalian target of rapamycin
PLCγ phospholipase C gamma
DAG dystroglycan
PKC protein kinase C
RAF rapidly accelerated fibrosarcoma kinase
MEK Mitogen-activated protein kinase kinase
MAPK Mitogen activated protein kinase
JAK kinase Janus kinase
STAT signal transducer and activator of transcription
IP3 inositol trisphosphate
BICC1 Protein Bicaudal C Homolog 1
PPHLN1 Periphilin 1
TACC3 Transforming Acidic Coiled-Coil Containing Protein 3
MGEA5 meningioma expressed antigen 5
RET Ret Proto-Oncogene
VEGFR1 Vascular endothelial growth factor receptor 1
DDR DNA damage response and repair gene
CDKN2A/B cyclin-dependent kinase inhibitor 2A/B
PBRM1 Polybromo 1 gene
cfDNA cell-free circulating tumour DNA
siRNA small interfering RNA
OS overall survival
DFS disease-free survival
ORR overall response rate
PFS progression-free survival
SD stable disease
PR partial response
PD progressed disease
DCR disease control rate
TEAE treatment-emergent adverse events
AE adverse events
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