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Abstract: A layer of proteoglycans and glycoproteins known as glycocalyx covers the surface of
the trabecular meshwork (TM), juxtacanalicular tissue (JCT), and Schlemm’s canal (SC) inner wall
of the conventional aqueous outflow pathway in the eye. This has been shown to play a role in
the mechanotransduction of fluid shear stress and in the regulation of the outflow resistance. The
outflow resistance in the conventional outflow pathway is the main determinant of the intraocular
pressure (IOP) through an active, two-way, fluid–structure interaction coupling between the outflow
tissues and aqueous humor. A 3D microstructural finite element (FE) model of a healthy human
eye TM/JCT/SC complex with interspersed aqueous humor was constructed. A very thin charged
double layer that represents the endothelial glycocalyx layer covered the surface of the elastic outflow
tissues. The aqueous humor was modeled as electroosmotic flow that is charged when it is in contact
with the outflow tissues. The electrical–fluid–structure interaction (EFSI) method was used to couple
the charged double layer (glycocalyx), fluid (aqueous humor), and solid (outflow tissues). When
the IOP was elevated to 15 mmHg, the maximum aqueous humor velocity in the EFSI model was
decreased by 2.35 mm/s (9%) compared to the fluid–structure interaction (FSI) model. The charge or
electricity in the living human conventional outflow pathway generated by the charged endothelial
glycocalyx layer plays a minor biomechanical role in the resultant stresses and strains as well as the
hydrodynamics of the aqueous humor.

Keywords: endothelial glycocalyx layer; trabecular meshwork; juxtacanalicular tissue; Schlemm’s
canal; aqueous outflow resistance; electro-fluid–structure interaction

1. Introduction

The aqueous humor outflow resistance in the conventional outflow pathway is the
primary determinant of intraocular pressure (IOP) [1–4]. Impairment in providing a dy-
namic balance between the aqueous humor inflow and outflow due to an abnormally high
outflow resistance in the conventional outflow pathway results in an IOP elevation that
is associated with primary open angle glaucoma (POAG) [5–12]. Aqueous exits the eye
through the conventional (>70%) and unconventional (<30%) outflow pathways. Aqueous
humor passing through the conventional outflow pathway encounters the trabecular mesh-
work (TM), the juxtacanalicular tissue (JCT), and the inner wall endothelium of Schlemm’s
canal (SC). The aqueous humor then enters the SC lumen and flows circumferentially to
reach collector channels leading to the aqueous and episcleral veins [13–17].

As in vascular endothelial cells, an extracellular matrix layer of proteoglycans and
glycoproteins known as glycocalyx with an average thickness of 52–166 nm [18], covers
the TM, JCT, and SC cells, the pores in the SC inner wall, as well as the inner membrane
of giant vacuoles [14,18–22] in the human conventional outflow pathway. The glycocalyx

Cells 2022, 11, 3925. https://doi.org/10.3390/cells11233925 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11233925
https://doi.org/10.3390/cells11233925
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0001-9881-611X
https://orcid.org/0000-0002-9563-7535
https://doi.org/10.3390/cells11233925
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11233925?type=check_update&version=1


Cells 2022, 11, 3925 2 of 18

layers function as sensors of fluid shear stress [23–25] and mediate the alignment of en-
dothelial cells in the direction of flow [26–28]. It significantly contributes to the initiation of
responsive actions in the actin network of the cytoskeleton via mechanosensation [28,29].
One part of mechanotransduction is through the stimulation of endothelial nitric oxide
synthase (eNOS), which drives the release of nitric oxide (NO) [30–32]. In the SC inner
wall, the glycocalyx layer plays a key role in sensing and responding to the fluid shear
stress, mainly through the shear-induced eNOS activity and contributes to rapid outflow
resistance regulation [14,33–35]. Releasing the NO in the outflow pathway due to the fluid
shear stress also results in increasing the outflow facility [21] and endothelial permeabil-
ity [25,36,37]. In healthy eyes, the glycocalyx layer has a variable distribution that may
contribute to the segmental (low- and high-flow [38,39]) flow of aqueous humor [40,41],
which is analogous in some ways to the vascular system as a result of heterogeneous blood
flow distribution [42,43]. There is an electrical charge in living human tissues, especially
the eye [44], and aqueous humor is an electrical conductor because of its salinity [45].
However, we are not aware of any experimental or numerical studies that have calculated
the biomechanical contribution of the glycocalyx layer in the outflow resistance and IOP
regulation across the outflow pathway. Experimentally speaking, it would be difficult with
current imaging techniques to measure the outflow resistance in vivo; numerical techniques
can help to overcome this limitation.

In prior studies, our group has calculated the elastic and viscoelastic biomechanical
properties of the healthy and glaucomatous human outflow tissues using dynamic SC
pressurization, high-resolution optical coherence tomography (OCT), and finite element
method coupled with an optimization algorithm [46–48]. Through an active, two-way,
fluid–structure interaction of the outflow tissues and aqueous humor dynamics, we studied
the hydrodynamics of the aqueous humor across the healthy and glaucomatous outflow
pathways [49,50]. While we have studied the biomechanics of the human aqueous outflow
pathway using experimental and computational techniques, the important role of the
glycocalyx layer in the resultant outflow resistance across the outflow pathway has not
been fully explored. In our prior study, we developed an analytical approach to model the
glycocalyx layer in the blood vessel using a very thin electrically charged double layer [51].
Our results indicated that while the interaction of the negatively charged glycocalyx layer
and the positively charged blood flow affects the hemodynamics of the blood in a vessel,
the biomechanical role of the glycocalyx in the blood vessel is minor. In this study, a 3D
microstructural finite element model of the outflow pathway, including the TM, JCT, and
SC inner wall, with interspersed aqueous humor was constructed. The model was subjected
to an IOP elevation of 0 to 15 mmHg from the anterior chamber. A very thin electric double
layer that represents the glycocalyx layer based on our prior study [51] with a uniform
thickness of ~109 nm [19] was added to the outflow tissues’ surfaces. The aqueous humor
and outflow tissues were also charged positively and negatively, respectively, through the
electroosmotic flow generated by the interaction of the moving aqueous humor with the
outflow tissues. The glycocalyx layer (electric), aqueous humor (fluid), and outflow tissues
(solid) were coupled using an electrical–fluid–structure interaction (EFSI) method. The
EFSI equations in the modeled outflow tissue with complex geometries were solved using
COMSOL Multiphysics (COMSOL, Inc., MA USA). The results were interpreted as the
stresses and strains in the outflow tissues as well as the hydrodynamics of the aqueous
humor across the outflow pathway.

2. Materials and Methods
2.1. Finite Element Reconstruction, Volume Meshing, Material Models, and Boundary Conditions

The 3D FE model of the TM/JCT/SC complex of a normal human donor of European
descent was constructed [52]. The descriptions in regard to the imaging, segmentation, and
volume meshing of the TM/JCT/SC complex FE model were fully explained in our prior
publications [46,47,49,50,53].
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The model was volume meshed [54] and separated into the TM, with adjacent JCT
(~14 µm [55]) and SC inner wall including its greater basement membrane (~2.2 µm [56])
regions as shown in Figure 1. Micrometer-sized pores were distributed in the SC inner
wall [57], with a pore density and diameter of 835 pores/mm2 [56] and 1.3 µm [58], re-
spectively (Figure 1). The models were meshed with 8-noded hexahedral elements [59],
including 348,861 elements and 433,636 nodes, and the element edge length of ~0.5–1 µm.
Element quality assessment and time-step analysis were carried out using LS-DYNA
(Ansys/LS-DYNA, Pennsylvania, US) [48,54,60–62]. Mesh density analyses were con-
ducted for the FE model as described in our previous publications [46,47,49,50]. To have a
fully unbiased analysis, the structure, density, and distribution of the mesh in the models
were the same.

Cells 2022, 11, x FOR PEER REVIEW 3 of 19 
 

 

The 3D FE model of the TM/JCT/SC complex of a normal human donor of European 

descent was constructed [52]. The descriptions in regard to the imaging, segmentation, 

and volume meshing of the TM/JCT/SC complex FE model were fully explained in our 

prior publications [46,47,49,50,53]. 

The model was volume meshed [54] and separated into the TM, with adjacent JCT 

(~14 μm [55]) and SC inner wall including its greater basement membrane (~2.2 μm [56]) 

regions as shown in Figure 1. Micrometer-sized pores were distributed in the SC inner 

wall [57], with a pore density and diameter of 835 pores/mm2 [56] and 1.3 µm [58], respec-

tively (Figure 1). The models were meshed with 8-noded hexahedral elements [59], in-

cluding 348,861 elements and 433,636 nodes, and the element edge length of ~0.5–1 μm. 

Element quality assessment and time-step analysis were carried out using LS-DYNA (An-

sys/LS-DYNA, Pennsylvania, US) [48,54,60–62]. Mesh density analyses were conducted 

for the FE model as described in our previous publications [46,47,49,50]. To have a fully 

unbiased analysis, the structure, density, and distribution of the mesh in the models were 

the same. 

 

Figure 1. The electrical–fluid–structure interaction model of the TM, with adjacent SC (~2.2 µm) and 

JCT (~14 µm), and aqueous humor. The µm-sized pores with the average size of ~1.3 µm and the 

density of 835 pores/mm2 were distributed in the SC inner wall. 

The outflow tissues were treated as elastic materials with the moduli of 4 [63], 4 [63], 

and 7.48 kPa [64] for the TM, JCT, and SC inner wall, respectively. The tissues were as-

sumed nearly incompressible with Poisson’s ratio of 0.495. The electric potential of the 

endothelial cells that covered the outflow tissues was −70 mv with the reference imped-

ance of 50 Ω [65,66].  

A pre-tension force of ~500 μN was generated in the TM/JCT/SC complex local nodes 

to mimic the ciliary muscle movement during IOP fluctuation that also helps to prevent 

sudden excessive dynamic response in the cables [17,67]. 

2.2. Electrical–Fluid–Structure Interaction 

In our prior study, we developed an analytical approach to model the glycocalyx 

layer in the blood vessel using a very thin electric double layer [51]; however, herein, due 

to the complexity of the outflow tissues’ geometry the same approach cannot be applied. 

Thus, in this study, the electroosmotic laminar flow in a shear-driven outflow pathway 

was modeled by Navier–Stokes momentum equations for the velocity field, and Poisson’s 

equation for the electrical potential field. The hydrodynamic flow was modeled using the 

Navier–Stokes momentum equations with an electrical body force as follows: 

Figure 1. The electrical–fluid–structure interaction model of the TM, with adjacent SC (~2.2 µm) and
JCT (~14 µm), and aqueous humor. The µm-sized pores with the average size of ~1.3 µm and the
density of 835 pores/mm2 were distributed in the SC inner wall.

The outflow tissues were treated as elastic materials with the moduli of 4 [63], 4 [63],
and 7.48 kPa [64] for the TM, JCT, and SC inner wall, respectively. The tissues were
assumed nearly incompressible with Poisson’s ratio of 0.495. The electric potential of the
endothelial cells that covered the outflow tissues was−70 mv with the reference impedance
of 50 Ω [65,66].

A pre-tension force of ~500 µN was generated in the TM/JCT/SC complex local nodes
to mimic the ciliary muscle movement during IOP fluctuation that also helps to prevent
sudden excessive dynamic response in the cables [17,67].

2.2. Electrical–Fluid–Structure Interaction

In our prior study, we developed an analytical approach to model the glycocalyx layer
in the blood vessel using a very thin electric double layer [51]; however, herein, due to the
complexity of the outflow tissues’ geometry the same approach cannot be applied. Thus, in
this study, the electroosmotic laminar flow in a shear-driven outflow pathway was modeled
by Navier–Stokes momentum equations for the velocity field, and Poisson’s equation for
the electrical potential field. The hydrodynamic flow was modeled using the Navier–Stokes
momentum equations with an electrical body force as follows:

ρ

(
∂u
∂t

+ u · ∇u
)
= µ∇2u− ρ f E (1)

where ρ is the aqueous humor density, u is the velocity vector, µ is the aqueous humor
viscosity, ρf is the free charge density (charge per unit volume of the aqueous humor),
and E is the induced electrical field vector which can be represented by the gradient of



Cells 2022, 11, 3925 4 of 18

the electrical potential (E = −∇Φ). The electrical potential distribution was obtained
using Poisson’s equation as ∇2Φ = − ρ f

ε where ε is the dielectric permittivity (relative
permittivity) of the aqueous humor in the outflow pathway.

The motion in the electroosmotic aqueous humor is induced by an applied electrical
potential in the inlet of the outflow pathway where the TM surface facing the anterior
chamber, which serves as the inlet to the outflow pathway. The aqueous humor flow causes
stresses and strains in the outflow tissues through their active EFSI coupling algorithm.
The mechanics of the outflow tissues can be represented as follows [68]:

∇ ·
(→

V t

)
= 0 (2)

=
σtotal =

=
σt +

=
σi (3)

=
σt = λe

=
I + 2µ

=
E (4)

=
σi = −Pi

=
I (5)

∇ ·
(

εt
=
σtotal

)
= 0 (6)

where Equation (2) is the continuity equation assuming the existence of production and
conversion for tissue. Assuming the presence of quasi-static conditions, and considerably
small strain conditions, Equation (3) shows the stress tensor in tissue. Thus, σtotal, σt, σi
represent the total stress in the tissue, the internal stress in the tissue that is due to the
elastic deformation of the outflow tissues, and the stress due to the presence and movement
of the interstitial fluid in the outflow tissues that represent the hydraulic conductivity,
respectively. Equation (4) that links the stress tensor and elastic deformation includes
λ and µ as the Lame parameters, and e and E represent volumetric strain and strain
tensor, respectively. Equation (5) represents the stress due to aqueous humor pressure and
Equation (6) expresses the linear momentum equation in the quasi-static state. Considering
the theory of infinitesimal strain, the following equations can be used:

e = tr
(
=
E
)
= ∇ ·→u t (7)

=
E =

1
2

(
∇→u t +∇

(→
u t

T
))

(8)

∇ ·
(→

V t

)
=

∂e
∂t

(9)

where
→
u t represents the tissue displacement vector in units m.

The EFSI nonlinear partial differential equations were solved using COMSOL Mul-
tiphysics (COMSOL, Inc., Proprietary EULA, MA, USA). The methodology involved a
segregated solution method in which the time-dependent solutions for the Poisson were
obtained for the no-flow case in order to obtain the quiescent electric potential [69]. Aque-
ous humor was modeled to be homogeneous, laminar, Newtonian, and viscous [70], with
the density and dynamic viscosity of 1000 kg/m3 (m refers to meter) and 0.7185 mPa·s
(m refers to millimeter) [71], respectively. The zeta potential (the electrical potential at the
slipping plane between the aqueous humor and the outflow tissues), electrical conductivity,
and relative permittivity of the aqueous humor were specified as −19.5 mv (m refers to
millimeter) [72], 179 × 10−4 (ohm−1 cm−1) [73], and 99 [74], respectively.

The simulation was conducted by a linear IOP elevation to from 0 to 15 mmHg (1 s)
with the time step of 0.01 s (100 time steps) according to the physiological load rate [75,76].
The aqueous humor flow-out in the SC inner wall was modeled as open boundary with
the boundary condition of normal stress (f0 = 0). Three different models were simulated,
including the FSI with IOP of 15 mmHg, EFSI with IOP of 0 mmHg, and EFSI with IOP of
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15 mmHg. While the EFSI case with an IOP of 0 mmHg is not physiologic, the aim was to
calculate the role of the endothelial glycocalyx layer (electric) only on the biomechanics and
hydrodynamics of the human aqueous outflow pathway. The EFSI simulations on average
took ~32 h to run on our workstation.

3. Results

The pressure and velocity in the aqueous humor for the FSI with IOP of 15 mmHg,
EFSI with IOP of 0 mmHg, and EFSI with IOP of 15 mmHg are shown in Figures 2 and 3,
respectively. The resultant aqueous humor pressure and velocity in the outflow pathway
were negligible at 0.00469 mmHg and 0.00164 mm/s, respectively. The pressure of velocity
contour maps for both the FSI and EFSI models were relatively similar. However, the
velocity streamlines across the outflow pathway showed relatively more tangential traction
between the charged outflow tissues and aqueous humor when the role of the glycocalyx
layers taken into account. Specific regions shown by a “*” show the role of the glycocalyx
layer in providing a dynamic electrical relationship between the outflow tissue surfaces
wall and the aqueous humor, and altering the aqueous humor hydrodynamics (inset).
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Figure 3. The aqueous humor velocity across the outflow pathway. (a) FSI model with IOP of
15 mmHg, (b) EFSI with IOP of 0 mmHg, and (c) EFSI with IOP of 15 mmHg.

The 1st principal stress and strain in the TM/JCT/SC complex for the FSI with IOP
of 15 mmHg, EFSI with IOP of 0 mmHg, and EFSI with IOP of 15 mmHg are shown in
Figures 4 and 5, respectively. The glycocalyx layer plays a minor role in the resultant
stresses and strains in the outflow tissues. The EFSI models showed 0.2 kPa and 0.1% less
tensile stress and strain, respectively, in the outflow tissues compared to the FSI model.
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Figure 4. The 1st principal stress in the TM/JCT/SC complex. (a) FSI model with IOP of 15 mmHg,
(b) EFSI with IOP of 0 mmHg, and (c) EFSI with IOP of 15 mmHg.
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Figure 5. The 1st principal strain in the TM/JCT/SC complex. (a) FSI model with IOP of 15 mmHg,
(b) EFSI with IOP of 0 mmHg, and (c) EFSI with IOP of 15 mmHg.

The maximum shear stress and strain in the TM/JCT/SC complex for the FSI with
IOP of 15 mmHg, EFSI with IOP of 0 mmHg, and EFSI with IOP of 15 mmHg are shown in
Figures 6 and 7, respectively. The glycocalyx layer decreased the maximum shear stress
and strain in the outflow tissues by 1 × 10−4 kPa and 0.2%, respectively.
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Figure 6. The maximum shear stress in the TM/JCT/SC complex. (a) FSI model with IOP of 15 mmHg,
(b) EFSI with IOP of 0 mmHg, and (c) EFSI with IOP of 15 mmHg.



Cells 2022, 11, 3925 10 of 18Cells 2022, 11, x FOR PEER REVIEW 11 of 19 
 

 

 

Figure 7. The maximum shear strain in the TM/JCT/SC complex. (a) FSI model with IOP of 15 

mmHg, (b) EFSI with IOP of 0 mmHg, and (c) EFSI with IOP of 15 mmHg. 
Figure 7. The maximum shear strain in the TM/JCT/SC complex. (a) FSI model with IOP of
15 mmHg, (b) EFSI with IOP of 0 mmHg, and (c) EFSI with IOP of 15 mmHg.
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The displacement in the TM/JCT/SC complex for the FSI with IOP of 15 mmHg, EFSI
with IOP of 0 mmHg, and EFSI with IOP of 15 mmHg are shown in Figure 8. The glycocalyx
layer plays no role (~0 µm) in the resultant deformation of the outflow tissues.
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Figure 8. The displacement in the TM/JCT/SC complex. (a) FSI model with IOP of 15 mmHg,
(b) EFSI with IOP of 0 mmHg, and (c) EFSI with IOP of 15 mmHg.
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4. Discussion

The cells in the outflow pathway are constantly exposed to fluctuating levels of fluid
shear stress or shear induced mechanical forces [77] that results in actin cytoskeletal re-
modeling and changes the cell shape and mobility [24,27–31,77,78] as well as glycocalyx
synthesis [79,80]. The glycocalyx layer has a significant contribution in transmitting the
fluid shear stress to the cytoskeleton of endothelial cells [23,24,29,81–83] through the elec-
troosmotic effect between the active interaction of the conductive aqueous humor and
outflow tissues [44,45]. Since the glycocalyx functions as a mechanotransducer by influenc-
ing the resultant shear stress in the outflow tissues, as well as an activator of endothelial
nitric oxide synthase (eNOS) with subsequent NO release, calculating the biomechanical
role of the glycocalyx in an active EFSI interaction between the outflow tissues and aqueous
humor is of great interest. While we are not aware of any experimental studies that have
calculated the role of the glycocalyx layer in the resultant outflow resistance and aqueous
humor hydrodynamics across the outflow pathway, numerical methods, such as the EFSI,
may help to expand our knowledge of glycocalyx biomechanics. In this study, a 3D FE
model of the human TM/JCT/SC complex was constructed [49,50] (Figure 1) and subjected
to an aqueous humor inflow of 0 to 15 mmHg. The outflow tissues were covered with a
thin electric double layer (~109 nm [19]) to represent the endothelial glycocalyx layer [51].

It has been experimentally shown that the glycocalyx layer may contribute to addi-
tional resistance against microvascular flow [84–86]. The in vivo flow resistance in small
vessels was found about twice as large as the in vitro viscosity data, so the conclusion
was that the endothelial glycocalyx layer is responsible for this discrepancy [84,85]. The
endothelial glycocalyx layer in our study also caused a higher resistance for the flow, de-
creased the maximum aqueous humor velocity by 2.35 mm/s, and altered the streamlines
or hydrodynamics of the flow across the outflow pathway (Figure 3); however, the profile
of the pressure was unchanged (Figure 4). The aqueous humor through an active biome-
chanical interaction with the charged outflow tissues caused a shear-driven electroosmotic
effect and caused a magnetic relationship between the flow and solid. This is why the
streamlines of the velocity in the EFSI models tend to be closer to the wall compared to the
FSI model (Figure 3 in inset regions).

The glycocalyx layer decreased the tensile stress and strain by 0.2 kPa and 0.1% in the
outflow tissues, respectively (Figures 4 and 5). The glycocalyx layer itself caused the stress
and strain of 0.04 kPa and 0.08%, respectively, by pushing the aqueous humor into the
outflow pathway. The same pattern was observed in the shear stress and strain (Figures 6
and 7). The presence of the glycocalyx layer caused smaller shear stress and strain by
0.01 kPa and 0.2% in the outflow tissues, respectively, compared to the FSI model (no
electrical interaction). The glycocalyx itself increased the shear stress and strain of 1.08 Pa
and 0.04%, respectively, in the outflow tissues. This is in good agreement with Kapellos
and colleagues [87], who showed that the presence of the glycocalyx causes negligible shear
stress and physical forces acting on the outer surface of the tissues. The reduction in the
resultant shear stresses and strains across the SC inner wall may affect NO release and IOP
regulation as a result (Figures 6 and 7). While the occluding junctions in the SC inner wall
are very tight and can only account for a tiny fraction of conventional outflow [88], they
maintain the apical-basal polarity of cells resulting in a steady electrical potential [89]. The
glycocalyx layer also maintains the hydraulic resistance properties through a small pore
system that does not permit the bulk flow of fluid across its boundaries [90]. Although
the glycocalyx layer has a trivial biomechanical role in the outflow pathway, it still may
affect NO synthesis, and in turn, the shear stress pattern in the outflow tissues (Figure 6).
Nitric oxide is known as the vasodilator and relaxer in the TM that increases the outflow
facility and decreases IOP [22]. Thus, even a small biomechanical contribution of the
glycocalyx layer in the outflow pathway may play a role in the regulation of IOP [19]. The
flow-induced shear stress in the blood vessels causes cell elongation and cell alignment
in the direction of flow on the vascular endothelial cells [27,91,92]. The same pattern was
observed in the conventional outflow pathway as even a relatively small shear stress in
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the SC aligns the endothelial cells with the flow [20]. This alignment is mediated by the
glycocalyx, so the presence of the glycocalyx is essential for the endothelial cells to respond
to fluid shear [28]. In the blood vessels, the glycocalyx is highly negatively charged layer
that actively interacts with the plasma inducing several interfacial and mechanical as
well as electrochemical phenomena [93]. In the outflow pathway, the negatively charged
glycocalyx layer is known as a predominant reason why negatively charged red blood cells
do not invade the vascular layers due to the electrostatic repulsion [94]. Similar to the blood
vessels, in the human conventional outflow pathway, the glycocalyx may play a key role in
maintaining the hydraulic resistance and maintaining a barrier to passage of proteins, like
albumin [95].

Li showed the average TM displacements of ~1 µm at the IOP of 15 mmHg [96]. In
our study, the nodal-averaged TM displacement in the FSI and EFSI models were ~0.59 and
~0.55 µm, respectively (Figure 8). Li [96] used nonhuman primate eyes (Macaca nemestrina)
while we used human eyes, so the difference in TM displacements that we report could be
due to species-related differences in biomechanical tissue properties.

Limitations

First, the geometry of the JCT and SC inner wall and the µm-sized pores were manually
selected in our models. While our FE model uses an idealized model for the outflow
pathway, in future studies we will employ better optical coherence imaging techniques that
allows us having eye-specific geometries for the JCT and SC inner wall.

Second, while it has been shown that the thickness of the glycocalyx across the human
outflow pathway ranges from 52 to 166 nm [19], the thickest part is in the SC region, which
may contribute to the higher outflow resistance noted there [21,97–101]. In the current
study, the outflow tissues are covered with a uniform thickness of the glycocalyx (~109 nm).
While this may affect the resultant outflow resistance in the outflow pathway, the aim
of the present study was to develop a computational pipeline to model the role of the
glycocalyx layer in the outflow resistance and IOP regulation. In our future studies, a
localized thickness variation based on the available data in the literature will be defined in
the outflow pathway.

Third, the outflow tissues herein were treated as isotropic elastic materials based on
properties that were measured using atomic force microscopy, while it has been shown that
the tissues are anisotropic and viscoelastic [46,47,96,102]. While this may be considered as a
limitation, the purpose of this study was to develop a computational approach to calculate
the important role of the endothelial glycocalyx layer in the outflow resistance. Thus, the
complex electrical equations for the glycocalyx layer were developed and coupled with
the elastic solid and steady aqueous humor flow. In our future studies, we will extend the
method, so we can address the active biomechanical interaction of the glycocalyx layer and
aqueous humor dynamic with the viscoelastic outflow tissues.

Fourth, we only modeled one normal eye, which does not represent the range of
outflow tissues’ geometries present in the healthy population. Future studies will benefit
from a larger cohort of healthy and glaucomatous eyes encompassing the accurate geometry
of the tissues.

Fifth, one may argue that changing the electrical properties of the outflow tissues and
aqueous humor would affect the resultant stresses and strains in the outflow pathway.
While we agree the electrical properties will affect the results, the available data in the
literature for the aqueous humor and outflow tissues were used. Thus, with the current
electrical properties, the resultant stresses and strains in the outflow tissues and hydrody-
namics of the aqueous humor will not change. However, in future studies, each electrical
parameter will be separately investigated to quantify their role in the resultant stresses and
strains as well as the hydrodynamics in the outflow pathway.

Sixth, flow through the 360◦ circumference of TM structure is not uniform but divided
into high- and low-flow regions, termed as segmental [9,12]. It has been shown that there
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is no significant difference between the thickness of the glycocalyx layer in the high- and
low-flow regions [19], so herein, the segmental outflow was not modeled.

5. Conclusions

A thin electric double layer was applied to the surface of the 3D eye-specific FE model
of a human conventional aqueous outflow pathway to represent the endothelial glycocalyx
layer. The glycocalyx layer, outflow tissues, and the aqueous humor were coupled through
the electrical–fluid–structure interaction and the model was subjected to IOP elevation
from 0 to 15 mmHg. The electrical properties of the outflow tissues and the aqueous humor
in a living eye can move the aqueous humor in the outflow pathway even without positive
pressure in the anterior chamber. In the FSI model with no IOP (a non-physiologic model),
the glycocalyx layer played a minor biomechanical role in the resultant stresses and strains,
as well as the pressure and velocity of the aqueous humor. The findings of this study may
have implications for understanding the biomechanical role of the endothelial glycocalyx
layer. Calculating the resultant stresses and strains as well as the hydrodynamics of the
aqueous humor in the human eye also provide quantitative information for clinicians,
engineers, and pharmaceutical companies and provide a means of better understanding
the complex electromechanical relationships in human eyes.

(a) The endothelial glycocalyx layer in the healthy human outflow pathway was modeled
using EFSI.

(b) The positively charged aqueous humor can flow in the negatively outflow pathway
with no IOP.

(c) The glycocalyx plays a minor role in the biomechanics and hydrodynamics of the
outflow pathway.
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