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Abstract: Human heart development is governed by transcription factor (TF) networks controlling
dynamic and temporal gene expression alterations. Therefore, to comprehensively characterize
these transcriptional regulations, day-to-day transcriptomic profiles were generated throughout the
directed cardiac differentiation, starting from three distinct human- induced pluripotent stem cell lines
from healthy donors (32 days). We applied an expression-based correlation score to the chronological
expression profiles of the TF genes, and clustered them into 12 sequential gene expression waves.
We then identified a regulatory network of more than 23,000 activation and inhibition links between
216 TFs. Within this network, we observed previously unknown inferred transcriptional activations
linking IRX3 and IRX5 TFs to three master cardiac TFs: GATA4, NKX2-5 and TBX5. Luciferase
and co-immunoprecipitation assays demonstrated that these five TFs could (1) activate each other’s
expression; (2) interact physically as multiprotein complexes; and (3) together, finely regulate the
expression of SCN5A, encoding the major cardiac sodium channel. Altogether, these results unveiled
thousands of interactions between TFs, generating multiple robust hypotheses governing human
cardiac development.

Keywords: stem cell differentiation; human induced pluripotent stem cells; heart development;
transcription factor; gene regulatory networks; transcriptomics; transcription factor complexes;
iroquois transcription factors

1. Introduction

Heart formation is a complex process that requires spatio-temporal interplay between
distinct and interdependent cell types through specific signaling and transcriptional path-
ways, leading to their differentiation and specification [1,2]. Defects in this developmental
process result in congenital heart disease as well as in a number of inherited cardiac dis-
orders in adults [3]. The specific gene expression program governing the formation of
a functional heart needs precise regulation in a time-, cell-, and space-dependent man-
ner [4]. This program is mediated by transcription factors (TFs) regulating the expression
of other TF-encoding genes and establishing specific TF networks, such as between GATA4,
NKX2-5 and TBX5 [5,6]. Over time, these networks control and permanently remodel the
transcriptional expression program that govern heart development.

A thorough understanding of these networks is crucial to gain knowledge on the
transcriptional regulations and dysregulations that govern normal and pathological cardiac
development, respectively. However, complete knowledge of the global TF regulatory
network of cardiac development is still missing. For instance, while several studies on
Iroquois homeobox TF family (IRX) have shown their key roles on the regulation of adult
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cardiac electrical conduction [7–11], their function during human cardiac development has
not yet been investigated. Cellular models derived from human induced Pluripotent Stem
Cells (hiPSCs) offer a unique opportunity to address these challenges as they reproduce the
cellular differentiation processes which lead stem cells to acquire a cardiac cell phenotype,
carrying the genome of either healthy subjects or patients with inherited cardiac diseases.

In the present study, we first validated the hiPSC cardiac differentiation model as
a relevant tool to unravel the global TF regulatory network governing human cardiac
development, identifying a network of 216 TFs with time-dependent activations and
inactivations. Among these, we identified and biologically validated an undescribed TF
regulatory network involving IRX3, IRX5 and three main cardiac TFs: GATA4, NKX2-5 and
TBX5. Furthermore, we generated new hypotheses on the potential mechanisms leading
to the cooperative effect of these TFs that could form a functional multiprotein complex
activating the promoter of SCN5A, encoding the main cardiac sodium channel.

2. Materials and Methods
2.1. Reprogramming and Maintenance of hiPSCs

All of the cell lines, taken from 3 healthy donors, were previously characterized. The
hiPSC-A (C2a in [12]) line was generated using the lentivirus method while the hiPSC-B
(IRX5-Wt in [13]; RRID:CVCL_B5QD) and hiPSC-C (WT8288 in [14]; RRID:CVCL_B5Q5)
lines were generated using the Sendai virus method. The hiPSC lines were maintained
at 37 ◦C, 5% CO2, 21% O2 in StemMACSTM iPS Brew XF Medium (Miltenyi Biotec, Ber-
gisch Gladbach, Germany) on culture plates coated with Matrigel® hESC-Qualified Matrix
(0.05 mg/mL, Corning, NY, USA). At 75% confluency, the cells were passaged using Gentle
Cell Dissociation Reagent (STEMCELLTM Technologies, Vancouver, Canada).

2.2. Cardiac Differentiation of hiPSCs

Directed cardiac differentiations of the hiPSCs were performed using the established
matrix sandwich method (Figure 1A; [15]). When the hiPSCs reached 90% confluency, an
overlay of Growth Factor Reduced Matrigel (0.033 mg/mL, Corning) was added. Differ-
entiation was initiated 24 h later by culturing the cells in RPMI1640 medium (Thermo
Fisher Scientific, Waltham, MA, USA) supplemented with B27 (without insulin, Thermo
Fisher Scientific), 2 mM L-glutamine (Thermo Fisher Scientific), 1% NEAA (Thermo Fisher
Scientific), 100 ng/mL Activin A (Miltenyi Biotec), 1X Pen/Strep (Thermo Fisher Scientific)
and 10 ng/mL FGF2 for 24 h. Subsequently, on the next day, the medium was replaced by
RPMI1640 medium supplemented with B27 without insulin, 2 mM L-glutamine, 1% NEAA,
10 ng/mL BMP4 (Miltenyi Biotec), 1X Pen/Strep and 5 ng/mL FGF2 for 4 days. By day
5, cells were cultured in RPMI1640 medium supplemented with B27 complete (Thermo
Fisher Scientific), 2 mM L-glutamine, 1X Pen/Strep and 1% NEAA and changed every
two days until day 30. Specifically, for video analysis and immunofluorescence staining,
glucose starvation was performed to obtain a purified cardiomyocyte population: at day
10 the medium was replaced by Depletion medium (RPMI 1640 medium without glucose
(Thermo Fisher Scientific) supplemented with B27 complete, and 1X Pen/Strep) for 3 days.
The cells were dissociated at day 13 with 10X TrypLE solution (Thermo Fisher Scientific)
and replated in CMs medium (RPMI1640 medium supplemented with B27 complete, 2 mM
L-glutamine, 1X Pen/Strep, 1% NEAA) supplemented with Y-27632 Rho-kinase inhibitor
(STEMCELLTM Technologies). On day 14, the medium was replaced by Depletion medium
for 3 days. From day 17, the cells were maintained in a CMs medium.

2.3. Bulk Transcriptomics
2.3.1. RNA Extraction and Sequencing

For each hiPSC line, the samples were harvested daily, from D-1 to D30 of the cardiac
differentiation protocol, from three independent cardiac differentiations. The total RNA
were extracted using the NucleoSpin RNA kit (MACHEREY-NAGEL, Hoerdt, France)
and their quality was assessed by NanoDropTM 1000 Spectrophotometer (Thermo Fisher



Cells 2022, 11, 3915 3 of 20

Scientific). From the D-1 to D14 samples, all of the cells were collected while, from D15
to D30, to obtain samples enriched with cardiomyocytes, only the spontaneously beating
cell clusters were collected, following mechanical isolation using a needle. Three RNA
libraries were prepared by GenoBiRD core facility according to their published method [16]
and sequenced on 8 individual runs on a NovaSeq 6000 or HiSeq 2500 Sequencing System
(Illumina, San Diego, CA, USA).

2.3.2. Primary Analysis of Bulk Transcriptomic Data

Demultiplexing, alignment on the GRCh38 reference genome and counting steps
were conducted on each sequencing run with the Snakemake pipeline developed by the
GenoBiRD core facility [16]. Normalized and log-transformed expression matrices were
generated using the multiplates function correcting potential batch effects by treating
cardiac differentiation time points as replicates.

2.3.3. PCA

Principal Component Analysis (PCA) was performed with the R package FactoMineR
([17]; RRID:SCR_014602) on the entire mean-centered and log-transformed matrix.

2.3.4. Time-Course Gene Expression Analysis

Genes with significant expression variation between the different cardiac differentia-
tion time-points (indicated as Differentially Expressed Genes; DEG) were identified by mul-
tivariate empirical Bayes statistics using the R package timecourse ([18]; RRID:SCR_000077)
and applied to the entire log-transformed matrix. We selected the top 3000 DEG based
on their highest Hotelling T̃2 statistics. The same method was used to select genes with
significant expression variation during murine cardiac development from a published tran-
scriptomic dataset [19]. When necessary, human and murine orthologous gene names were
identified using the R package biomaRt ([20]; RRID:SCR_019214) and Ensembl databases.

2.3.5. Clustering and Heatmap

The DEG were grouped into clusters, based on their expression level variation across
the 288 samples, using the R function k-means set on 2000 iterations, and visualized with
the R package ComplexHeatmap ([21]; RRID:SCR_017270).

2.3.6. Gene Ontology Analyses

Gene Ontology (GO) analysis was performed using the R package ClusterProfiler ([22];
RRID:SCR_016884), based on GO Biological Process terms from the org.Hs.eg.db_3.14.0
and org.Mm.eg.db_3.14.0 databases for human and mouse annotations, as appropriate. Sig-
nificantly enriched (bonferroni-corrected p-value < 0.05) biological processes, as compared
to reference transcriptome, and with a Gene Set Size (GSSize) between 10 and 500, were
considered for further analysis. The 15 GO terms with the lowest corrected p-value were
visualized with treeplot.

2.3.7. Network Construction and Analysis

For each hiPSC line, the gene regulatory network was inferred using the R package
LEAP (Lag-based Expression Association for Pseudotime-series; Specht and Li, 2017), based
on the average from the log-transform data of triplicate cardiac differentiations. Cardiac
differentiation time points were used to rank samples, as required, by the LEAP tool. The
max_lag_prop parameter was set to 1/10, meaning that, at most, 3 day windows were used
to calculate the maximum absolute correlation (MAC) score. Only links with a significant
MAC score (determined by a permutation test; p-value < 0.05) and related to a non-null
time delay were considered. Links with a positive correlation score were interpreted as acti-
vation relationships and those with a negative correlation score as repression relationships.
STRING software [23] was used to obtain information on the physical and functional inter-
actions between the proteins of interest, with a minimum required interaction score of 0.4.
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Nodes without any interaction were excluded. STRING-based or LEAP-based interactions
were processed using Cytoscape 3.9.1 for network reconstruction ([24]; RRID:SCR_003032).
Network parameters were obtained using the Analyze network function.

2.4. Single-Cell Transcriptomic
2.4.1. Single-Cell RNA-Seq Data Generation

Cells at D30 of hiPSC-A cardiac differentiation were harvested from three distinct
beating wells, dissociated, using the Multi Tissue Dissociation Kit 3 (Miltenyi Biotec), and
pooled. This experiment was performed in duplicates. Cell suspensions were filtered on a
40 µm Flowmi® Cell Strainer, counted and cell viability was assessed (viability was 92%
for the first experiment and 94% for the second). For each replicate, single-cell droplet
libraries were generated from 16000 cells with the Chromium Single Cell 3′ GEM, Library
& Gel Bead Kit v3 (10X Genomics, Pleasanton, CA, USA). After qPCR quantification, the
libraries were pooled and sequenced on a single run, on a NovaSeq 6000 Sequencing
System (Illumina), providing a read depth of >20,000 read pairs per cell, according to
manufacturer’s instructions.

2.4.2. Primary Analysis of Single-Cell Transcriptomic Data

The data were processed using cellranger 4.0.0 (10X Genomics). First, demultiplexing
of the raw base call files into FASTQ files was accomplished using cellranger mkfastq
function. Second, alignment on the GRCh38 reference genome, filtering and counting steps
were performed, separately, on each replicate with the cellranger count function. Lastly,
aggregation with the normalization of duplicates was performed using the cellranger
aggr function.

2.4.3. Secondary Analysis of Single-Cell Transcriptomic Data

The gene expression matrix was analyzed using the R package Seurat ([25]; RRID:
SCR_016341). Doublets were identified and removed using the R package DoubletFinder
([26]; RRID:SCR_018771), assuming a 7.5% doublet formation rate. In addition, only cells
with 200 to 5000 detected features and with <25% reads aligned to mitochondrial genes
were selected for further analysis. After normalization, unwanted sources of intercellular
variations, such as the number of detected genes or differences between cell cycle phases,
were regressed using the ScaleData function. A principal component analysis was then
performed using the 2000 most variable genes, according to the FindVariableFeatures
function, and the first 10 components were used to calculate the UMAP. Cell-type labelling
was performed using published single-cell RNA-seq data from a human fetal heart as
a reference [4]. Cell-type labels from the reference were automatically transferred after
cell-to-cell matching at the individual cell level using the R package CellID [27].

2.5. Musclemotion

hiPSC-CMs were filmed after glucose starvation at D30 in routine culture condition
(37 ◦C, 5% CO2), without electrical stimulation, using Nikon A1 RSI confocal microscope
with X20 Dry N.A 0.75 objective. MUSCLEMOTION software (v1.0; Gaussian Blur: No;
Speed Window: 5; Noise Reduction: Yes; Automatic Reference Frame Detection: Yes;
Transient analysis: Yes; [28]) was used to obtain contraction traces from 120 fps videos.
Contraction profiles were analyzed using homemade R pipeline.

2.6. HEK293 Cell Culture and Transfection

The HEK293 cells were maintained at 37 ◦C, 5% CO2, in DMEM media with 10% FBS,
5% L-Glutamine and 5% Pen/Strep. The cells were plated in a 24-well plate or a 6-well
plate and transfected the next day using FuGENE® 6 (E2691, Promega, Madison, WI, USA).
For the luciferase assay, the cells were transfected with a total of 2 µg of plasmid including:
(1) pGL2-Renilla plasmid; (2) plasmid containing Firefly luciferase gene upstream promoter
of interest; and (3) expression plasmids coding for proteins of interest (Table 1). The DNA
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quantities were equalized in each condition using empty pcDNA3.1 plasmid. The media
was changed 24 h post-transfection, and cell lyses were performed 48 h post-transfection.
For co-immunoprecipitation, the cells were transfected only with expression plasmids,
prior to lysis, 24 h post-transfection.

Table 1. Plasmids and antibodies references.

Plasmid Name Sequence/Reference Supplier

NKX2.5 promoter–FireflyLuc -2000 bp_Start codon Vectorbuilder
GATA4 promoter–FireflyLuc -1800_TSS_+200 Vectorbuilder
TBX5 promoter–FireflyLuc -1800_TSS_+200 Vectorbuilder

SCN5A promoter–FireflyLuc -2109_TSS_+1072 Adapted from [7]
pGL2 Renilla luciferase Promega

IRX5 RG234228 Origene
IRX3 RG205722 Origene

GATA4 RC210945 Origene
TBX5 SC120046 Origene

NKX2.5 SC122678 Origene
pcDNA3.1 Invitrogen

Antibody Reference RRID Supplier

anti-GFP TA150041 AB_2622256 Origene
anti-Myc Tag 05-724 AB_309938 Merck Millipore

anti-IRX5 sc-81102 AB_1124818 Santa Cruz
anti-IRX3 sc-166877 AB_10609525 Santa Cruz

anti-GATA4 sc-25310 AB_627667 Santa Cruz
anti-TBX5 sc-515536 Santa Cruz

anti-NKX2.5 sc-8697 AB_650280 Santa Cruz
anti-Troponin I sc-15368 AB_793465 Santa Cruz

Mouse IgG Isotype Control 02-6502 AB_2532951 Thermo Fisher
Scientific

2.7. Co-Immunoprecipitation
2.7.1. Protein Sample Extraction and Quantification

Previously transfected HEK293 cells were lysed (4 ◦C, 15 min, with rotation) in lysis
buffer: 1% TritonX-100, 100 mM NaCl, 50 mM Tris-HCl, 1 mM EGTA, 1 mM Na3VO4, 50 mM
NaF, 1 mM phenylmethylsulfonyl fluoride, protease inhibitors cocktail (P8340, Sigma-Aldrich,
Saint-Louis, MO, USA), and centrifuged at 15,000 g (4 ◦C, 15 min). Protein quantification was
carried out using Pierce™ BCA Protein Assay Kit (Thermo Fisher Scientific, 23225).

2.7.2. Bead-Antibody Complexes Preparation

Co-Immunoprecipitation was performed using Dynabeads® Protein G (10004D, Invit-
rogen, Carlsbad, CA, USA) and DynaMag™-2 Magnet (Invitrogen, 12321D). First, 12.5 µL
of beads were conjugated (Room temperature (RT), 40 min, with rotation) with 2 µg of
antibody (Table 1). The bead-antibody complexes were cross-linked (RT, 30 min, with
rotation) using 5.4 mg/mL dimethyl pimelimidate (21667, Thermo Fisher Scientific). The
cross-linking was quenched with 50 mM Tris pH 7.5 (RT, 15 min, with rotation). Beads
were washed using (1) PBS 1X; (2) 0.1 M citrate pH 3.1; (3) Na-phosphate solutions, then
incubated in PBS 0.5% NaDOC (RT, 15 min, with rotation) and were finally washed with
lysis buffer.

2.7.3. Immunoprecipitation and Western Blotting Analysis

The bead-antibody complexes were incubated with 1 mg protein samples (4 ◦C, 2 h,
with rotation). The supernatant was then discarded and the beads were washed 3 times
with lysis buffer. The beads-protein complexes were then heated (50 ◦C, 10 min) in Nu-
PAGE™ LDS Sample Buffer (4X) (Invitrogen, NP0008). The samples were magnetized
prior supernatants collection and incubated (70 ◦C, 10 min) in NuPAGE® Sample Reducing
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Agent 10X (Invitrogen, NP0009). Finally, the samples were loaded onto a 4–15% precast
polyacrylamide gel (4568083, Biorad, Hercules, CA, USA) together with 10µg of total pro-
tein used as control. Revelation was performed using corresponding antibody (Table 1)
with ECL Clarity Max (Biorad, 1705062). Images were acquired with ChemiDoc camera
(Biorad) and analysed using Image Lab Software (Biorad).

2.8. Luciferase Assay

The cells were lysed according to the manufacturer recommendations and the lu-
ciferase activity was measured using Dual Luciferase reporter assay system (Promega,
E1910) with Varioskan™ LUX microplate reader (Thermo Fisher Scientific). Mann-Whitney
statistical tests were performed with Prism software (v8.0.1).

2.9. Immunofluorescence

The cells were fixed with 4% paraformaldehyde for 15 min at room temperature (RT)
in Matrigel®-coated µ-Slide 8 Well (IBIDI, Gräfelfing, Germany) prior permeabilization
with 0.1% PBS-BSA 1% Saponin (RT, 15 min) and blocking with 3% PBS-BSA (RT, 30 min).
The cells were then incubated with primary antibodies (dilution 1/250) in PBS 0.1% BSA
0.1% Saponin solution (4 ◦C, overnight). Finally, the cells were washed and incubated with
secondary antibodies and DAPI (RT, 1 h) and stored in 0.5% paraformaldehyde (4 ◦C).
Images were acquired using an inverted epifluorescence microscope (Zeiss Axiovert 200 M).

2.10. TF and Cardiac Phenotypes Association

The association between cardiac phenotypes and transcription factors was performed
using the DisGeNET (v7.0; [29]) and NHGRI-EBI GWAS Catalog [30] databases, filtering
on cardiovascular traits, which were then manually validated.

2.11. Quantitative RT-PCR

The reverse transcription of 1 µg total RNA into cDNA was achieved using the high-
capacity cDNA reverse transcription Kit (Thermo Fisher Scientific). Quantitative Polymerase
Chain Reactions (qPCR) were executed in duplicates using TaqMan® PCR Universal Master
Mix (Thermo Fisher Scientific). TaqMan probes targeting GATA4 (Hs00171403_m1), IRX3
(Hs00735523_m1), IRX5 (Hs04334749_m1), and SCN5A (Hs00165693_m1). Threshold cycles
(Cts) were normalized to ACTB (Hs99999903_m1).

3. Results
3.1. Directed Cardiac Differentiation Robustly Generates Functional Cardiac Cells

The cardiac differentiation of three hiPSC lines reprogrammed from three healthy
donors was used as a cellular model of cardiac development (Figure 1A). After directed
cardiac differentiation, all three hiPSC lines expressed cardiac-specific troponin I (Figure 1B),
and displayed spontaneous contractions (Figure 1C), demonstrating their capability to
form functional cardiomyocytes.

Based on the single-cell transcriptomic data from 14,520 cells obtained at the end of
directed cardiac differentiation (Figures 1D and S1), approximately 95% of the cells could be
successfully annotated to one of the 15 cell types described in the developing human fetal
heart [4], including 34% cardiomyocytes, 21% epicardial cells, and 15% fibroblast-like cells.
This distribution was similar to previous findings in the adult human heart [31]. These
data indicate that directed cardiac hiPSC differentiation generated the cellular diversity
observed in the human fetal heart, known to be not only necessary for cardiac function, but
also required for the establishment of cardiomyocytes [32].

To investigate how gene expression variations are orchestrated throughout cardiac
differentiation, we then generated daily transcriptomic data, from the hiPSC stage (D-1) to
day 30 (D30), for three independent cardiac differentiations of each of the three hiPSC lines
(Figure 2A). The directed cardiac differentiation was associated to the gradual temporal
transcriptomic changes, represented on the first principal component (PC1) of the principal
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component analysis (Figure 2B). PC1 was significantly correlated with time from the onset
of cardiac differentiation (spearman correlation coefficient rho = 0.87, p-value < 2.2× 10−16).
The cardiac differentiation evolution, represented by PC1 (Figure 2C), showed that 85%
of the transcriptomic variations were achieved by D14 (Figure 2D). Altogether, these data
demonstrate that the first 14 days of hiPSC cardiac differentiation represent the ideal time
window to investigate the molecular processes that lead to functional cardiac cells.

Cells 2022, 11, 3915  7  of  23 
 

 

3.1. Directed Cardiac Differentiation Robustly Generates Functional Cardiac Cells 

The cardiac differentiation of  three hiPSC  lines reprogrammed  from  three healthy 

donors was used as a cellular model of cardiac development (Figure 1A). After directed 

cardiac differentiation, all three hiPSC lines expressed cardiac‐specific troponin I (Figure 

1B), and displayed spontaneous contractions (Figure 1C), demonstrating their capability 

to form functional cardiomyocytes. 

 

Figure 1. Transcriptomic and functional characterization of cardiac cells derived from hiPSCs. (A) 

Diagram  illustrating  the  experimental design  involving  three distinct  cardiac differentiations of 

three hiPSC lines reprogrammed from healthy donors. (B) Immunocytochemistry staining of tro‐

ponin  I  (red) and DAPI  (blue) at D30 of  cardiac differentiation  for all 3 hiPSC  lines.  (C) Repre‐

sentative contraction patterns captured by MUSCLEMOTION software on movies at D30 of cardiac 

differentiation for the 3 hiPSC lines. (D) UMAP displaying single‐cell RNA‐seq data at D30 of car‐

diac differentiation of hiPSC‐A line. The color code indicates the different cell types identified. Cell 

population fractions are listed on the right. See also Figure S1. 

Based on the single‐cell transcriptomic data from 14 520 cells obtained at the end of 

directed cardiac differentiation (Figures 1D and S1), approximately 95% of the cells could 

be successfully annotated to one of the 15 cell types described in the developing human 

fetal  heart  [4],  including  34%  cardiomyocytes,  21%  epicardial  cells,  and  15%  fibro‐

blast‐like  cells. This distribution was  similar  to previous  findings  in  the  adult human 

heart [31]. These data indicate that directed cardiac hiPSC differentiation generated the 

cellular diversity observed in the human fetal heart, known to be not only necessary for 

cardiac function, but also required for the establishment of cardiomyocytes [32]. 

To investigate how gene expression variations are orchestrated throughout cardiac 

differentiation, we then generated daily transcriptomic data, from the hiPSC stage (D‐1) 

to day 30 (D30), for three independent cardiac differentiations of each of the three hiPSC 

lines  (Figure  2A).  The  directed  cardiac  differentiation was  associated  to  the  gradual 

temporal transcriptomic changes, represented on the first principal component (PC1) of 

the principal component analysis (Figure 2B). PC1 was significantly correlated with time 

from  the  onset  of  cardiac  differentiation  (spearman  correlation  coefficient  rho  =  0.87, 

p‐value < 2.2e−16). The cardiac differentiation evolution, represented by PC1 (Figure 2C), 

showed  that  85%  of  the  transcriptomic variations were  achieved by D14  (Figure  2D). 

Altogether, these data demonstrate that the first 14 days of hiPSC cardiac differentiation 

Figure 1. Transcriptomic and functional characterization of cardiac cells derived from hiPSCs. (A) Di-
agram illustrating the experimental design involving three distinct cardiac differentiations of three
hiPSC lines reprogrammed from healthy donors. (B) Immunocytochemistry staining of troponin I
(red) and DAPI (blue) at D30 of cardiac differentiation for all 3 hiPSC lines. (C) Representative con-
traction patterns captured by MUSCLEMOTION software on movies at D30 of cardiac differentiation
for the 3 hiPSC lines. (D) UMAP displaying single-cell RNA-seq data at D30 of cardiac differentiation
of hiPSC-A line. The color code indicates the different cell types identified. Cell population fractions
are listed on the right. See also Figure S1.

3.2. Transcriptomic Kinetics of hiPSC Cardiac Differentiation Unveiled Biological Processes
Involved during Cardiac Development

Focusing on gene expression changes related to hiPSC cardiac differentiation, the 3000 genes
with the most significant expression variation during the directed cardiac differentiation (differ-
entially expressed genes; DEG) were identified and grouped into 12 clusters, chronologically
ordered based on the time point when their expression level changes the most, showing distinct
temporal gene expression profiles (Figure 3A; Supplementary Table S1). The average temporal
expression pattern of each cluster was then compared to the transcriptomic data obtained
for the same genes from an in vivo reference model of murine cardiac development ([19];
Figure 3B). As cardiac cells derived from hiPSCs are usually described as reaching an
equivalent of, at the most, E18.5 stage in murine embryonic development [33], we restricted
the comparison of the hiPSC dataset to the murine developmental transcriptomic data
obtained between murine embryonic stem cells and E18.5 stage. With the exception of
cluster D, all of the clusters displayed strikingly similar expression patterns between hiPSC
cardiac differentiation and murine cardiac development. Nevertheless, genes of cluster D
were associated with gastrulation biological processes (Figure 3B—Cluster D middle panel)
which is completed before E7.5. As no data were available between the mouse embryonic
stem cell (mESC) and E7.5 stages in the murine experiments, the relevant gene expression
changes associated to this process were likely to be absent in the murine transcriptomic
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dataset, but remained detectable in the daily hiPSCs cardiac differentiation dataset. For all
other 11 clusters, hiPSC cardiac differentiation could be confidently matched to sequential
gene expression waves that occur during murine cardiac development. Altogether, these
clusters recapitulate key steps of cardiac development, including (1) expression decrease
of genes related to pluripotency and stemness maintenance (Figure 3B—Cluster A to C),
followed by the transient expression of related genes; (2) to gastrulation and mesoderm
formation (Figure 3B—Cluster D); and (3) to early cardiac development (Figure 3B—Cluster
E). These specific patterns were then followed by the successive implementation and per-
sistence over time of gene expression waves that set up the sequential establishment of the
functional cardiac phenotype (Figure 3B—Cluster F to L). To confirm these results, similar
analyses were conducted on the top 3000 DEG during murine cardiac development from
mESCs to E18.5 (Supplementary Figure S2; Supplementary Table S2). This again revealed
the consistency of the gene expression changes during hiPSC cardiac differentiation and
during murine cardiac development. Collectively, these analyses demonstrate that hiPSC
cardiac differentiation precisely recapitulates transcriptomic processes related to human
and mouse cardiac development.
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Figure 2. Transcriptomic time-course analysis of hiPSC cardiac differentiation. (A) Methodological
workflow. Steps are represented in white rectangle and outputs in red rectangles. (B) Global
transcriptomic variations displayed with the first two components of the Principal Component
Analysis. Three cardiac differentiations were studied for each of the three hiPSC lines. For each
cardiac differentiation, a line connects the time-points in chronological order. (C) Boxplots displaying
the distribution of PC1 coordinates of each replicates at each day (median ± quartile). (D) Histogram
comparing distribution of PC1 coordinates at the beginning (D-1), the middle (D14) and the end (D30)
of hiPSC cardiac differentiations (Mean ± SEM; Wilcoxon matched-pairs signed rank test).
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Figure 3. Expression profile and functional annotation of the top 3000 differentially expressed genes
(DEGs) during hiPSC cardiac differentiation, and comparison with murine cardiac development gene
expression dataset. (A) Heatmap displaying DEG expression levels. The entire data set was used
to aggregate the genes into 12 clusters and the mean expression level of 9 replicates is represented.
(B) For each cluster, average gene expression level during hiPSC cardiac differentiation (left panel for
each cluster) and of their orthologs during murine cardiac development (mESCs to E18.5 stage, right
panel for each cluster) are shown. Replicate gene expression levels were averaged for each hiPSC line
(n = 3 per hiPSC line and per timepoint) and for murine data (n = 3 to n = 6 per timepoint, depending
on the stage). The 15 most significantly related GO terms are displayed for each cluster on the middle
panel. See also Figure S2.
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3.3. Prediction of Gene Regulatory Networks Governing hiPSC Cardiac Differentiation

TFs are known to be key players in developmental processes [6,34]. Therefore, to eluci-
date gene regulatory networks that underlie human cardiac development, gene expression
analysis was then focused on all 216 TFs that were found to be differentially expressed dur-
ing the time-course of cardiac differentiation (Figure 4A; Supplementary Table S3). Overall,
69% of these TFs have already been linked to cardiac (patho)physiological phenotypes
(Supplementary Table S3). We chose to adapt an expression correlation score involving
time delay (LEAP method, see Methods) to capture the gene associations that are hidden by
time lags (i.e., time delay between the mRNA expression of the source gene and the mRNA
expression of its target gene). Using this method on the 216 TFs, we predicted interactions
that activated or inhibited the expression of target TFs by source TFs, building a regulatory
network. This gene expression-based network included eleven 467 activating interactions
and eleven 539 inhibitory interactions (Figure 4B left panel; Supplementary Table S4).
We then evaluated the biological relevance of these TF interactions, using the STRING
protein-protein interaction (PPI) database to generate an undirected PPI-based network
restricted to the 216 TFs (Figure 4B right panel). Interestingly, 182 TFs (84%) were found to
share at least one known PPI interaction. This included interactions between TFs belonging
to the same gene cluster but, also, interactions between TFs from different gene clusters,
suggesting a coordination between TFs to regulate the successive gene expression waves.

Comparing both networks, the gene expression-based network (LEAP-based) con-
tained a greater amount of information than the PPI-based network (STRING-based)
(Figure 4B). Indeed, although both networks were generated using the same TF query list,
the density (i.e., normalized averaged number of neighbors) of the gene expression-based
network was 5.5 fold higher than the PPI-based network. Deeper analysis showed that
approximately 100% of the nodes and 80% of the links found in the PPI-based network
were also found in the gene expression-based network (Figure 4C,D). Moreover, focusing
on the links between successive expression clusters, more than 76% of those found in the
PPI-based network were also found in the gene expression-based network (Figure 4E). Fur-
ther confirming the accuracy of the gene expression-based strategy, sub-networks that have
been well-described in the literature were also present in both networks: (1) the network
composed of the main actors of pluripotency (e.g., POU5F1) and early phases of cardiac
development (e.g., EOMES, MESP1; Figure 4F); and (2) the TF network implicated in car-
diogenesis (e.g., ISL1, MEF2C; Figure 4G). This validated the relevance of such an approach
to the expression correlation score, taking into account the time delay in comprehensively
analyze TFs and their interactions throughout cardiac differentiation. Altogether, while the
gene expression-based network confirmed already known and validated interactions, it
also inferred 21,530 new interactions, unveiling numerous new hypotheses on TF networks
that are potentially critical for cardiac development.

3.4. IRX3 and IRX5 Are Involved in Triggering Expression of GATA4, NKX2-5, TBX5 Cardiac
Transcription Factor Network

Leveraging this new gene expression-based network to uncover new regulation mech-
anisms, and based on our previous focus of interest [7,10], we evaluated the IRX TF family’s
involvement in the establishment of cardiac developmental processes. The expression
levels of the six different IRX TF genes were analyzed during cardiac differentiation in the
three hiPSC lines (Figure 5A). The expression of IRX6 was undetectable and the expression
of IRX1 and IRX2 did not vary over time. Only IRX3, IRX4 and IRX5 expression increased
significantly between D-1 and D30 of cardiac differentiation. Interestingly, based on their
expression profiles, IRX3 and IRX5 ranged from the earliest cardiac-specific gene cluster
with an expression level that was maintained until the end of cardiac hiPSC differentiation
(cluster F). This suggested a potential role for IRX3 and IRX5 in the early establishment
of gene regulatory networks essential for cardiac fate, and beyond. In contrast, IRX4 ex-
pression was detected in one of the latest clusters (cluster K). Therefore, we subsequently
focused on both IRX3 and IRX5 TFs.
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Figure 4. Inferred TF regulatory network governing hiPSC cardiac differentiation. (A) Normal-
ized gene expression of the 216 TFs (identified within the top 3000 differentially expressed genes
during hiPSC cardiac differentiation) were quantified and averaged in each gene cluster. UPM:
UMI per million. Numbers in brackets indicates the TF number per cluster. (B) Graphical repre-
sentation of gene expression-based network and protein-protein interaction-based network (LEAP-
and STRING- based method, respectively) of the same TFs as in (A). Interactions between TFs of
successive clusters are shown using bold lines. #: quantity of each analyzed parameter. (C–E) Com-
parative quantitative analysis between both networks. (F,G) Examples of two literature-based
sub-networks. Interactions uncovered in gene expression-based network are shown in blue, in
PPI-based network, in yellow, and by literature curation, in black. Node colors correspond to
the one of their corresponding gene cluster (as in (A)). Paper DOIs associated with literature-
based links: [A] 10.3390/genes12030390; [B] 10.1002/stem.1362; [C] 10.3389/fcell.2021.793605;
[D] 10.1242/dev.01256; [E] 10.1016/j.devcel.2006.07.013; [F] 10.1093/cvr/cvr158; [G] 10.1038/em-
bor.2012.23; [H] 10.1242/dev.073056.
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In order to investigate the role of IRX3 and IRX5 in cardiac differentiation progression,
all their potential TF targets in the subsequent G to L clusters were extracted from the
gene expression-based network (Figure 5B). Interestingly, this analysis revealed previously
unknown regulatory links between cardiac TFs. Indeed, the master cardiac TF genes GATA4
(cluster G), NKX2-5 (cluster I) and TBX5 (cluster L) were individually found to be potential
targets of both IRX3 and IRX5. It is well established that GATA4 acts in a multiprotein
complex with NKX2-5 (cluster I) and TBX5 (cluster L) cardiac TFs [6,35,36]. To further
explore the potential new interactions, we then focused on the gene expression-based sub-
network involving IRX3, IRX5, GATA4, NKX2-5 and TBX5, subsequently referred to as the
IGNiTe sub-network (Figure 5C). In the IGNiTe sub-network, IRX3 and IRX5 were inferred
as activators of GATA4, NKX2-5 and TBX5, and confirming the literature [5,37–39], GATA4
was inferred as an activator of NKX2-5 and both GATA4 and NKX2-5 were activators of
TBX5 expression.

In order to investigate the biological relevance of these inferred interactions, luciferase
assays were conducted on GATA4, NKX2-5 and TBX5 core promoters (Figure 5D). IRX3
and IRX5 proteins were, separately (fold changes 4.2 and 1.5 respectively) or together (fold
change 4.5), able to bind the promoter of GATA4 and to activate luciferase expression.
A slight tendency towards the potentiation of both activating effects is observable when
IRX3 and IRX5 were present, but this was not statistically significant. On the NKX2-5
promoter, IRX5 alone was able to activate luciferase expression (1.3-fold change), but not
IRX3, suggesting that the inferred activation of NKX2-5 by IRX3 found in the IGNiTe
sub-network was due to IRX5, and that the high similarity between the IRX3 and IRX5
expression profiles caused the false-positive link to appear. Together, IRX3 and IRX5 were
able to activate the NKX2-5 promoter, with a tendency towards potentiation (fold change
1.2 between IRX5 alone and IRX3/IRX5 conditions; p > 0.05). According to the order
of appearance of the TFs in the IGNiTe sub-network, NKX2-5 promoter activation was
assessed in the combined presence of IRX3, IRX5 and GATA4, which showed an activator
effect (1.8-fold change). Although a potentiation tendency was observed when GATA4
was present in addition to IRX3 and IRX5, this effect was not statistically significant. on
the TBX5 promoter, IRX3 and IRX5 were able to bind and activate gene expression either
individually (2.7- and 1.2-fold change, respectively) or together (3.6-fold change). The
potentiation of both activator effects was clearly observable and statistically significant
when IRX3 and IRX5 were together on the TBX5 promoter. Finally, considering the joint
expression of IRX3, IRX5, GATA4 and NKX2-5 from D10, we proved the activator effect of
these TFs on the TBX5 promoter (6.6-fold change), which is statistically increased from the
IRX3/IRX5 condition (1.8-fold change). Collectively, these results biologically validated
the new interactions inferred with the gene expression-based network and illustrated the
progressive temporal activation of the major TFs, GATA4, NKX2-5 and TBX5, by IRX3 and
IRX5 during cardiac cell lineage establishment.

3.5. IRX3 and IRX5 Physically Interact with GATA4, NKX2-5 and TBX5 to Control
SCN5A Expression

As the expression of the IGNiTe sub-network members was maintained until D30
of hiPSC cardiac differentiation (Figure 6A and Supplementary Figure S3), the functional
role of IRX3, IRX5, GATA4, NKX2-5, and TBX5 as a multiprotein complex was evaluated
using co-immunoprecipitation and luciferase assays in heterologous expression systems.
Luciferase assays were conducted on the promoter of SCN5A, a known target of these
TFs [7,40–43]. According to the chronological order of expression of these five TFs along
the cardiac differentiation of the hiPSCs (Figure 6A), we first investigated the role of IRX3
and IRX5. As previously described [44], IRX3 and IRX5 physically interacted (Figure 6B
top panel and Supplementary Figure S4) and could cooperatively activate the SCN5A
promoter (Figure 6B bottom panel). While IRX3 alone activated the SCN5A promoter
(2.3-fold change), IRX5 potentiated its effect with a 1.5-fold change. GATA4 was able to
physically interact with IRX5 but not with IRX3 (Figure 6C top panels) and when the three
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TFs were co-transfected, only GATA4 and IRX5 interacted, suggesting a competitive effect
between IRX3 and GATA4 to bind IRX5 (Figure 6C bottom left panel). Furthermore, the
addition of GATA4 potentiated (1.5-fold change) the activity of the IRX3/IRX5 couple on
SCN5A promoter (Figure 6C bottom right panel). NKX2-5 interacted with both IRX3 and
IRX5 individually (Figure 6D left panels), but, again, when the four TFs were co-transfected
we only observed an interaction between IRX5, GATA4, and NKX2-5, suggesting again
a competition between IRX3 and IRX5, in favor of IRX5, in these interactions (Figure 6D
central panel). NKX2-5 amplified (8.0-fold change) the effect of the IRX3/IRX5/GATA4
trio on the SCN5A promoter (Figure 6D right panels). Finally, when IRX3, IRX5, GATA4,
NKX2-5 and TBX5 were co-transfected, a global protein complex could be formed between
IRX5, GATA4, NKX2-5 and TBX5, but not with IRX3, even if IRX3 alone was able to interact
with TBX5 (Figure 6E left and central panels). However here, TBX5 slightly reduced
(−1.6-fold change) the effect of the IRX3/IRX5/GATA4/NKX2-5 quartet on the SCN5A
promoter (Figure 6E right panel) suggesting a down-regulating role of TBX5 in this global
complex. Collectively, we unveiled novel physical interactions between IRX TFs and three
master cardiac TFs, GATA4, NKX2-5 and TBX5, that result in specific gene expression
regulation. Furthermore, we showed that following IRX3, IRX5, GATA4, NKX2-5 and TBX5
gene expression increase during cardiac differentiation, the direct activation of SCN5A
expression is under the control of a time-changing multi-TFs complex that controls the
temporal expression profile of SCN5A.
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higher variation). The Expression cluster column refers at the expression cluster in which each TF
ranged as in Figure 4A. Selection and exclusion criteria are indicated in green and red respectively.
(B) Potential target TFs of IRX3 and/or IRX5 identified in the G-to-L clusters based on the gene
expression-based network. (C) Gene expression-based network of IRX3, IRX5, GATA4, NKX2-5
and TBX5 TFs. Node colors represent their corresponding clusters as in Figure 4A: IRX3 and IRX5—
cluster F; GATA4—cluster G; NKX2-5—cluster I; TBX5—cluster L. Lag is shown in days. References to
literature-based links: [A] 10.1016/B978-0-12-381332-9.00027-X.; [B] 10.1101/cshperspect.a008292; [C]
10.1016/B978-0-12-387786-4.00008-7; [D] 10.1016/j.mod.2020.103615; [E] 10.1101/cshperspect.a013839.
(D) Graphs displaying activity levels of luciferase that is under the control of GATA4 (-1800_TSS_+200),
NKX2-5 (-2000 bp_Start codon) and TBX5 (-1800_TSS_+200) promoter constructs. Mean ± SD; * and
**: p < 0.05 and p < 0.01, respectively (Mann-Whitney test).
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complex. (A) Normalized mean expression level overtime of IRX3, IRX5, GATA4, NKX2-5, TBX5 and
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of SCN5A ion channel genes. UPM: UMI per million. (B–E) Co-immunoprecipitation and luciferase
results associated to the transfection of (B) IRX3 and/or IRX5, (C) IRX3, IRX5 and/or GATA4,
(D) IRX3, IRX5, GATA4 and/or NKX2-5, (E) IRX3, IRX5, GATA4, NKX2-5 and/or TBX5. Immunoblots
representative of the various co-immunoprecipitations and the schematic illustration of the results.
Graphs display activity levels of luciferase that is under the control of the −2109/+1072 region of
human SCN5A promoter, in the various transfection conditions. Mean ± SEM; * and **: p < 0.05 and
p < 0.0001, respectively (Mann-Whitney test). See also Figure S4.

4. Discussion

In this study, based on a transcriptomic kinetics study on the cardiac differentiation
of hiPSCs, we identified the global TF regulatory network that is required for heart devel-
opment. We notably identified novel time-dependent TF-gene regulations that connect
IRX3 and IRX5 to the core cardiac GATA4, NKX2-5 and TBX5 TFs. We also found that
these five TFs form protein complexes to regulate target gene expression, such as SCN5A.
Altogether, this time-course bulk transcriptomic data provided a dynamic model relevant
for identifying new roles for TFs in developmental processes.

4.1. In Vitro Modeling of Time in Cardiac Development

This study demonstrates that hiPSC cardiac differentiation is a relevant model to
study the successive steps leading to the establishment of the gene expression program
during human cardiac development. To date, most studies contributing to the knowledge
on heart development and TF regulation have been conducted in animal models, primar-
ily in mice [45], as access to human embryonic cardiac tissue is indeed very limited. If
regulatory mechanisms of development are overall highly evolutionary conserved, some
are human-specific [46,47]. Therefore, the investigation of human cardiac development
also requires suitable human models. HiPSC cardiac differentiation models have proven
to generate functional cardiac cells and suggested that punctual time points during this
differentiation might reflect some key developmental stages [7,48,49]. However, entirely
assessing the relevance of the hiPSC cardiac differentiation model for studying human
cardiac development requires demonstrating that it thoroughly and accurately reproduces
human cardiac development in a temporally coordinated fashion. All phenotypic changes
that occur during cardiogenesis are known to be embodied by dynamic alterations in cellu-
lar transcriptome. Yet, although the ideal situation would be to compare transcriptomic
changes along hiPSC differentiation to the ones occurring during human cardiac develop-
ment, no public human transcriptomic dataset studying well-distributed stages across the
entire cardiac development is available. In the present study, we therefore used murine
cardiac transcriptomic data generated from specific stages that appropriately ranged from
conception to birth [19], to compare with hiPSC cardiac differentiation data. Their high
level of consistency confirmed that our hiPSC cardiac differentiation model accurately
reproduces cardiogenesis. An important added value of the present data is that it filled a
gap of knowledge on the global gene expression changes that occur daily between these
developmental stages in human cells.

A major limitation of the hiPSC-derived models is its immaturity: cardiac cells pro-
duced by current hiPSC differentiation protocols have a fetal-like phenotype that is far
from adult cells [50]. Although this limitation does not affect the study of pre-natal stages
of cardiac development, obtaining mature cardiac cells would broaden the scope of these
models to study later stages of development as well as aging processes.

4.2. In Vitro Modeling of Cardiac Development-Associated Cellular Diversity

Cardiomyocytes require substantial cell diversity to support both the proper execution
of their biological functions and their differentiation, as many signaling pathways regulat-
ing their formation are sourced from other cell types [31,32]. In this study, we confirmed
that hiPSC cardiac differentiation generates the cellular diversity typically reported in the
human fetal heart and thus provides the opportunity to investigate regulatory mechanisms
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occurring between these different cardiac cell types. However, hiPSC cardiac differentiation
in two dimensions does not reproduce the spatial organization of the cell types observed in
the context of the heart. The emergence of more integrated hiPSC-derived models, such
as cardioids [51], will therefore undoubtedly enhance our insights into transcriptional
regulation between cardiac cell types.

4.3. Uncovering New Regulatory Networks Using a Gene Expression Kinetics-Based Strategy

An original aspect of this study was the identification of expression regulations occur-
ring between TFs in a temporal manner. For this, we chose to adapt the LEAP bioinformatic
tool designed for single-cell data to kinetic transcriptomic bulk data [52]. Importantly,
with this tool, these gene regulations are oriented, indicating not only the interaction but
also which partner is expected to be the target/source. This higher level of information is
important for designing a more efficient confirmation experiment, and cannot be obtained
in traditionally used protein-protein interaction databases, such as STRING [23]. Moreover,
our strategy allowed us to biologically link genes in a time-dependent manner during
cardiac differentiation, and thus provided important new insights on the cardiac gene
regulatory networks [53]. Of note, one cannot exclude that some of the inferred links may
not reflect biological interactions (e.g., TF does not directly bind to an inferred target gene).
Other studies embarked in different strategies to study cardiac gene regulation. For in-
stance, Gonzalez-Teran et al. combined PPI data associated with GATA4 and TBX5 TFs and
genetic data generated on patients presenting congenital heart diseases (CHD) to identify
CHD candidate genes [54]. This integrated strategy of PPI data and CHD-associated genetic
data could be a relevant complementary approach to our chronological gene expression-
based strategy in order to identify new CHD-associated TF regulatory networks and to
offer a better understanding of the underlying mechanisms of cardiac diseases.

4.4. Activation Cascade of GATA4, NKX2-5, TBX5 Genes Triggered by IRX3 and IRX5

It is well established that cardiac transcription factors regulate the expression of other
TF-coding genes. For instance, GATA4 activates NKX2-5 expression and both GATA4 and
NKX2-5 activates TBX5 expression [5,37–39]. However, the precise molecular bases of
these regulations were still to be uncovered. Using daily-generated transcriptomic data,
we characterized the course of expression of these major cardiac TFs showing that, in
accordance with the functional data, they are successively launched, starting with GATA4
around day five, followed by NKX2-5 two days later and finally by TBX5 two days later.
This raised the question of how GATA4 expression is, in the first place, launched. Using the
gene expression-based network, we identified IRX3 and IRX5 TFs as potential activators of
GATA4 expression. Accordingly, the expression of these TFs was launched simultaneously
about one day prior to GATA4 expression. These TFs are of growing interest as, while
most studies were performed in knockout mice showing that they play redundant roles in
cardiac development leading to embryonic lethality and in postnatal electrophysiological
function, their role in human cardiac function now also emerges [7,55]. In this context, the
present study therefore further explored and specified the role of IRX TFs in the course of
human cardiac development.

4.5. Exploring the Functional Interplay between IRX3/IRX5 and GATA4, NKX2-5, TBX5

It is has been shown that GATA4, NKX2-5 and TBX5 act as multiprotein complexes
to regulate cardiac gene expression [37]. Here, we completed this knowledge by showing
that IRX3 and IRX5 can also physically bind to this TF regulatory complex. Furthermore,
all five TFs could physically and functionally interact on the promoter of SCN5A that
encodes the major cardiac sodium ion channel. Accordingly, SCN5A expression gradually
increases during hiPSC cardiac differentiation, paralleling the progressive expression estab-
lishment of the five TFs. Some of the interactions between IRX TFs and GATA4, NKX2-5 or
TBX5 have previously been published. For instance, physical and functional interactions
between Irx3, Nkx2-5 and Tbx5 have been shown in mice to regulate genes implicated
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in ventricular conduction system establishment and maturation [56]. Furthermore, our
group has previously demonstrated physical and functional interactions between IRX5 and
GATA4 on SCN5A promoter [7]. In this study we further detailed the complexity of the
interactions between IRX3, IRX5, GATA4, NKX2-5 and TBX5, and how these TF complex
compositions impact the expression of a target gene. In a future work, it will be of great
interest to investigate more precisely how these TFs directly and/or indirectly bind to gene
promoters during cardiac differentiation of hiPSCs. For that, generating data that combine
high throughput identification of TF binding sites together with ChIP-seq data for these
TFs at specific time points of the differentiation protocol, would be central.

4.6. Perspectives

Altogether, this study provides a comprehensive dynamic blueprint of transcription
factors that control transcriptional regulation during human cardiac development as well
as a new methodological approach that may be applied to other research fields. These
insights may help to further understand both pathological cardiac development leading to
CHD, as well as physiological cardiac development, which is a prerequisite to emerging
cardiac regenerative therapy strategies [57]. Moreover, in recent years, transcription factor
regulation of cardiac functions has been widely supported by Genome Wide Association
Studies, linking numerous common genetic variations at loci harboring TF genes to cardiac
diseases ([58,59]; Supplementary Table S3). Confronting the present knowledge with
that obtained from the cardiac differentiation of hiPSCs reprogrammed from patients
carrying such genetic variants may provide important information regarding their impact
on cardiac development and therefore may lead to new targets for treatment and clinical
management improvement.

4.7. Limitations of the Study

We have identified several limitations in our study. First, the kinetic transcriptomic
analysis has been performed using bulk-based strategy; however, the use of single-cell
analysis instead would have provided us with a better overview of the cellular transcrip-
tomic diversity. Second, the limited sample size that has been used prevented us from
identifying the impact of the gender and ethnicity on transcriptomic regulation. Therefore,
further studies will have to investigate if the identified TF networks (1) are activated in a
cell-specific manner; and (2) whether they are specific to gender and/or ethnicity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11233915/s1, Figure S1: Transcriptomic signatures of cell types
generated by hiPSC cardiac differentiation; Figure S2: Expression profile and functional annotation
of the top 3000 differentially expressed genes during murine cardiac development, and comparison
with hiPSC cardiac differentiation gene expression dataset; Figure S3: RT-qPCR confirmation of
bulk transcriptomic data; Figure S4: Original western blots related to Figure 6; Table S1: Top
3000 DEGs during directed cardiac differentiation of hiPSCs and their respective cluster (refer to
Figure 3); Table S2: Top 3000 DEGs during murine cardiac development and their respective cluster
(refer to Supplementary Figure S2); Table S3: List of the 216 Transcription Factors under study and
their known involvement in human cardiac phenotype; Table S4: Gene expression-based network
predicting interactions between Transcription Factors.
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