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Abstract: Gentianae Scabrae Radix is used in traditional medicine and is known to possess bioactive
compounds, including secoiridoid glycosides, flavonoids, lignans, and triterpenes. Trifloroside (TriFs)
is a secoiridoid glycoside known for its antioxidant activity; however, its other effects have not been
studied. In the present study, we investigated the biological effects of TriFs isolated from the roots
of Gentianae Scabrae Radix using pre-osteoblast MC3T3E-1 cells. No cellular toxicity was observed
with 1 µM TriFs, whereas 5–100 µM TriFs showed a gradual increase in cell viability. Alkaline
phosphatase staining and microscopic observations revealed that 1–10 µM TriFs stimulated osteogenic
activity during early osteoblast differentiation. Trifloroside also increased mineral apposition during
osteoblast maturation. Biochemical analyses revealed that TriFs promoted nuclear RUNX2 expression
and localization by stimulating the major osteogenic BMP2-Smad1/5/8-RUNX2 pathway. Trifloroside
also increased p-GSK3β, β-catenin, p-JNK, and p-p38, but not Wnt3a, p-AKT, and p-ERK. Moreover,
TriFs increased the MMP13 levels and promoted cell migration and adhesion. In contrast, TriFs-
induced osteoblast differentiation and maturation had negligible effects on autophagy and necrosis.
Our findings suggest that TriFs induces osteogenic effects through differentiation, adhesion, migration,
and mineral apposition. Therefore, TriFs is suggested as a potential drug target in osteoblast-mediated
bone diseases.

Keywords: autophagy; necroptosis; Gentianae Scabrae Radix; osteoblast differentiation;
RUNX2; trifluoroside

1. Introduction

Bone metabolism and homeostasis are tightly maintained through physiological re-
sponses associated with mesenchymal stem cell-derived osteoblast differentiation and
maturation [1]. Osteoblast differentiation is induced and controlled through complex sig-
naling pathways, primarily Wnt3a- and bone morphogenetic protein 2 (BMP2)-mediated
signaling molecules, as well as mitogen-activated protein kinases (MAPKs) and AKT,
which induce the expression of Runt-related transcription factor 2 (RUNX2) and regulate
the transcriptional activity in osteoblast differentiation [2–4]. Consequently, osteoblast
differentiation and maturation produce osteoids through synthesis and secretion to con-
struct the bone matrix, which then leads to mineralization of the bone matrix filled around
collagen rope containing dense and irregular crystals of hydroxyapatite that bestow rigidity
to the bone [5,6]. In contrast, the dysregulation and impairment of osteoblast differenti-
ation and maturation are mainly responsible for the pathogenesis of diseases including
osteoporosis-induced bone fractures and periodontitis-induced alveolar bone loss [7,8].

Plant-derived compounds are used in traditional medicines and are an important
source for the identification of new drugs for various diseases, including bone diseases [9].
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Extracts of Gentianae Scabrae Radix used in traditional medicine contain mainly secoiridoid
glycosides as well as flavonoids, lignans, and triterpenes, which have multiple effects,
including anti-inflammatory activities [10–12]. A secoiridoid glycoside, trifloroside (TriFs),
has not been reported previously for its biological effects, except for its antioxidant activity
in a hippocampal neuronal cell line [13].

In the present study, TriFs was purified from the roots of Gentianae Scabrae Radix and
its osteogenic effects and influence on the mechanisms of osteoblast differentiation and
maturation were investigated in pre-osteoblasts.

2. Results
2.1. Isolation of TriFs from Gentianae Scabrae Radix and Its Effect on Cellular Toxicity

Gentianae Scabrae Radix (1 kg) was extracted with MeOH (4 L, three times) at room
temperature for 7 days. MeOH extracts (46 g) were suspended in distilled water and then
solvent partitioned with n-hexane and chloroform (CHCl3). The CHCl3 soluble fraction
(18.6 g) was subjected to silica gel column chromatography and eluted with a gradient of
n-hexane-EtOAc (10:0 to 0:10, v/v). Fraction 5 (2.65 g) was further purified using Sephadex
LH-20 column chromatography and eluted with a MeOH-H2O gradient solvent system
(60:40 to 0:100, v/v) to obtain compounds (859 mg). Fraction 5-2 was applied to reversed-
phase high-performance liquid chromatography with a gradient system of acetonitrile-H2O
(2:8→ 10:0) to obtain compound 1 (35.8 mg). The isolation procedure is shown in Figure 1A.
The structure of compound 1 was identified as TriFs by comparison of the nuclear magnetic
resonance (NMR) data with reports in previous literature [14]. The 13C-NMR values were
(63 MHz, CD3OD) δ 98.6 (C-2), 153.3 (C-3), 106.7 (C-4), 28.7 (C-5), 25.7 (C-6), 70.9 (C-
7), 132.7 (C-8), 43.4 (C-9), 121.3 (C-10), 167.9 (C-11), 97.6 (C-1′), 72.9 (C-2′), 72.3 (C-3′),
71.3 (C-4′), 73.3 (C-5′), 114.6 (C-1′′), 152.7 (C-2′′), 147.3 (C-3′′), 125.0 (C-4′′), 120.2 (C-5′′),
124.3 (C-6”) 103.4 (C-1′′′), 74.8 (C-2′′′), 77.7 (C-3′′′), 69.9 (C-4′′′), 78.3 (C-5′′′), 62.5 (C-6′′′),
172.1, 171.3, 171.0, 20.6, 20.5, 20.4 (3 × OAc) (Supplementary Figure S1A). Values for 1H-
NMR were (250 MHz, CD3OD) δ 7.58 (1H, d, J = 2.45 Hz, H-3), 7.47 (1H, dd, J = 1.45,
17.68 Hz, H-4′′), 7.43 (1H, dd, J = 1.45, 17.68, H-6′), 6.87 (1H, t, H-5′′), 2.01 (3H, s, AcO),
1.96 (3H, s, AcO), 1.93 (3H, s, AcO) (Supplementary Figure S1B). The high-performance
liquid chromatography results and structure of TriFs (C35H42O20, >98.6% purity) are shown
in Figure 1B,C.

To examine the effects on cell viability of TriFs in pre-osteoblasts, TriFs were treated
with 1–100 µM concentration for 24 h, and cell viability was detected using the 3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, which is widely used
to measure cellular metabolic activity as an indicator of cell viability, cell growth, and cell
toxicity. The results revealed that 1 µM TriFs did not affect the metabolic activity, whereas
treatment with 5−100 µM TriFs significantly increased the metabolic activity (Figure 1D).
We further validated the effects on cell viability of TriFs using BrdU incorporation assay
and found that TriFs did not significantly induce BrdU incorporation under the same
condition in pre-osteoblasts (Supplementary Figure S2). Thus, TriFs was investigated at
low concentrations (1–10 µM) that were determined to be noncytotoxic.
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Figure 1. Purification of trifloroside (TriFs) from Gentianae Scabrae Radix roots and its effect on 
MTT assay. (A) Procedure for extracting TriFs from the roots of Gentianae Scabrae Radix. (B,C) 
high-performance liquid chromatography (HPLC) (B) and structure (C) of TriFs (C35H42O20, >98.6% 
purity). (D) Cell metabolic activity was determined using an MTT assay after pre-osteoblasts were 
treated with TriFs at doses of 1–100 μM for 24 h. *, p < 0.05 indicates significant differences when 
compared to the control. Data are presented as mean ± standard error of the mean (S.E.M.). Data 
shown are from three independent trials. 
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3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, which is 
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growth, and cell toxicity. The results revealed that 1 μM TriFs did not affect the meta-
bolic activity, whereas treatment with 5−100 μM TriFs significantly increased the meta-

Figure 1. Purification of trifloroside (TriFs) from Gentianae Scabrae Radix roots and its effect on
MTT assay. (A) Procedure for extracting TriFs from the roots of Gentianae Scabrae Radix. (B,C) high-
performance liquid chromatography (HPLC) (B) and structure (C) of TriFs (C35H42O20, >98.6%
purity). (D) Cell metabolic activity was determined using an MTT assay after pre-osteoblasts were
treated with TriFs at doses of 1–100 µM for 24 h. *, p < 0.05 indicates significant differences when
compared to the control. Data are presented as mean ± standard error of the mean (S.E.M.). Data
shown are from three independent trials.

2.2. TriFs Accelerates Osteoblast Differentiation and Maturation

Next, to investigate the osteogenic effect of TriFs, differentiation was induced for
7 days in osteogenic supplement (OS) medium with 1–10 µM TriFs, and the osteogenic effect
was analyzed using alkaline phosphatase (ALP) staining. Each well of the ALP staining
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experiments showed that compared to OS alone, 1–10 µM TriFs increased the levels of total
ALP (Figure 2A,B). The individual levels of ALP-expressing osteoblasts were visualized
under a light microscope, and the osteogenic effects of TriFs were validated (Figure 2C).
To examine whether TriFs promotes mineral apposition via osteoblast maturation in pre-
osteoblasts, differentiation was induced for 21 days in OS with 1–10 µM TriFs. Alizarin red
S (ARS) staining experiments were performed, and each well showed that compared to
OS alone, 1–10 µM TriFs increased total ARS staining levels (Figure 2D,E). Visualization of
mineralization validated that TriFs promoted mineral apposition by inducing osteoblast
maturation (Figure 2F).
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(A–C) Alkaline phosphatase (ALP) staining (A) was analyzed after pre-osteoblasts were cultured in 
osteogenic supplement (OS) medium with TriFs at doses of 0–10 μM for 7 days, and the values 
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Figure 2. Osteogenic effects of trifloroside (TriFs) on osteoblast differentiation and maturation.
(A–C) Alkaline phosphatase (ALP) staining (A) was analyzed after pre-osteoblasts were cultured in
osteogenic supplement (OS) medium with TriFs at doses of 0–10 µM for 7 days, and the values (fold)
are displayed as a bar graph (B). ALP-expressing osteoblasts were observed using light microscopy
(C). (D–F) At 21 days, osteoblast maturation was analyzed using an Alizarin red S (ARS) staining assay
(D), and the values (fold) are displayed as a bar graph. Mineral apposition was visualized using light
microscopy (D). *, p < 0.05 indicates significant differences when compared to the control. #, p < 0.05
indicates significant differences when compared to OS. Data are presented as mean ± standard error
of the mean (S.E.M.). Data shown are from three independent trials. Scale bar: 50 µm.

2.3. TriFs Regulates Multiple Signaling Pathways in Osteoblast Differentiation

To investigate the osteogenic mechanism of TriFs, BMP2 signaling molecules were
analyzed using Western blotting. Compared with OS alone, TriFs significantly enhanced
the phosphorylation of Smad1/5/8 and the expression of Smad4, but not that of BMP2
(Figure 3A). Trifloroside also increased the expression of BMP2 signaling target protein,
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the master transcription factor of RUNX2 (Figure 3B). This was further validated using an
immunofluorescence assay, which revealed that TriFs treatment increased RUNX2 levels in
the nucleus (Figure 3C,D).
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Figure 3. Osteogenic effects of trifloroside (TriFs) on BMP2 signaling molecules and RUNX2 in the
nucleus. (A,B) BMP2, p-Smad1/5/8, Smad4 (A), and RUNX2 (B) were all probed in equal amounts
using Western blotting. The values (fold) were normalized to β-actin and were displayed as a bar
graph. (C,D) RUNX2 (green) and a nuclear marker DAPI (blue) were used to determine nuclear
RUNX2 expression and accumulation, which was examined using fluorescence microscopy. The
values (fold) are displayed as a bar graph (D). *, p < 0.05 indicates significant differences when
compared to the control. #, p < 0.05 indicates significant differences when compared to OS. Data are
presented as mean ± standard error of the mean (S.E.M.). ‘ns’, not significant. Data shown are from
three independent trials. Scale bar: 50 µm.

Next, we analyzed additional signaling molecules involved in RUNX2 expression
and activity. The results showed that compared to OS alone, TriFs enhanced GSK3β
phosphorylation and β-catenin expression, whereas TriFs did not affect Wnt3a (Figure 4A).
Moreover, compared to OS alone, TriFs had no effect on AKT and ERK phosphorylation,
whereas TriFs increased JNK and p38 phosphorylation (Figure 4B,C).
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Figure 4. Osteogenic effects of trifloroside (TriFs) on Wnt3a molecules, AKT, and MAPKs. (A) Wnt3a,
p-GSK3β, and β-catenin were all probed in equal amounts using Western blotting. Data obtained for
the lysates were standardized using β-actin on the same sample. (B,C) AKT, p-AKT (B), p-ERK, ERK,
p-JNK, JNK, p-p38, and p38 (C) were all probed in equal amounts using Western blotting. The values
(fold) were normalized to β-actin and were displayed as a bar graph. *, p < 0.05 indicates significant
differences when compared to the control. #, p < 0.05 indicates significant differences when compared
to OS. Data are presented as mean ± standard error of the mean (S.E.M.). ‘ns’, not significant. Data
shown are from three independent trials.

2.4. TriFs Accelerates Migration and Adhesion during Osteoblast Differentiation

The migration and adhesion phenotypes are closely related to osteoblast-mediated
bone formation and regeneration. Next, we demonstrated that TriFs regulated cell mi-
gration and adhesion during osteoblast differentiation. First, TriF treatment induced the
expression of matrix metalloproteinase 13 (MMP13), which plays a critical role in the
degradation of extracellular matrix (ECM) and is essential for bone formation and repair
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(Figure 5A). Second, compared to OS alone, TriFs significantly facilitated penetration across
the Matrigel-coated polycarbonate filter in the Boyden chamber, (Figure 5B,C). Third,
compared to OS alone, TriFs significantly promoted cell adhesion and morphological sta-
bilization during osteoblast differentiation on Matrigel-coated culture plates (Figure 5D).
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Figure 5. Osteogenic effects of trifloroside (TriFs) on MMP13 production, cell migration, and cell
adhesion. (A) Western blotting was used to determine MMP13 levels. The values (fold) were
normalized to β-actin and were displayed as a bar graph. (B,C) A Boyden chamber was used
to determine the migration of TriFs-treated osteoblasts; a light microscope was used to visualize
cell migration (B) and the values (fold) are displayed as a bar graph (C). (D,E) An adhesion assay
was used to determine the adhesion of TriFs-treated osteoblasts and the numeric values (O.D.) are
displayed as a bar graph (D). A light microscope was used to visualize cell adhesion, and the red
arrows point to the magnified areas (E). *, p < 0.05 indicates significant differences when compared to
the control. #, p < 0.05 indicates significant differences when compared to OS. Data are presented as
mean ± standard error of the mean (S.E.M.). Data shown are from three independent trials. Scale bar:
50 µm.
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2.5. Effects of TriFs on Autophagy and Necroptosis in Osteoblast Differentiation

Finally, we investigated whether TriFs regulate autophagosome formation during
osteoblastic differentiation. As microtubule-associated protein light chain 3 (LC3) is a
key autophagy marker, the expression of LC3 and the conversion of LC3I to LC3II were
detected to analyze autophagy using Western blotting. The results showed that TriFs had no
appreciable effect on the autophagy markers (Figure 6A). The DAPGreen assay revealed that
TriFs did not form autophagic vacuoles (Figure 6B,C). Furthermore, necroptotic regulatory
proteins were detected using Western blotting, and the results showed that TriFs had no
discernible effect on receptor-interacting serine/threonine-protein kinase (RIP) and mixed
lineage kinase domain-like pseudokinase (MLKL) (Figure 6D), indicating that autophagy
and necroptosis were not associated with the osteogenic effects of TriFs. Overall, these data
suggest that TriFs exerts beneficial effects on osteoblast differentiation and maturation.
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Figure 6. Osteogenic effects of trifloroside (TriFs) on autophagy and necroptosis. (A) Western blotting
was used to analyze the levels of LC3I and LC3II. The values (fold) were normalized to β-actin
and were displayed as a bar graph (A). (B,C) DAPGreen autophagy detection assay was used to
determine autophagosome formation (B) and the values (fold) are displayed as a bar graph (C).
(D) Western blotting was used to analyze the levels of p-MLKL, MLKL, p-RIP, RIP, and β-actin. The
values (fold) were normalized to β-actin and were displayed as a bar graph. Data are presented as
mean ± standard error of the mean (S.E.M.). Data shown are from three independent trials. ‘ns’, not
significant. Scale bar: 50 µm.

3. Discussion

Various plant-derived compounds have been reported to promote osteogenesis, os-
teoid formation, hydroxyapatite synthesis, and mineral apposition via multiple signal-
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ing pathways and transcription factors [5,6,15,16]. All of these studies provided novel
drug research, development, and clinical applications for treating bone diseases [15–21].
The present study is the first to investigate the osteogenic effects of TriFs isolated from
Gentianae Scabrae Radix on osteoblast differentiation, maturation, and function via intra-
cellular signals and the RUNX2 transcription factor without noticeable autophagic flux
and necroptosis.

Osteoblast-mediated bone formation is induced by complex processes via migration
and adhesion to bone formation, remodeling, and repair sites; their subsequent differentia-
tion; and osteoblast maturation, leading to osteoid formation and mineral apposition [22,23].
Thus, damage to complex processes causes bone loss in bone diseases such as osteoporosis
and periodontitis [7,8]. As is well established, the ALP (a key osteoblast differentiation
marker) enzyme is required for the formation of hydroxyapatite crystals through the hydrol-
ysis of organic phosphomonoesters and inorganic pyrophosphate [5,6,24,25]. Herein, we
demonstrated that TriFs increases ALP levels during osteoblast differentiation and induces
osteoblast maturation, leading to mineral apposition. Alkaline phosphate enzyme activity-
mediated hydroxyapatite synthesis is an important process in mineral apposition [24,25].
Alkaline phosphate-deficient mice display bone phenotypes including deformities, frac-
tures, and abnormal mineralization [25]. Therefore, these findings suggest that TriFs exerts
anabolic osteogenic effects by accelerating differentiation and maturation.

BMP2 signaling molecules are known to control osteoblast differentiation [26]. BMP2
interacts with BMP receptors and induces signal transduction through Smad1/5/8 phos-
phorylation to form a Smad1/5/8 and Smad4 complex, leading to nuclear translocation and
RUNX2 expression [27]. Wnt3a signaling is also involved in osteoblast differentiation [28].
Wnt3a interacts with Frizzled and LRP5/6 receptors and increases GSK3β phosphorylation
to stabilize β-catenin. Stabilization induces nuclear accumulation and leads to the RUNX2
expression [29,30]. Thus, RUNX2 expression integrates BMP2 and Wnt3a signaling. In
the present study, we demonstrated that TriFs activates Smad1/5/8, inhibits GSK3β, and
stabilizes β-catenin, leading to an increase in RUNX2 expression and nuclear accumulation
during osteoblast differentiation. MAPKs and AKT signaling proteins are also known
to regulate RUNX2 expression and transcriptional activity [2,3,31]. The present study
demonstrated that TriFs activates JNK and p38 but not ERK and AKT. RUNX2 is a core
transcription factor for osteoblast differentiation and maturation that controls gene expres-
sion, especially that of ALP [31–33]. Given the critical role of RUNX2 in ALP expression,
differentiation, and maturation, the present data suggest that TriFs exerts anabolic effects
by regulating RUNX2 through Smad1/5/8, β-catenin, JNK, and p38.

Osteoblasts produce MMPs, which are involved in migration, adhesion, and ECM
degradation [34,35]. MMP13 is produced in osteoblasts and chondrocytes in bone develop-
ment and the adult bone and is also considered to play a critical role in bone remodeling
and repair [36–38]. RUNX2 has been reported to induce MMP13 expression in various
cells including pre-osteoblasts [38,39]. In the present study, we demonstrated that TriFs
promotes MMP13 production in osteoblasts, migration across the ECM, and adhesion of
osteoblasts to the ECM. The migration and adhesion to bone formation, remodeling, and
repair niches are required for differentiation and maturation [22,23]. Therefore, our findings
suggest that TriFs exerts osteogenic effects by inducing osteoblast migration, adhesion, and
subsequent differentiation.

Autophagy and necroptosis are both involved in osteoblast differentiation and mat-
uration. Osteoblast-specific autophagy-deficient mice and osteoblasts were reported to
have decreased bone mass and mineral apposition [40]. Kaempferol and Vitamin K2 are re-
ported to promote osteoblast differentiation and maturation by inducing autophagy [41,42].
Autophagy-deficient osteoblasts elevate reactive oxygen species, which increases necropto-
sis in osteoblasts, and tumor necrosis factor-alpha and chronic ethanol consumption pro-
mote necroptotic signaling, resulting in reduced osteogenesis and skeletal formation [40].
In the present study, we explored the possible involvement of TriFs in autophagy and
necroptosis in osteoblasts and discovered that TriFs is not linked to autophagic flux and
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necroptotic signaling in osteoblasts. Thus, our findings suggest that Trifs, regardless of
autophagy or necroptosis, promotes osteoblast development and maturation.

4. Conclusions

We demonstrated that TriFs enhances osteoblast migration and adhesion, and as a
result, stimulates osteoblast differentiation via osteogenic signaling pathways and RUNX2
expression. Our data provide novel evidence that TriFs may be useful as a bone therapy
medication that govern osteoblast differentiation and maturation.

5. Materials and Methods
5.1. Experimental Procedures of Plant Material

Column chromatography was performed using silica gel (70–230 mesh; Merck, Darm-
stadt, Germany). High-performance liquid chromatography was performed using the
Agilent 1260 series system (Agilent Technologies, Santa Clara, CA, USA) with a C18 column
(Phenomenex Synergi 10 µ Hydro-RP 80A, 10 µm, 4.6 mm × 250 mm, Torrance, CA, USA).
Gentianae Scabrae Radix roots were purchased from a commercial herbal medicine market.
A voucher specimen, P542, was deposited in the Natural Products Bank at the National
Institute for Korean Medicine Development (NIKOM).

5.2. Pre-Osteoblast MC3T3E-1 Cells and Osteoblast Differentiation

Pre-osteoblast MC3T3E-1 cells (Subclone 4, #CRL-2593; American Type Culture Col-
lection, Manassas, VA, USA) were cultivated in α-minimum essential medium without
L-ascorbic acid supplemented with 10% fetal bovine serum and 1X Gibco® Antibiotic-
Antimycotic (Thermo Fisher Scientific, Waltham, MA, USA) at 37 ◦C in a humidified
environment of 5% CO2 and 95% air. The MC3T3E-1 cells were differentiated into os-
teoblasts by switching to OS medium containing 50 µg/mL L-ascorbic acid and 10 mM
β-glycerophosphate. During the differentiation period, the OS was replaced every 2 days.
Dimethyl sulfoxide (100%) was used to prepare a 1000× TriFs stock solution, and the
vehicle control had a final concentration of 0.1% dimethyl sulfoxide.

5.3. Cell Viability

As previously described [43], the MTT assay was used to determine cell viability.
Briefly, cells were treated with MTT solution, incubated for 2 h, and then formazan was
solubilized with 100% dimethyl sulfoxide. A Multiskan GO Microplate Spectrophotometer
(Thermo Fisher Scientific) was used to measure the absorbance at 540 nm.

BrdU incorporation assay was performed using BrdU Cell Proliferation Assay Kit
(Biovision, Milpitas, CA, USA) as previously described [44].

5.4. ALP and ARS Staining

Osteoblast differentiation was induced for 7 days, and ALP staining was performed
as previously described [45]. For the ALP staining assay, the cells were treated with ALP
reaction solution (Takara Bio Inc., Tokyo, Japan) for 1 h at 37 ◦C, and the level of ALP
staining was measured using a scanner and light microscope. Differentiation was induced
for 21 days and ARS staining was performed as previously described [45]. Cells were
stained for 15 min with 2% ARS (pH 4.2) (Sigma-Aldrich, St. Louis, MO, USA), and the
ARS staining levels were viewed using a scanner and light microscope.

5.5. Western Blotting

Osteogenic, autophagic, and necroptotic-related proteins, as well as their phosphory-
lation status, were evaluated using Western blotting as previously described [46,47]. The
Bradford reagent was used to determine protein concentrations (Bio-Rad, Hercules, CA,
USA). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, polyvinylidene fluoride
membranes (Millipore, Bedford, MA, USA), 1× TBS containing 0.05% Tween 20 (TBST),
and 5% skim milk were used to examine equal amounts of lysates (20 µg). Specific primary
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antibodies were incubated overnight at 4 ◦C, followed by 2 h at room temperature with
horseradish peroxidase-conjugated secondary antibodies (1:10,000; Jackson ImmunoRe-
search, West Grove, PA, USA). Protein signals were detected using the ProteinSimple
detection system (ProteinSimple Inc., Santa Clara, CA, USA).

5.6. Immunofluorescence

Immunofluorescence assays were performed as previously described [45]. Anti-
RUNX2 antibody (1:200; Cell Signaling Technology, Beverly, MA, USA) was incubated
overnight at 4 ◦C, followed by 2 h at room temperature with Alexa-Fluor 488-conjugated
secondary antibodies (1:500; Invitrogen, Carlsbad, CA, USA). Nuclei were stained for
10 min at room temperature with a DAPI solution (Sigma-Aldrich). Fluoromount™ Aque-
ous Mounting Medium (Sigma-Aldrich) was used to mount 8-well chamber slides (Thermo
Fisher Scientific) and signal intensity was detected using a fluorescence microscope.

5.7. Migration Assay

The migration assay was performed in a Boyden chamber. Briefly, the cells were
cultured in a Boyden chamber with Matrigel-coated nuclear pore filters (Corning Life
Sciences, Tewksbury, MA, USA). A light microscope was used to track migration. Four
regions were randomly selected and quantified.

5.8. Cell Adhesion Assay

The cell adhesion assay was performed as previously described [47]. The cells were
seeded onto Matrigel-coated 96-well culture plates (Corning Life Sciences), and adherent
cells were fixed with 10% formalin and stained with crystal violet for 10 min. A light
microscope was used to monitor adhesion.

5.9. DAPGreen Autophagy Detection Assay

As previously described [48], Autophagosome formation was monitored using the
DAPGreen Autophagy Detection Kit (Dojindo, Japan). Briefly, cells were treated with
TriFs after incubation with 0.1 µM DAPGreen solution and rinsed with culture medium.
FluoromountTM Aqueous Mounting Medium (Sigma-Aldrich) was used to mount 8-well
chamber slides (Thermo Fisher Scientific), and autophagosomes were viewed under a
fluorescent microscope or an intravital multiphoton microscope (SP8-MP) at Gwangju
Center, Korea Basic Science Institute (KBSI).

5.10. Statistical Analysis

Statistical significance was determined using the Student’s unpaired t-test using Prism
Version 5 (GraphPad Software Inc., San Diego, CA, USA). Statistical significance was set at
p < 0.05. Data are presented as mean ± standard error of the mean (S.E.M.).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11233887/s1. Supplementary Figure S1. NMR spectra of
TriFs from Gentianae Scabrae Radix roots. (A, B) C NMR spectrum (A) and H NMR spectrum (B).
Supplementary Figure S2. Effects of TriFs on cell viability in pre-osteoblasts. Cell viability was
detected by BrdU incorporation assay. Data shown are from three independent trials.

Author Contributions: H.-M.Y.: Conceptualization; Formal analysis; Funding acquisition; Project
administration; Writing—review and editing. B.K.: Methodology; Formal analysis; Resources. J.E.P.:
Methodology; Formal analysis; Resources. K.-R.P.: Conceptualization; Data curation; Investigation;
Formal analysis; Methodology; Project administration; Writing—original draft and review and editing.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (2022R1C1C1003491).

Institutional Review Board Statement: Not applicable.

https://www.mdpi.com/article/10.3390/cells11233887/s1
https://www.mdpi.com/article/10.3390/cells11233887/s1


Cells 2022, 11, 3887 12 of 14

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from
thecorresponding author upon reasonable request.

Acknowledgments: We appreciate the Gwangju Center, Korea Basic Science Institute (KBSI) for the
experimental assistance of intravital multi-photon microscope system (IMPM).

Conflicts of Interest: The authors declare no potential conflicts of interest.

Abbreviations

ALP Alkaline phosphatase.
ARS Alizarin Red S.
BMP2 Bone morphogenetic protein 2.
β-GP β-glycerophosphate.
L-AA L-ascorbic acid.
LC3 Microtubule associated protein light chain 3.
MAPKs Mitogen-activated protein kinases.
MLKL Mixed lineage kinase domain-like pseudokinase.
MMP Matrix metalloproteinase.
MSCs Mesenchymal stem cells.
MTT 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide.
OS Osteogenic supplement medium.
RIP Receptor-interacting serine/threonine-protein kinas.
RUNX2 Runt-related transcription factor 2.
TriFs Trifloroside.
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