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Abstract: Targeting cancer metabolism has become one of the strategies for a rational anti-tumor
therapy. However, cellular plasticity, driven by a major regulator of cellular growth and metabolism,
mTORC1, often leads toward treatment resistance. Sestrin2, a stress-inducible protein, has been
described as an mTORC1 inhibitor upon various types of stress signals. Immune assays and online
measurements of cellular bioenergetics were employed to investigate the nature of Sestrin2 regulation,
and finally, by silencing the SESN2 gene, to identify the role of induced Sestrin2 upon a single amino
acid deprivation in cancer cells of various origins. Our data suggest that a complex interplay of either
oxidative, energetic, nutritional stress, or in combination, play a role in Sestrin2 regulation upon
single amino acid deprivation. Therefore, cellular metabolic background and sequential metabolic
response dictate Sestrin2 expression in the absence of an amino acid. While deprivations of essential
amino acids uniformly induce Sestrin2 levels, non-essential amino acids regulate Sestrin2 differently,
drawing a characteristic Sestrin2 expression fingerprint, which could serve as a first indication of the
underlying cellular vulnerability. Finally, we show that canonical GCN2-ATF4-mediated Sestrin2
induction leads to mTORC1 inhibition only in amino acid auxotroph cells, where the amino acid
cannot be replenished by metabolic reprogramming.

Keywords: Sestrin2; amino acid deprivation; mTORC1; nutritional stress; metabolic adaptation

1. Introduction

Warburg’s discovery that cancer cells elevate aerobic glycolysis, and Farber’s anti-
folate treatment of childhood lymphocytic leukemia opened a new era of anticancer
treatment—targeting cancer metabolism [1]. Extensive research revealed several metabolic
vulnerabilities in cancer cells, i.e., lactate production [2,3] or amino acid metabolism [4,5].
However, until now, there are only few approved metabolic modulators, either due to
lack of specificity, or due to metabolic similarities between highly proliferative, cancer and
immune, cells [6]. Therefore, a more systematic approach is needed to identify a tissue, or
even lineage-specific metabolic features for more precise targeting.

mTORC1, the mechanistic target of rapamycin, mTORC1 is a major regulator of cel-
lular growth and metabolism, as a response to growth signal and nutrient availability [7].
Hyperactive mTORC1 in cancer cells leads to overall increase in anabolic and reduction
in catabolic reactions to support cellular proliferation [8]. Small GTPases are channeling
the signals coming from growth factors (RHEB) and nutrient availability (Rags), which
altogether leads to mTORC1 lysosomal translocation and sequential activation [7,9]. Un-
derstanding of mTORC1 regulation is necessary for rational mTORC1 targeting [9–11].
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A negative regulator of mTORC1 activity in response to various types of stress is
Sestrin2, the most investigated member of the sestrin protein family [12,13]. Sestrin2 is
a stress-inducible protein, regulated by DNA damage, oxidative, ER, nutritional stress,
and others [14–19]. Although initially discovered as a p53-inducible gene [16], other
transcription factors, such as ATF4 [20] and C/EBPβ [19], have been linked to induction of
SESN2 gene expression. Nutritional stress, caused by amino acid removal, activates the
GCN2-ATF4 axis and downstream induces Sestrin2 expression to inhibit mTORC1 [20].
Although reported as a leucine sensor for mTORC1 [21], Sestrin2 regulates mTORC1 in the
absence of lysine, glutamine, or arginine [20,22].

Due to sensitivity to stress signals, we sought to investigate the underlying context that
leads to Sestrin2 regulation upon a single amino acid deprivation. We identified a complex
interplay of various types of stress that regulates Sestrin2. Importantly, we identify a cell-
line-dependent Sestrin2 regulation upon amino acid deprivation revealing an underlying
metabolic vulnerability of the cell line. Finally, we showed the importance of Sestrin2
regulation to modulate mTORC1 activity, which becomes essential/more important in
amino acid auxotroph cells.

2. Materials and Methods
2.1. Cell Culture

Cell lines used in this project: HT29, HCT116, HCT116 p53-/-, HepG2, HLE, SKHep,
MCF7, MDA-MB-231, MDA-MB-468, T47D, LnCap, and Du145, were cultured in standard
cell culture incubator, at 37 ◦C, 5% CO2, in Dulbecco’s modified Eagle medium—DMEM
+ GlutaMAX (Gibco, Carlsbad, CA, USA, via Thermo Fischer Scientific GmbH, Dreieich,
Germany). Media was supplemented with 10% FCS (v/v) (Gibco, Carlsbad, CA, USA,
via Thermo Fischer Scientific GmbH, Dreieich, Germany) and 1% penicillin/streptomycin
(v/v) (Gibco, Carlsbad, CA, USA, via Thermo Fischer Scientific GmbH, Dreieich, Ger-
many). MDA-MB-468 and T47D cells were a kind gift from Dr. Stefan Wiemann (DKFZ,
Heidelberg, Germany). HCT116 p53/- were a kind gift from Dr. Thomas G. Hofmann
(DKFZ, Heidelberg, Germany) [23]. Single amino acid-deficient media were prepared
following the DMEM + GlutaMAX recipe, by omitting the indicated amino acid. All de-
prived media, including self-prepared replete medium, were supplemented with dialyzed
FCS (10%) and penicillin/streptomycin (1%). Short incubation times (up to 9 h) were
performed by conditioning cells with full medium supplemented with dialyzed FCS, a day
prior to the treatment. For longer treatments (longer than 24 h), medium was directly ex-
changed with replete/deprived medium. Additional treatments were added to the medium
and incubated as described in the figure legends. N-acetylcysteine was purchased from
Sigma Aldrich (Taufkirchen, Germany), sodium formate from Carl Roth GmbH (Karlsruhe,
Germany), and GCN2 inhibitor (GZD-824) and PERK inhibitor (GSK2656157) from Cayman
Chemical (Ann Arbor, USA; via Biomol GmbH, Hamburg, Germany).

2.2. Western Blot

Cells were seeded in a 6-well plate at the density of 200,000–300,000 cells/well. The
following day cells were treated with deprived media for longer incubation times, or
with full medium (supplemented with dialyzed FCS) for shorter time points, and finally,
1–9-h treatments were performed the day later. At indicated time-points, cells were lysed
with 6 M urea buffer supplemented with protease and phosphatase inhibitors (10 µg/mL
pepstatin, 0.1 µg/mL PMSF, 10 µg/mL aprotinin, 2.5 mM sodium pyrophosphate, 1 mM
sodium orthovanadate). Total protein content was measured using Bradford reagent
(Sigma Aldrich, Taufkirchen, Germany) and equal protein amounts (20 µg for Sestrin2;
40 µg for other antibodies) were loaded on 10% SDS-PAGE. After separation, proteins
were transferred onto a PVDF membrane (GE Healthcare, Munich, Germany). Ponceau
S (Sigma Aldrich, Taufkirchen, Germany) was used to validate uniform transfer. After
blocking in 5% milk (w/v) for at least 1.5 h at room temperature, membranes were incubated
with respective primary antibodies overnight, at 4 ◦C. Finally, anti-mouse or anti-rabbit
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IgG horseradish peroxidase (HRP)-linked secondary antibody (Cell Signaling Technology
Europe, Frankfurt am Main, Germany) was prepared in 5% milk and used to incubate
membranes for 1 h at room temperature. Membranes were developed with ECL (100 Mm
Tris/HCL pH 8.6, 2.1 Luminol, 0.6 mM p-Coumaric acid, 5.3 mM hydrogen peroxide) and
imaged with Fujifilm LAS-3000 (Fujifilm, Germany).

Primary antibodies used in this study: Sestrin2 (Proteintech, Planegg-Martinsfried,
Germany), total AMPKα, total p38, Actin, Vinculin (Santa Cruz Inc, Heidelberg Germany),
phospho-P70S6K (R&D Systems, McKinley Place NE Minneapolis, USA), phospho-AMPKα,
total P70S6K, ATF4, and phospho-p38 (Cell Signaling Technology Europe, Frankfurt am
Main, Germany).

2.3. Gene Silencing

SESN2 silencing was performed using a pool of small interference RNA targeting
SESN2 purchased from Riboxx (Riboxx Pharmaceuticals, Dresden, Germany): AUAAU-
CUAAUACUCCCUCCCCC, UUACAGUCAUCACAUGCCCCC, UUUAUGUACUUGGC-
CUCUCCCCC. The following sequence was used as a negative control (siNC): UUGUACUA-
CACAAAAGUACCCCC. Gene silencing was done using reverse transfection method: fifty
picomoles of respective siRNA were precomplexed with 1 µL of Lipofectamine 3000 (Thermo
Fisher Scientific GmbH, Dreieich, Germany) in 50 µL of OptiMEM medium (Gibco, Carls-
bad, CA, USA, via Thermo Fischer Scientific GmbH, Dreieich, Germany) and added to
100,000 cells in 1 mL of DMEM + GlutaMAX (Gibco, Carlsbad, CA, USA, via Thermo Fischer
Scientific GmbH, Dreieich, Germany). Cells were then seeded in a 6-well plate and treated
on the following day for the indicated treatments. Proteins of interest were analyzed with
Western blot, as described above.

2.4. Protein Synthesis

Puromycin incorporation was used to study protein synthesis in the cells with lower ex-
pression of Sestrin2. The SESN2 gene was silenced using reverse transfection, as described
before. On the following day, medium was exchanged to either full, or serine-deficient
medium for 24 h treatment. Five hours prior to lysis, indicated cells were treated with 20 µM
cycloheximide, CHX, (Fluka Sigma Aldrich, Taufkirchen, Germany). Finally, 10 min before
lysis cells were treated with 90 µM of puromycin (Thermo Fisher Scientific GmbH, Dreieich,
Germany). Cells were then lysed and the Western blot was performed as described.

2.5. Cell Survival

Cellular survival was measured with Sulforhodamine B (SRB) assay (Santa Cruz
Biotechnology Inc, Heidelberg, Germany). Cells were seeded in a 96-well plate at the den-
sity of 5000–7000 cells/well. Media lacking single amino acid was added on the following
day. At the indicated time-points, plates were fixed with ice-cold 10% trichloroacetic acid
(TCA) and stored at 4 ◦C for at least one hour. Plates were then washed with tap water and
dried for 10 min. SRB dye (0.054% in acetic acid) was used to stain total protein for 30 min
at room temperature. Dye excess was removed with 1% acetic acid and finally dissolved
in 10 mM Tris (pH 10.5). Absorbance (535 nm) was measured with a Tecan Ultra plate
reader (Tecan Deutschland GmbH, Crailsheim, Germany). Survival (%) was calculated in
comparison to the averaged replicates with full medium.

2.6. ROS Formation Assay

Cytoplasmic superoxide was measured using dihydroethidium (DHE) (Cayman Chem-
ical (Ann Arbor, USA; via Biomol GmbH, Hamburg, Germany). Cells were seeded in a
24-well plate at the density of 50,000 cells/well. At the indicated time-points, cells were
washed with PBS (Gibco, Germany), and trypsinized with TriPLE Express (Gibco, Carlsbad,
CA, USA, via Thermo Fischer Scientific GmbH, Dreieich, Germany). Collected cells were
then incubated with 30 µM DHE dye for 10 min at room temperature, in the dark. The
dye was removed by centrifugation and the cells were resuspended in colorless DMEM
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(Gibco, Carlsbad, CA, USA, via Thermo Fischer Scientific GmbH, Dreieich, Germany). Data
acquisition was performed with Guava easyCyte HT (Luminex, MV ‘s-Hertogenbosch,
The Netherlands), and analyzed with GuavaSoft 3.1.1.

2.7. Mitochondrial Membrane Potential

To measure mitochondrial membrane potential, cells were collected after indicated
treatments using Trypsin TriPLE (Gibco, Carlsbad, CA, USA, via Thermo Fischer Scientific
GmbH, Dreieich, Germany). Collected cells were then incubated with 18 µM JC-1 (Sigma
Aldrich, Taufkirchen, Germany) for 30 min at room temperature, in the dark. Cells were
then centrifuged and resuspended in fresh, colorless DMEM (Gibco, Carlsbad, CA, USA,
via Thermo Fischer Scientific GmbH, Dreieich, Germany) for measurement, performed
with Guava easyCyte (Luminex, MV ‘s-Hertogenbosch, The Netherlands). Acquired data
were analyzed with GuavaSoft 3.1.1.

2.8. Cellular Bioenergetics-Extracellular Acidification and Oxygen Consumption

Extracellular pH and oxygen were measured using PreSens SensorDish readers—SDR
(PreSens, Precision Sensing GmbH, Regensburg, Germany). As described previously [24],
cells were seeded at the density of 100,000 cells/well in a Hydro- or OxoDish 24-well
plate for pH or oxygen measurements, respectively, and placed in a standard incubator.
Treatments were added on the following day and the plates were placed onto the readers
located inside the standard incubator. Measurements, obtained from sensors located at
the bottom of each well, were acquired every 10 min. For statistical significance, slopes
representing the consumption rate were calculated using linear regression from the initial
linear range after stabilization of the readings.

2.9. Amino Acids Analysis

Free amino acids were extracted from 3 × 106 cells with 0.3 mL of 0.1 M HCl in an
ultrasonic ice-bath for 10 min. The resulting extracts were centrifuged for 10 min at 4 ◦C
and 16,400× g to remove cell debris. Amino acids were derivatized with AccQ-Tag reagent
(Waters, Eschborn, Germany) and determined as described in Weger et al. [25].

2.10. Statistical Analysis

Data were analyzed using Microsoft Excel or GraphPad Prism. The mean value
was presented with error bars representing SEM. If not indicated otherwise, Student’s
t-test adaptation, Welch’s t-test was used to calculate the difference between two groups.
Statistical significance is represented with asterisks: *, **, ***, and ****, for values ≤ 0.05,
0.01, 0.001, and 0.0001, respectively. n.s. was used to indicate statistical insignificance.

3. Results
3.1. Sestrin2 Regulation ‘Fingerprint’: Cell Line-Dependent Regulation of Sestrin2 under a Single
Non-Essential Amino Acid Deprivation

Firstly, we investigated Sestrin2 regulation upon nutritional stress caused by a single
amino acid deprivation. Although deprivations of essential amino acids uniformly induced
Sestrin2 protein levels, the absence of a single non-essential amino acid differently regu-
lated Sestrin2 in HT29 cells (Figure 1A). Therefore, we screened cell lines with different
tissue origins or genetic backgrounds for Sestrin2 expression under non-essential amino
acid starvations (Figure 1B–E). Densitometric quantification of Western blots (Figure 1F)
showed a cell line-, rather than an amino acid-dependent Sestrin2 regulation. Although
cysteine deprivation induced Sestrin2 in almost all cell lines (except MDA-MB-231), serine
deprivation differentially regulated Sestrin2 levels in the investigated cell lines. MCF7 and
MDA-MB-231 cells that have lower expression of the rate-limiting enzyme in serine biosyn-
thesis pathway, PHGDH [26] (Figure S1), and hence decreased serine biosynthesis [27],
were dependent on an extracellular source of serine. Therefore, in MCF7 and MDA-MB-231
Sestrin2 protein levels were upregulated upon serine removal. On the other hand, in MDA-
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MB-468 and T47D cells that naturally have higher PHGDH level [26], Sestrin2 protein levels
were not significantly changed. Removing single amino acids from the medium indicated a
context-dependent nutritional stress. Moreover, Sestrin2, a stress marker, showed a cell
line ‘fingerprint’ upon different amino acid deprivations.
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Figure 1. Sestrin2 regulation upon single amino acid deprivation. (A–E) Sestrin2 protein levels after
two days of amino acid deprivations; (F) densitometric quantification of Western blots, Sestrin2
normalized to respective housekeeping gene. EAA—essential amino acids; NEAA—non-essential
amino acids.

Being classified as a GADD (growth arrest and DNA damage) family member, SESN2
(formerly known as Hi95) was linked to cellular growth [16]. Therefore, we investigated a
correlation between Sestrin2 expression and cellular survival under amino acid deprivation.
Three cell lines from various tissue origins, namely, hepatocellular (HepG2), colorectal
(HCT116), and breast (MCF7) cancer, that had different Sestrin2 fingerprints (Figure 1),
were selected for further investigation. Figure 2 shows the correlation between Sestrin2
expression upon 48 h of amino acid deprivation with cellular survival 72 h after remov-
ing the same amino acid. As with Sestrin2 expression (Figures 1 and S2A), the cellular
survival was also differently regulated in the investigated cell lines upon the amino acid
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deprivations (Figure S2B). Interestingly, the reduced cellular survival was associated with
higher expression of Sestrin2, i.e., glutamine, arginine, and cysteine deprivations in all
investigated cell lines. However, several conditions, i.e., tyrosine deprivation in HepG2
cells increased Sestrin2 level, while cellular survival was not changed. Altogether, single
amino acid deprivations differently regulated Sestrin2, which negatively correlated with
cellular survival.
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Figure 2. Negative correlation between Sestrin2 expression and cellular survival. Sestrin2 levels from
three independent experiments were plotted on the xaxis; yaxis shows cellular survival measured
with SRB assay. Pearson correlation was calculated and r value is indicated for each graph. p values
are 0.13, 0.2366, and 0.2539 for HCT116, HepG2, and MCF7, respectively.

Of note, silencing SESN2 did not influence cellular proliferation upon amino acid
starvation (Figure S2C). These data clearly indicate that Sestrin2 upregulation coincides
with reduced survival, but it is dispensable for the proliferation regulation upon single
amino acid starvation. Interestingly, silencing SESN2 severely reduced cellular survival,
but only in MCF7 cells (Figure S2D).

Based on obtained data, the single amino acid deprivations were classified into three
categories: first, glutamine, arginine, or cysteine deprivation, that induced Sestrin2 expres-
sion and inhibited cellular proliferation in all three investigated cell lines; second, serine
(and glycine) deprivation that caused cell line-dependent response with the increased
Sestrin2 and the reduced cell survival only in MCF7 cells; and third, alanine or tyrosine
deprivation as outliers, that induced Sestrin2 regulation without changing cell survival in
HepG2 cells.

3.2. Glutamine, Arginine, or Cysteine Deprivation Causes Severe Cellular Response That Induces
Sestrin2 via Oxidative, Metabolic, and Nutritional Stress

Having established a negative correlation between Sestrin2 expression and cellular
survival in the absence of glutamine, arginine, or cysteine, we sought to understand the
overall cellular response to the removal of glutamine, arginine, or cysteine, and to isolate
events that were leading to Sestrin2 upregulation. Online measurements of extracellular
oxygen saturation, reflecting oxygen consumption, and pH, reflecting glycolysis, showed
an altered glucose metabolism under glutamine, arginine, or cysteine deprivations in
HepG2 (Figure 3A,B) and HCT116 cells (Figure S3A,B). To test mitochondrial function, we
measured mitochondrial membrane potential in group 1 of the amino acid deprivations. As
shown in Figure 3C, increased mitochondrial membrane potential was observed after 48 h
in HepG2 cells. The same was observed in HCT116 cells, while in MCF7 cells mitochondrial
membrane potential was changed upon arginine deprivation solely (Figure S3C). Addi-
tionally, we followed phosphorylation of the MAPK kinase, p38 (T180/Y182), controlled
by increased intracellular reactive oxygen species, DNA damage, or inflammation (here
used as a marker of oxidative stress) [28]. Sestrin2 upregulation was accompanied by
p38 (T180/Y182) phosphorylation under all three amino acid deprivations in HepG2 cells
(Figure 3D). Increased mitochondrial membrane potential, together with phosphorylation
of p38 suggested an elevated intracellular ROS generation.
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Figure 3. Group 1 of amino acid deprivations causes metabolic, oxidative, and nutritional stress.
(A,B) Continuous measurements of oxygen saturation (A) and pH (B) values in culture medium.
Two-way ANOVA with Dunnett’s post hoc test was used to calculate statistical significance between
slopes; (C) mitochondrial membrane potential measured 48 h of amino acid deprivations; (D) time-
dependent regulation of Sestrin2, ATF4, and phosphorylation of p38 upon the deprivations in HepG2
cells, with the densitometric quantification (n = 3). ATF4 and pp38:tp38 in arginine and cysteine
deprivation correspond to the right yaxis. Red dashed line indicates fold change = 1 on the left yaxis,
yellow dashed line indicates fold change = 1 on the right yaxis; (E) Sestrin2 and ATF4 levels upon
10 mM Nacetyl cysteine co-treatment with respective densitometric quantification (n = 4). Two-way
ANOVA with Tukey’s post hoc test was used for statistical analysis. Dots represent individual values.
*, **, ***, and **** indicate p ≤ 0.05, 0.01, 0.001, and 0.0001, respectively.
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A canonical pathway to control amino acid availability is GCN2-ATF4 axis, hence,
we followed the ATF4 expression. As shown in Figure 3D, ATF4 levels were increased
upon amino acid removal, accompanying Sestrin2 upregulation. As ATF4 levels can
also be induced upon oxidative stress, we cotreated cells with ROS scavenger, N-acetyl
cysteine (NAC). Scavenging ROS rescued ATF4 and partially Sestrin2 levels upon glutamine
deprivation. (Figures 3E and S3D). Interestingly, the magnitude of Sestrin2 induction in the
absence of glutamine or arginine was not aligned with the intensity of ATF4 regulation,
until ROS was scavenged.

Altogether, we showed that glutamine, arginine, and cysteine deprivations uniformly
induced Sestrin2 in all investigated cell lines. The induction was mediated by at least two
different mechanisms, through upregulated ROS levels and through the absence of the
amino acid. Interestingly, when ROS levels were scavenged with NAC, Sestrin2 levels were
regulated through ATF4. These data show a multilayered cellular regulation of Sestrin2 in
response to amino acid deprivation.

Of note, an early regulation in phosphorylation of p38 and ATF4, observed up to 6 h
of deprivation, was also noticed in the full medium (Figure S3E), therefore, in this study
we focused on long-term effects of amino acid deprivations.

3.3. Sestrin2 Is Induced through Canonical GCN2-ATF4 Axis in Serine Auxotroph, MCF7

Due to metabolic interchangeability of serine and glycine, we firstly investigated
Sestrin2 expression (Figure 4A), and cellular survival (Figure 4B) upon combined serine
and glycine removal in all investigated cell lines. Again, only MCF7 cells were sensitive
to the deprivation, hence they were used for further investigation of the Sestrin2 regu-
lation in this biological context. Interestingly, metabolic analysis of intracellular amino
acid levels revealed rather comparable reduction of serine and glycine levels in HepG2
and MCF7 cells indicating that differential regulation of Sestrin2 in these two cell lines is
rather a downstream effect of reduced availability of these two amino acids (Figure S4A,B).
As shown in Figure 4C,D, only mild changes in respiration and acidification rates were
observed at later time-points in MCF7 cells. HCT116 cells did not show the change in their
respiration and acidification rates (Figure S4C,D). Furthermore, no further accumulation
of intracellular ROS (Figure 4E), accompanied with unchanged phosphorylation of p38
over time (Figure 4F), was observed in MCF7 cells upon serine/glycine deprivation. Ad-
ditionally, neither ROS (Figure S4E), nor mitochondrial membrane potential (Figure S4F),
was significantly increased in the investigated cell lines upon serine removal. Altogether,
these data show the absence of oxidative stress upon serine/glycine deprivation in the
investigated cells.

Furthermore, ATF4 levels were induced (Figure 4F) in MCF7 cells, unlike in HCT116
and HepG2 cells (Figure S4G). Finally, restoring one carbon cycle by adding formate and
glycine, and sequentially replenishing serine levels [29], rescued ATF4 and Sestrin2 levels,
indicating that solely absence of serine was responsible for its induction (Figure 4G).

To conclude, unlike group 1 of amino acid deprivations that regulated Sestrin2 through
complex interplay of nutritional, metabolic, and oxidative stress in all investigated cell lines,
group 2 showed a cell line dependent regulation of Sestrin2 driven solely by nutritional
stress. In serine auxotroph cells, serine/glycine deprivation impaired cellular survival
without substantial metabolic reprogramming. Hence, induced Sestrin2 levels in the
absence of serine/glycine were mainly the result of activated GCN2-ATF4 axis.
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Figure 4. Group 2 of amino acid deprivations causes solely nutritional stress. (A) Quantification of
Sestrin2 protein levels upon 2 days of serine and glycine deprivation (n = 3); (B) cell survival upon
3 days of serine and glycine deprivation; (C,D) continuous measurements of oxygen saturation (C)
and pH (D) values in extracellular medium; (E) mitochondrial membrane potential measured 24 h of
amino acid deprivations; (F) timedependent regulation of Sestrin2, ATF4, and phosphorylation of p38
upon the deprivation with respective densitometric quantification (n = 2–3); (G) Sestrin2 and ATF4
levels in the presence or absence of either serine (0.4 mM), glycine (0.4 mM), sodium formate (1 mM),
or in combination, with the densitometric quantification of Sestrin2 (n = 3). One-way ANOVA with
the Dunnett’s post hoc test was for statistical analysis. Dots represent individual values. * and ***
indicate p ≤ 0.05, and 0.001, respectively. n.s. indicates statistical insignificance.
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3.4. Alanine or Tyrosine Deprivation Regulates Sestrin2 Expression Solely through Oxidative
Stress

Group 3 consists of outliers from the negative correlation between Sestrin2 expression
and cellular survival. In the absence of alanine or tyrosine, oxygen saturation and pH were
comparable to the full medium in HepG2 and HCT116 cells (Figures 5A,B and S5A,B).
A trend towards increased mitochondrial membrane potential in deprived conditions
was observed in all investigated cell lines, however it was significant only under tyrosine
deprivation (Figures 5C and S5C). Similarly, prolonged tyrosine deprivation, but not alanine
deprivation, increased the phosphorylation of p38 in HepG2 cells (Figure 5D). Altogether,
increased mitochondrial membrane potential and phosphorylation of p38 suggested a
superoxide generation and subsequent oxidative stress upon tyrosine deprivation. Finally,
ROS scavenger rescued both ATF4 and Sestrin2 levels upon tyrosine deprivation in both,
HepG2 and HCT116 cells (Figures 5E and S5D, respectively), indicating that solely oxidative
stress triggered Sestrin2 upregulation under this condition. Alanine deprivation-induced
Sestrin2 was partially rescued in HCT116 cells (Figure S5D).
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Figure 5. Group 3 of amino acid deprivations causes oxidative stress. (A,B) Continuous measure-
ments of oxygen saturation (A) and pH (B) values in extracellular medium. Twoway ANOVA with
Dunnett’s post hoc test was used to calculate statistical significance between slopes; (C) mitochondrial
membrane potential measured 48 h of amino acid deprivations; (D) time-dependent regulation of
Sestrin2, ATF4, and phosphorylation of p38 upon the deprivations in HepG2 cells, with respective
densitometric quantification (n = 3); (E) Sestrin2 and ATF4 levels upon 10 mM Nacetyl cysteine
cotreatment with densitometric quantification (n = 3). Twoway ANOVA with Tukey’s post hoc test
was used to calculate statistical significance. Dots represent individual values. * and ** indicate
p ≤ 0.05 and 0.01, respectively.
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Interestingly, unlike the first two groups, group 3 did not follow the negative cor-
relation between Sestrin2 protein levels and cellular survival. Tyrosine deprivation is a
clear example that a single amino acid restriction can cause metabolic reprogramming and
result in a mild oxidative stress, hence inducing Sestrin2 levels in HepG2 and HCT116 cells,
while having minor (in HCT116) or no (in HepG2) impact on cellular proliferation. While
metabolic background probably again plays a role in Sestrin2 regulation, this group of
amino acid deprivation shows us that solely oxidative stress could regulate Sestrin2 upon
an amino acid removal.

3.5. Contextual Regulation of mTORC1 by Sestrin2

Nutritional stress, one of the regulators of Sestrin2, has been shown to play a role
in modulating mTORC1 activity. Considering context-dependent regulation of Sestrin2,
we sought to further investigate the relationship between Sestrin2 and mTORC1 in the
context of a single non-essential amino acid deprivation. As expected, amino acid depri-
vation caused a reduction in phosphorylation of P70S6K (T389), a downstream effector
of mTORC1, indicating impaired mTORC1 activity (Figure 6A). The degree of mTORC1
inhibition depended on the amino acid deprived. In MCF7, serine auxotroph cells, serine
deprivation caused the most pronounced reduction in phospho-P70S6K levels (Figure 6A).
Interestingly, mTORC1 inhibition was not always accompanied with Sestrin2 induction
(i.e., alanine or tyrosine deprivations), suggesting Sestrin2-independent mechanisms of
mTORC1 regulation.

Hence, we sought to identify conditions that regulate mTORC1 in a Sestrin2-dependent
manner. We silenced SESN2 and investigated phosphorylation of P70S6K upon glutamine
or serine deprivation. As shown in Figure 6B,C, in group 1, characterized by a complex
cellular response to the amino acid deprivations, SESN2 had no impact on mTORC1
activity. However, in group 2, where solely nutritional stress regulated Sestrin2, Sestrin2
became essential in blunting mTORC1 activity, measured by phosphorylation of P70S6K
(Figure 6B,D). Solely serine, or combined serine and glycine deprivation inhibited mTORC1
activity in the Sestrin2-dependent manner (Figure S6A).

Furthermore, an enhanced phosphorylation of AMPKα (T172) upon glutamine de-
privation (supporting the claim of general metabolic reprogramming in the group 1) was
independent of Sestrin2 (Figure S6B). In group 2, serine deprivation was inefficient in
activating AMPKα, confirming solely nutritional stress upon serine removal (Figure S6B).
These data indicate that SESN2 is dispensable in the cellular response to an energy crisis
caused by amino acid deprivation (at least to the energy crisis signaling depicted through
AMPK levels).

Additionally, inhibition of GCN2, and not PERK, rescued ATF4 levels and mTORC1
activity (Figure 6E). Furthermore, temporal investigation of phosphorylation of P70S6K
and Sestrin2 revealed that the strong inhibition of the mTORC1 signaling pathway was
accompanied with Sestrin2 induction shortly after serine (Figure 6F) or serine/glycine
removal (Figure S5C). Finally, Sestrin2 was indispensable for the reduction of the protein
synthesis upon serine removal in MCF7 (Figures 6G and S6D). It is worth mentioning that
silencing SESN2 in MCF7 cells reduced cellular survival (Figure S2D), probably resulting
in reduced overall protein synthesis. Therefore, the puromycin incorporation is reduced
upon SESN2 knock-down.

Altogether, these data confirm the ATF4-Sestrin2-mediated inhibition of mTORC1, but
solely in the absence of serine, in MFC7 cells, due to reduced serine biosynthesis rate and,
hence, reduced intracellular serine levels. On the other hand, Sestrin2 was dispensable
for mTORC1 regulation upon glutamine deprivation that caused overall cellular stress:
oxidative, nutritional, and energetic stress.



Cells 2022, 11, 3863 12 of 16

Cells 2022, 11, x FOR PEER REVIEW 14 of 18 
 

 

 

Figure 6. Sestrin2dependent regulation of mTORC1 upon amino acid deprivation. (A) Sestrin2 pro-

tein levels and phosphorylation of P70S6K after two days of amino acid deprivations; (B) phosphor-

ylation of P70S6K upon SESN2 silencing in the presence or absence of indicated amino acids; (C,D) 

densitometric quantification of Western blots from three independent experiments in MCF7 cells (n 

= 3). ANOVA with a post hoc Tukey test was used to measure statistical significance; (E) Sestrin2, 

ATF4 levels, and the phosphorylation of P70S6K in MCF7 cells upon the cotreatment with GCN2 

inhibitor (1 µM) and PERK inhibitor (1 µM) in either the presence or absence of serine (0.4 mM), 

glycine (0.4 mM), or in combination; (F) timedependent regulation of Sestrin2 and phosphorylation 

Figure 6. Sestrin2dependent regulation of mTORC1 upon amino acid deprivation. (A) Sestrin2
protein levels and phosphorylation of P70S6K after two days of amino acid deprivations; (B) phos-
phorylation of P70S6K upon SESN2 silencing in the presence or absence of indicated amino acids;
(C,D) densitometric quantification of Western blots from three independent experiments in MCF7 cells
(n = 3). ANOVA with a post hoc Tukey test was used to measure statistical significance; (E) Sestrin2,
ATF4 levels, and the phosphorylation of P70S6K in MCF7 cells upon the cotreatment with GCN2
inhibitor (1 µM) and PERK inhibitor (1 µM) in either the presence or absence of serine (0.4 mM),
glycine (0.4 mM), or in combination; (F) timedependent regulation of Sestrin2 and phosphorylation of
P70S6K upon the serine deprivation; (G) protein synthesis in MCF7 cells measured with puromycin
(90 µM) with CHX (20 µM) as a positive control upon siNC or siSESN2. Samples were re-probed
for the vinculin control. Dots represent individual values. ** and *** indicate p ≤ 0.01 and 0.001,
respectively. n.s. indicates statistical insignificance.
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4. Discussion

Altered metabolism is a hallmark of highly proliferative cancerous cells, hence tar-
geting cancer metabolism became an attractive anti-cancer strategy [6,30,31]. However,
cellular metabolic plasticity contributes to resistance to metabolic modulators [32–35]. The
goal of the present project was to elucidate regulation and the role of Sestrin2 during an
adaptive cellular response to a single amino acid starvation.

Based on our data, obtained from three cancer cell lines derived from different tissue
origins and representing different genetic backgrounds, we grouped non-essential amino
acid deprivations based on their effects on cellular proliferation and Sestrin2 expression,
and characterized the overall cellular response in the respective group. Group 1 consists
of amino acids that uniformly impaired cellular proliferation and increased Sestrin2 ex-
pression in all three investigated cell lines. Additionally, our data support the literature to
show that glutamine, arginine, and cysteine deprivations are accompanied with oxidative
and energetic stress [36–40]. However, we showed that besides canonical nutritional stress,
conducted through GCN2-ATF4 signaling pathway [20,41,42], oxidative stress was con-
tributing to the Sestrin2 induction. Group 2 is a prime example of the negative correlation
between Sestrin2 expression and cellular survival dependent on the cellular metabolic
background. In PHGDH deficient cells, such as MCF7 [26], Sestrin2 levels were increased
and proliferation was impaired upon the deprivation. More importantly, the upregulation
of Sestrin2 was driven solely by nutritional stress through the GCN2-ATF4 signaling path-
way. Group 3 represents outliers, that induced Sestrin2 without changing proliferation. We
noticed that the Sestrin2 regulation in these conditions were driven solely through oxidative
stress. Therefore, we have clearly shown a context-dependent regulation of Sestrin2 upon
removal of a single amino acid, where the secondary effects of metabolic reprogramming,
namely, oxidative or energetic stress, could also contribute to the Sestrin2 upregulation.

Furthermore, many studies have shown Sestrin2-dependent mTORC1 inhibition and
it has been reported that Sestrin2 upregulation upon leucine, isoleucine, lysine, glutamine,
or arginine deprivation inhibits mTORC1 [20,22]. Nevertheless, in our experimental setup
Sestrin2 was dispensable upon glutamine removal, but was essential in serine-deprived
MCF7 cells to regulate mTORC1. The complex cellular response observed upon glu-
tamine starvation suggests a complementary regulation of mTORC1 through several path-
ways [43]. In contrast, direct leucine sensing of Sestrin2 could be a reason for a more
selective Sestrin2-dependent inhibition of mTORC1 for this branch of amino acid uti-
lization/metabolism [21,44,45]. Glutamine deprivation causes leucine accumulation in
glutamine-deprived pancreatic cancer cells [35], which could disrupt the Sestrin2:GATOR2
complex important for Sestrin2-dependent mTORC1 inhibition. It is important to note
that in MCF7 cells, glutamine deprivation caused partial, while serine deprivation caused
complete mTORC1 inhibition. Furthermore, non-essential amino acid deprivations are
classified based on the experiments performed with three representative cell lines, namely,
HCT116, HepG2, and MCF7. Thus, with the classification made here, we like to describe
and highlight the complex and context-dependent regulation of Sestrin2 demonstrated in
our experiments and by others, but not an ultimate classification of cellular response to
amino acid deprivation, due to metabolic differences between cell lines [46]. Nevertheless,
our results clearly support the notion that amino acid metabolism and sensing could be
exploited to optimize cancer therapy [47,48]. The complexity of metabolic interactions
clearly warrants further detailed analysis of genetic alterations (mutation, amplification,
and deletion) linked to amino acid metabolism and sensing to discover specific dependen-
cies of cancer cells for different amino acids and could possibly further elucidate the role of
Sestrin2 in cancer metabolism.

5. Conclusions

We show for the first time that amino acid scarcity regulates mTORC1 activity through
Sestrin2 only in full auxotroph cells, when the amino acid cannot be restored by metabolic
reprogramming. Any metabolic changes needed for amino acid production, leads to partial
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replenishment, and also to the other sources of stress that regulate Sestrin2 and mTORC1
through independent pathways. Therefore, we propose that Sestrin2 could serve as an
indicator of an underlying metabolic response to amino acid starvation which may, but not
exclusively, result in cellular proliferation impairment. While Sestrin2 could be utilized
for an initial metabolic profiling of each cell line to better understand the overall cellular
response to amino acid starvation, there is still a need to further investigate how contextual
regulation of Sestrin2 impacts the role of Sestrin2 to make more rational and personalized
anti-tumor therapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11233863/s1, Figure S1: Basal PHGDH levels in various
cell lines; Figure S2: Sestrin2 regulation and proliferation rate upon amino acid deprivations;
Figure S3: Group 1 of amino acid deprivations causes metabolic, oxidative, and nutritional stress;
Figure S4: Group 2 of amino acid deprivations causes solely nutritional stress; Figure S5: Group 3 of
amino acid deprivations causes solely oxidative stress; Figure S6: Sestrin2-dependent regulation of
mTORC1 upon amino acid deprivation.
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