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1 Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of
Oncology, 02-781 Warsaw, Poland

2 Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology,
02-781 Warsaw, Poland

3 Department of Neurosurgery, Military Institute of Medicine, 04-141 Warsaw, Poland
4 Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology,

02-781 Warsaw, Poland
* Correspondence: mateusz.bujko@pib-nio.pl
† These authors contributed equally to this work.

Abstract: Acromegaly results from growth hormone hypersecretion, predominantly caused by a
somatotroph pituitary neuroendocrine tumor (PitNET). Acromegaly-causing tumors are histologically
diverse. Our aim was to determine transcriptomic profiles of various somatotroph PitNETs and to
evaluate clinical implication of differential gene expression. A total of 48 tumors were subjected
to RNA sequencing, while expression of selected genes was assessed in 134 tumors with qRT-PCR.
Whole-transcriptome analysis revealed three transcriptomic groups of somatotroph PitNETs. They
differ in expression of numerous genes including those involved in growth hormone secretion
and known prognostic genes. Transcriptomic subgroups can be distinguished by determining the
expression of marker genes. Analysis of the entire cohort of patients confirmed differences between
molecular subtypes of tumors. Transcriptomic group 1 includes ~20% of acromegaly patients with
GNAS mutations-negative, mainly densely granulated tumors that co-express GIPR and NR5A1 (SF-1).
SF-1 expression was verified with immunohistochemistry. Transcriptomic group 2 tumors are the
most common (46%) and include mainly GNAS-mutated, densely granulated somatotroph and mixed
PitNETs. They have a smaller size and express favorable prognosis-related genes. Transcriptomic
group 3 includes predominantly sparsely granulated somatotroph PitNETs with low GNAS mutations
frequency causing ~35% of acromegaly. Ghrelin signaling is implicated in their pathogenesis. They
have an unfavorable gene expression profile and higher invasive growth rate.

Keywords: neuroendocrine pituitary tumors; somatotropinoma; acromegaly; growth hormone; gene
expression; transcriptome

1. Introduction

Acromegaly is a severe and life-threatening disease caused by persistent excess of
growth hormone (GH), which stimulates synthesis and secretion of the insulin-like growth
factor-1 (IGF-1). In the majority (95%) of patients, acromegaly is caused by sporadic
GH-secreting pituitary neuroendocrine tumor (PitNET). High IGF-1 level promotes cell
proliferation, inhibits apoptosis, and causes most of the clinical symptoms of acromegaly,
ranging from subtle to severe, including limb hypertrophy, soft tissue edema, arthralgia,
prognathism and hyperhidrosis to frontal bone hypertrophy, diabetes mellitus, hyperten-
sion, and respiratory and heart failure. Excessive body growth and gigantism may develop
when a somatotroph tumor develops in young patients before closing the epiphyses of long
bones [1].
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Acromegaly is a particular disease entity that is generally treated with somatostatin
analogs and surgery. However, PitNETs that cause clinical symptoms are quite heteroge-
nous, varying in terms of pathomorphological characteristics, radiological imaging results,
invasiveness, and molecular features [2,3]. Most of somatotroph tumors express GH and
PIT-1 transcription factor and are further divided into sparsely and densely granulated
(SG and DG, respectively) with electron microscopy-based evaluation or anti-cytokeratin
staining. These two types of somatotroph tumors differ in magnetic resonance imaging
(MRI) features and clinical course of the disease [4]. Acromegaly can also be caused by
mammosomatotroph and mature plurihormonal tumors, characterized by expression of
GH and additional hormones (prolactin (PRL) or PRL and thyroid-stimulating hormone
(TSH), respectively). Additionally, it may be caused by mixed somatotroph–lactotroph
tumors (composed of two distinct populations of somatotroph and lactotroph tumor cells),
poorly-differentiated Pit1-lineage tumors, and acidophil stem cell tumors features [2,3].
SG somatotroph PitNETs and plurihormonal PIT-1 positive PitNETs are categorized as
high-risk tumors due to characteristics of aggressiveness including invasive growth and
higher recurrence rate [5].

The most common molecular changes in somatotroph tumors are activating mutations
in GNAS gene, which encodes a stimulatory subunit of heterotrimeric G protein. These
mutations are present in approximately 40% of somatotroph PitNETs [6]. They cause
hyperactivation of cAMP-dependent pathways and, consequently, both increased secretion
of GH and proliferation of somatotropic cells [7]. Clinical significance of GNAS mutations
is unclear; however, they are certainly more common in DG than in SG tumors [8].

Recently, a subset of somatotroph PitNETs with elevated expression of gastric in-
hibitory polypeptide receptor (GIPR) was identified [9,10]. In these tumors GIPR expression
is considered to additionally stimulate cAMP pathway causing paradoxical GH response
to glucose intake [11]. These tumors were suggested to constitute a separate molecular
subgroup as they differ in epigenetic profile and high GIPR expression is mutually exclusive
with GNAS mutations [12].

Considering the complex nature of the clinical and pathological spectrum of PitNETs
causing acromegaly we aimed to investigate gene expression in somatotroph tumors to verify
whether transcriptomic profiles correspond to current histological/clinical classification.

2. Materials and Methods
2.1. Patients and Tissue Samples

This study included 134 patients with biochemically confirmed acromegaly that were
treated with transsphenoidal surgery in two specialized centers: the Department of Neu-
rosurgery, Military Institute of Medicine, Warsaw and the Department of Neurosurgery,
Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw in the years
2013–2020. Diagnostic criteria of acromegaly based on clinical characteristics, increased
serum IGF-1 levels, and non-suppressible GH after oral glucose tolerance test (OGTT) in
patients with no OGTT contraindications were used. All patients received somatostatin
receptors ligands (SRLs) treatment (octreotide or lanreotide) before surgery following the
recommendations of Polish Society of Endocrinology [13]. Invasive growth was determined
based on preoperative MRI using Knosp classification. Tumors scored with Knosp grades
0–2 were considered noninvasive, while those with Knosp grade 3 and 4 were considered
invasive [14].

Each tumor sample was divided in three parts. One of them was snap frozen in liquid
nitrogen and stored for molecular analysis and the other two were preserved for histopatho-
logical evaluation, including immunohistochemical staining and ultrastructural analysis
with electron microscopy. Pathomorphological diagnosis was based on evaluation of the
immunoexpression of pituitary hormones (GH, PRL, ACTH, TSH, FSH, LH, α-subunit) and
Ki-67, as well as assessment of ultrastructural status (sparsely vs. densely granulated tu-
mors). Expression of PIT-1 transcription factor was confirmed with immunohistochemical
staining retrospectively since a large proportion of the tumors were originally diagnosed
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with WHO 2014 criteria that did not comprise evaluation of transcription factors. Overall
patients’ characteristics are presented in Table 1.

Table 1. Summary of demographical and clinical features of patients with acromegaly.

Clinical Feature All Acromegaly
Patients

Patients Included In
RNA-Seq

Number of patients n = 134 n = 48

Sex
Female 73/134 (54.5%) 30/48 (62.5%)
Male 61/134 (45.5%) 18/48 (37.5%)

Age at surgery (years; median (range)) 44 (22–74) 39 (22–74)

GH (µg/dL; median (range)) 11.8 (0.4–171) * 9.77 (0.89–177)

IGF-1 (µg/dL; median (range)) 735 (166–1836) ** 698 (166–1600)

Tumor size—max. diameter
(mm; median (range)) 16 (5–77) 18 (5.1–77)

Invasive tumor growth
Invasive tumors (Knosp grade III, IV) 39/134 (29.1%) 22/48 (45.8%)

Noninvasive tumors (Knosp grade 0, I, II) 95/134 (70.9%) 26/48 (54.2%)

Ultrastructural evaluation
Sparsely granulated (SG tumors) 43/134 (32%) 24/48 (50%)
Densely granulated (DG tumors) 91/134 (67.9%) 24/48 (50%)

Diagnosis
DG somatotroph tumors 66/134 (49.25%)
SG somatotroph tumors 43/134 (31.3%) 24/48 (50%)
Mixed GH/PRL tumors 18/134 (11.9%) 24/48 (50%)

Mammosomatotroph tumors (GH/PRL) 1/134 (0.75%) -
Plurihormonal tumors (GH/PRL/TSH) 1/134 (0.75%) -

Plurihormonal tumors (GH/LH) 5/134 (3.7%) -
* The exact value was not available for 23 patients; ** The exact value was not available for 25 patients.

The study was approved by the local Ethics Committee of Maria Sklodowska-Curie Na-
tional Research Institute of Oncology in Warsaw, Poland. Each patient provided informed
consent for the use of tissue samples for scientific purposes.

DNA and total RNA from tumor samples were isolated with AllPrep DNA/RNA/miRNA
Universal Kit (QIAGEN) and stored at −70 ◦C.

2.2. Testing for GNAS Mutation Status

The presence of GNAS point mutation (exons 7 and 8) was assessed with Sanger
sequencing in 134 tumor samples. DNA was amplified in PCR with FastStart Taq DNA
Polymerase (Roche Diagnostics, Mannheim, Germany) using GeneAmp 9700 PCR system
(Applied Biosystems, Foster City, CA, USA). PCR product was purified with ExoStar (GE
Healthcare Life Sciences, Pittsburgh, PA, USA), labeled with BigDye Terminator v.3.1 (Ap-
plied Biosystems), and analyzed by capillary electrophoresis using ABI PRISM 3300 Genetic
Analyzer (Applied Biosystems). PCR primers’ sequences are provided in Supplementary
Table S1.

2.3. RNA Sequencing

A total of 48 tumor samples were subjected to RNA sequencing (RNA-seq). We
included pure somatotroph PitNETs (mixed GH/PRL, mammosomatotroph, or plurihor-
monal tumors were not included) with equal proportions of SD and DG tumors. Library
preparation was performed with 1 µg RNA from each sample using NEBNext Ultra II
Directional RNA Library Prep Kit for Illumina. NEBNext rRNA Depletion Kit was used for
ribosomal depletion. The quality of libraries was assessed using the Agilent Bioanalyzer
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2100 system (Agilent Technologies, Santa Clara, CA, USA). Libraries were then sequenced
on an Illumina NovaSeq 6000 platform, and 150-bp paired-end reads were generated. A
minimum of 30 M read pairs per sample were generated. Sequencing was performed by
Eurofins Genomics service.

2.4. Analysis of RNA-Seq Results

Quality control of raw reads was conducted using FastQC [15]. Raw reads were
mapped to the human reference genome GRCh37/hg19 with HISAT2 [16]. The raw un-
normalized count matrix was generated using featureCounts [17] with gene features from
GENCODE (v39) and imported to DESeq2 [18]. Low-expression genes (genes with less than
five sequencing reads in less than 25% of samples) were excluded from further analysis.
Filtered matrix was normalized using DESeq2 [18] and used for sample clustering with
k-means algorithm (R package cluster [19]) and hierarchical clustering (Manhattan distance
and ward.D agglomeration, R library stats). Analysis of genes differentially expressed
between clusters (transcriptomic groups) was performed using DESeq2 [18]. Differentially
expressed genes (DEGs) were defined as those with adjusted p-value < 0.05 and fold change
value (|FC|) > 2. Gene set enrichment (GSE) analysis was conducted with fgsea [20].
Additionally, marker genes for each group were detected using R package MGFR.

2.5. Quantitative Reverse Transcription PCR (qRT-PCR) Gene Expression Analysis

One microgram of RNA was subjected to reverse transcription with Transcriptor First
Strand cDNA Synthesis Kit (Roche Diagnostics, Mannheim, Germany). qRT-PCR reaction
was carried out in 384-well format using 7900HT Fast Real-Time PCR System (Applied
Biosystems, Foster City, CA, USA) and Power SYBR Green PCR Master Mix (Thermo Fisher
Scientific, Waltham, MA, USA) in a volume of 5 µL, containing 2.25 pmol of each primer.
The samples were amplified in triplicates. GAPDH and SDHA served as reference genes.
Delta Ct method was used to calculate relative expression level with geometric mean of
reference genes Ct value for normalization. PCR primers’ sequences are presented in
Supplementary Table S1.

2.6. Immunohistochemical Staining

Immunohistochemical staining (IHC) was performed on 4 µm FFPE tumor sections
with the use of Envision Detection System (no. K500711-2, DAKO, Glostrup, Denmark).
Tissue samples were deparaffinized with xylene and rehydrated in a series of ethanol
solutions of decreasing concentration. Heat-induced epitope retrieval was carried out
in a Target Retrieval Solution pH 9 (DAKO) in a 96 ◦C water bath, for 30 min. Tumor
sections were treated with a blocker of endogenous peroxidase (DAKO) for 5 min and
then incubated for 1 h with the primary antibody anti-Pit-1 (clone D-7; dilution 1:2000)
(sc-393943; Santa Cruz Biotechnology, Dallas, TX, USA) or ant-SF1 (clone A1; dilution 1:500)
(sc-393592; Santa Cruz Biotechnology). The color reaction product was developed with
3,3′-diaminobenzidine tetrahydrochloride (DAKO) as a substrate; hematoxylin counter-
staining was applied for nuclear contrast.

2.7. Statistical Analysis and Data Visualization

Two-sided Mann–Whitney U-test was used for analysis of continuous variables. The
Spearman correlation method was used for correlation analysis. Significance threshold
of α = 0.05 was adopted. Data were analyzed and visualized using GraphPad Prism 6.07
(GraphPad Software) and R environment. R libraries such a as ggplot2 [21] and plotly [22]
were used for visualization. Moreover, scaled normalized RNA-seq read counts were
visualized on KEGG pathway graph using pathview [23]. In pathview visualization, the
median of scaled normalized RNA-seq read counts for multiple genes were presented
for the pathway elements if it was composed of more than one gene, according to KEGG
Pathway Database annotation. Hsa04935 KEGG pathway was used.
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3. Results
3.1. Incidence of GNAS Mutations

First, we determined GNAS mutational status in tumor samples in the entire cohort
of patients. The missense mutations were identified in 52/134 (38.8%) patients. A to-
tal of 40 patients harbored mutations in exon 8 including 35 variants c.C601T:p.R201C,
4 c.A680G:p.Q227R, and 2 c.C601A:p.R201S. A total of 12 patients had mutations in exon
9 including seven variants c.A680AT:p.Q227L and five c.A680G:p.Q227R. We did not ob-
serve significant relationship between GNAS mutation and demographical/clinical features
including patients’ age, gender, pathological diagnosis, invasiveness status, and tumor size.

3.2. Whole Transcriptome Analysis

A total of 48 tumor samples were successfully processed. An average of 87,347,293
reads per sample were generated with an average 90.79% reads mapped to UCSC hg19
reference genome. The sequencing reads were mapped to 19,631 human protein-coding
genes, and 16,096 mapped protein-coding genes remained for inclusion in subsequent
analyses after low-expression genes were filtered out.

Data-dimensionality reduction analysis including principal component analysis (PCA)
and uniform manifold approximation and projection (UMAP) clearly indicated the presence
of three separate transcriptomic groups of tumor samples with groups 1 and 2 being more
similar to each other than to the third group (Figure 1A). The same pattern was observed in
hierarchical clustering analysis where three basic branches of clustering tree corresponded
to transcriptomic groups observed in PCA and UMAP results (Figure 1B). Nearly the same
clustering results were observed regardless of the number of differentially expressed genes
included in the analysis. The results for 1%, 10%, and 20% of most differentially expressed
genes are presented in Supplementary Figure S1. The preliminary analysis of clinical
data for discovery set of 48 samples revealed notable differences between three identified
transcriptomic groups. Group 1 included GNAS wild-type (GNASwt) DG tumors (except
for one GNASwt, SG tumor), group 2 included mainly DG tumors with a high proportion
of samples with GNAS mutation, and group 3 included basically SG tumors with a low
percentage of GNAS-mutated (GNASmut) ones.

We determined the genes that are differentially expressed between each of the tran-
scriptomic groups by comparing each group with the remaining groups separately (group
1 vs. group 2, group 2 vs. group 3, and group 2 vs. group 3). We found that paired groups
differ in the expression of high number of genes. Specifically, 1007 differentially expressed
genes (DEGs) that met criteria |FC| > 2 and adjusted p-value < 0.05 were found when
comparing groups 1 and 2, 2403 DEGs were identified when comparing groups 1 and
3, and 1685 DEGs were found in comparison of groups 2 and 3. Results of differential
analysis are presented in Figure 1B. The lists of differentially expressed genes are reported
in Supplementary Table S2.

The functional implications of the difference in gene expression were investigated
with GSE analysis with Gene Ontology (GO) including GO Biological Processes and GO
Molecular function. The analysis resulted in the identification of a large number of sig-
nificantly enriched GO terms. The most significantly enriched GO Biological Processes,
according to the highest significance level were the terms related to G-protein signaling,
ion transport, cellular adhesion, and differentiation, while the most enriched GO Molecular
function terms were those related to signaling and ion transport. The top 10 most enriched
terms for each comparison are presented in Figure 2; all significantly enriched terms are
listed in Supplementary Table S3.
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Figure 1. Gene expression in somatotroph tumors. (A) Principal component analysis (PCA) and
uniform manifold approximation and projection (UMAP) results based on the expression data for the
entire set of genes that indicate the presence of three transcriptomic groups of somatotroph tumors.
(B) Hierarchical clustering of somatotroph PitNETs according to the expression data for the entire set
of genes, presented with basic diagnostic data and GNAS mutation status. DG stands for densely
granulated somatotroph PitNET, while SG stands for sparsely granulated somatotroph PitNET.
(C) Comparison of genes expression in pairs of particular transcriptomic groups.
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3.3. Differences in the Expression of Genes Involved in GH Secretion Pathway

With a given high number of DEGs we paid a special attention to those that are re-
lated to GH secretion. According to literature data growth hormone secretion is primarily
induced by hypothalamic somatoliberin (GHRH) as well as by ghrelin and GIP through
activation of the corresponding membrane receptor on somatotroph cells. Interestingly, we
found that the three identified transcriptomic groups of somatotroph PitNETs differ signifi-
cantly in the expression of genes coding for each receptor. Tumors within groups 1 and 2
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have high expression of GHRHR (somatoliberin receptor), but lower expression of GHSR
(ghrelin receptor) than tumors in group 3. Tumors in group 1, in addition to high GHRHR
expression, have notably higher expression of GIPR than the two remaining transcriptomic
groups. Differences were also found among genes of somatostatin and dopamine receptors
that play a role in modulation of somatotroph secretory activity. Expression of SSTR3
was at a notably lower level in group 2, while a significant decrease of SSTR5 in group 1
was observed as compared to groups 2 and 3. Higher expression of dopamine receptors
DRD1 and DRD2 was in turn found in group 3. Irrespectively to receptor activation, Ca2+

influx through voltage-gated Ca2+ channels (VGCCs) also plays an important role in GH
secretion [24]. CACNA1C and CACNA1D encoding VGCCs were identified as expressed at
significantly higher levels in groups 1 and 2 as compared to group 3. Results are presented
in (Figure 3A). The signaling pathways downstream key receptors (cAMP and Phospholi-
pase C pathways) are mediated by many proteins that are encoded by the genes that were
differentially expressed between three transcriptomic groups. They include genes encoding
G-proteins: GNAI1, GNAI2, adenyl cyclase ADCY1, ADCY3, ADCY4, ADCY5, ADCY7;
cAMP response elements CREB1, CREB3L1, ATF2, ATF5B, ATF4, CREB, CREBP, EP300;
phospholipases C: PLCB2, PLCB4, PLCB1; and protein kinases C: PRKCA, PRKCD, PRKCE,
PRKCI, PRKCZ, as well as inositol trisphosphate receptor ITPR3. Details are presented in
Supplementary Figure S2A, while comprehensive representation of the expression levels of
genes involved in GH secretion is presented in Figure 2, which is based on KEGG path-
way (visualized with pathview, original picture available in Supplementary Figure S2B).
GH1 encoding GH was also found differentially expressed, with the highest expression in
transcriptomic group 1 and the lowest in group 3 (Figure 3A).
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Figure 3. Difference in the expression of genes involved in growth hormone (GH) secretion pathway
in three subtypes of somatotroph tumors. (A) Expression levels of differentially expressed genes
coding for cell surface receptors involved in GH synthesis and secretion. Distribution of normalized
RNA-seq read counts is presented. (B) Scaled normalized RNA-seq read counts of genes encoding
each element of GH synthesis pathway were visualized on KEGG pathway with pathview. Scaled
expression values (normalized RNA-seq read counts) of multiple genes were presented for the
pathway elements if it is composed of more than one gene, according to KEGG Pathway Database
annotation. * GIPR receptor was added manually, according to literature data [25].

3.4. Differences in the Expression of Known Genes Involved in Somatotropinoma Clinical Outcome

Aberrant gene expression was previously shown to be involved in acromegaly patients’
outcome and response to SRLs. Beside the role of somatostatin receptors, the role of
genes involved in epithelial-mesenchymal transition, cell proliferation, and cell signaling
was previously reported [26]. Transcriptomic groups of somatotroph PitNETs differed in
the expression of genes related to epithelial-mesenchymal transition (EMT) that have a
proven role in acromegaly, including CDH1 [27,28], SNAI2 [29], FLNA [30], ARRB1 [31,32],
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RORC [33], and ESRP1 [28], but also in other genes with an important role in EMT including
CDH2, CDH3, CDH11, CTNNB1, CLDN1, CLDN3, CLDN4, CLDN9, and ZAEB1 (Figure 4A).
Differences between transcriptomic groups were also observed in expression levels of
proliferation-related genes CCND1 [34], CDKN1B [27], and MKI67 [35] and genes involved
in cell signaling TGFB1 [36] and STAT3 [37] that all have a reported role in acromegaly
patients’ outcome (Figure 4B).
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(A) Genes encoding proteins involved in epithelial-mesenchymal transition. (B) Genes related to
somatotroph pituitary tumor growth.

3.5. Role of SF-1 (NR5A1) Transcription Factor in a Subtype of Somatotroph Tumors

We explored the expression levels of known genes encoding transcription factors
specific to particular lineages of anterior pituitary cells in three identified transcriptomic
groups of somatotroph tumors. A striking difference in the expression level of NR5A1 (SF-1)
was observed. It is expressed at very high level in tumors from group 1 as compared to other
tumors (Figure 5A). SF-1 (NR5A1) is a commonly accepted marker of pituitary gonadotroph
cell lineage; therefore, its higher expression in group 1 of somatotropinomas requires spe-
cial attention. We measured NR5A1 expression in somatotroph tumors of transcriptomic
group 1 and gonadotroph PitNET samples (tumor samples from our previous investiga-
tion [38]) with qRT-PCR. This analysis showed that the range of NR5A1 expression in
group 1 of somatotroph PitNETs and in gonadotroph PitNETs is similar (Figure 5B). Neither
POU1F1 nor TBX19 were among the genes differentially expressed between tumors forming
the three transcriptomic groups (Figure 5A).

Transcriptomic group 1 tumors are those with high GIPR expression. GIPR was
previously found to be involved in steroidogenesis process. It induces expression of known
steroidogenesis-related genes including NR5A1, STAR, and CYP11A1 [39,40]. As expected,
higher expression of these genes was found in group 1 tumors as compared to each of the
other groups. Accordingly, a significant correlation of the expression levels of GIPR and
each of NR5A1, STAR, and CYP11A1 was found, with the highest correlation coefficient in
GIPR and NR5A1 analysis (Spearman R = 0.785, p < 0.0001) (Figure 5C).

Next, we determined whether tumors of transcriptomic group 1 that express NR5A1
are positive for protein SF-1 expression as determined by immunohistochemical staining.
As a result, each of the samples showed clear nuclear immuno-reactivity with antibodies
against SF-1 over the entire tumor tissue sample area. The representative examples of the
results of staining for PIT-1 and SF-1 are presented in Figure 5D.
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Figure 5. The expression of differentially expressed genes (DEGs) that are related to identity of
anterior pituitary cells. (A) The expression levels of transcription factors specific for anterior pituitary
lineages. (B) The comparison of NR5A1 (SF-1) expression in somatotroph and gonadotroph PitNETs
based on qRT-PCR measurement. (C) Co-expression of GIPR and steroidogenesis-related genes that
were found as differentially expressed in comparison of tumors from transcriptional group 1 with
groups 2 and 3. Normalized RNA-seq read counts were analyzed. (D) Representative examples of
immunohistochemical staining of somatotroph PitNETs of transcriptomic group 1 (tumors with high
GIPR and NR5A1 expression) with antibodies against PIT-1 (upper panel) and SF-1 (lower panel);
magnification ×200.

3.6. Difference in Clinical/Histopathological Features between Transcriptomic Groups of
Somatotroph Tumors

To evaluate the differences in clinical parameters between the transcriptomic groups
of somatotroph tumors we used tumor samples from the entire cohort of 134 acromegaly
patients, without any intentional preselection. Unfortunately, in our study we were unable
to include more than 48 RNA samples in RNA-seq procedure. Therefore, we determined
whether somatotroph tumor samples can be classified and assigned to particular tran-
scriptomic groups by qRT-PCR-based evaluation of expression level of the marker genes.
Using RNA-seq results we selected nine genes that could serve as potential classifiers.
We measured the expression level of nine potential markers with qRT-PCR in 48 samples
that were previously included in transcriptome profiling and that were clearly categorized
(Figure 6A). Using receiver operating characteristic (ROC) curve analysis we determined
the value of qRT-PCR-measured expression levels as classifiers of each transcriptomic
group. The results of the evaluation of the nine marker genes are presented in
Supplementary Figure S3. We selected three marker genes (NR5A1, CCND2, and SEC23A)
that met criteria of area under curve (AUC) > 0.99 and that allowed for selecting a clear
threshold value. NR5A1 distinguished between transcriptomic group 1 and groups 2/3,
while CCND2 and SEC23A discriminated groups 1/2 and group 3 (Figure 6B). The use
of thresholds for NR5A1, CCND2, and SEC23A expression level determined by data from
the RNA-seq group allows for clear categorization of nearly the entire patient cohort
(Figure 6C). Six patients (4.5%) of the entire patient cohort could not be assigned to any
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transcriptomic category due to a low expression level of each marker. These six patients
were excluded from further analysis of clinical data.
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Figure 6. The value of classification based on three expression markers NR5A1, CCND2, and SEC23A.
(A) The expression levels of marker genes in 48 samples categorized based on RNA-seq data. Scaled
qRT-PCR expression values are presented. (B) ROC curve analysis of three selected marker genes.
(C) The values of marker gene expression in entire patient cohort, with classification of the samples.
Six unclassified tumors were excluded. Scaled qRT-PCR expression values are presented.

The analysis of clinical data showed that in transcriptomic group 1, composed of tu-
mors positive for NR5A1 expression, there are no mutations of GNAS. This group includes
25/128 patients (19.5%). Most of the tumors within this group were DG somatotroph
PitNETs, however, five of the tumors were positive for both GH and LH upon immunohis-
tochemical staining and were classified as plurihormonal GH/LH tumors. Transcriptomic
group 2 accounted for 59/128 patients (46.1%). The vast majority of group 2 patients
(66.1%) had tumors with mutations in GNAS gene, mainly determined as densely gran-
ulated. This group included DG somatotroph PitNETs, but also mixed GH/PRL tumors.
Transcriptomic group 3 included 44/128 patients (34.4%) with low incidence of GNAS
mutations (18% were GNASmut). The difference in proportions of GNASmut patients
between transcriptomic groups was significant (Chi square test p < 0.0001). Group 3 was
composed mostly of sparsely granulated tumors as determined with electron microscopy,
diagnosed mainly as SG somatotroph PitNETs. It also included seven DG tumors (10%),
but no mixed or plurinominal PitNETs. In this group, a higher proportion of invasive
tumors (43%, 19/44) was observed, as compared to transcriptomic groups 1 and 2 (16.6%
and 20.3%, respectively) (Chi square test p = 0.0154). Results are presented in Figure 7A.
Tumors from transcriptomic group 2 were significantly smaller than those from two other
groups (Figure 7B). No differences were observed in serum GH and IGF-1 levels (Figure 7B)
or patients’ demographical data (age and gender) between the groups.

RNA-seq results revealed that transcriptomic groups differ in the expression level of
key genes involved in GH synthesis and secretion including GHRHR, GIPR, GHSR, SSTR,
and DRD1 as well as GH1 encoding GH itself. Using qRT-PCR we measured expression
level of these genes in the entire patient cohort categorized into three transcriptomic groups
according to marker genes evaluation. Significant differences in the expression of each gene
were found and confirmed the observation in whole transcriptome analysis. Groups 1 and
2 have high levels of GH1 and GHRHR. Tumors in group 1 have high GIPR expression,
while those in group 3 have higher expression of ghrelin receptor (GHSR) and DRD1. A
slight discrepancy was observed between qRT-PCR results of the entire cohort and data
from RNA-seq in terms of SSTR5 expression level. PCR-based measurement showed
the highest level of SSTR5 expression in transcriptomic group 3. Results are visualized
in Figure 8.
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Figure 7. Clinical data of patients with somatotroph PitNETs categorized according to expression of
marker genes into three transcriptomic groups. (A) Presentation of categorical patient characteristics.
(B). Comparison of quantitative patient data including tumor size (maximal tumor diameter) as well
as GH and IGF-1 plasma level. Horizontal dashed line indicates median. p-value assessed with
Kruskal–Wallis test.

Cells 2022, 11, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 8. Relative expression level of key regulatory genes involved in somatotroph cell functioning 

measured with qRT-PCR in the entire patient cohort, with patients stratified according to three tran-

scriptomic groups. Horizontal dashed line indicates median. 

4. Discussion 

The symptoms of acromegaly result from GH oversecretion by pituitary tumors 

which develop from PIT-1-positive anterior pituitary cell lineage. Our results show that 

the profile of gene expression clearly discriminates somatotroph tumors into three tran-

scriptomic groups that differ in the expression level of a large number of genes. According 

to GSE results, the expression differences are mainly related to process of cell signaling 

including G-protein signaling and ion transport, both of which play key roles in regulation 

of secretory activity of pituitary cells [7,41] as well as to cellular adhesion and differentia-

tion. 

Importantly, DEGs include genes directly involved in regulation of GH secretion like 

those coding for receptors of somatoliberin, gastric inhibitory polypeptide and ghrelin, 

and receptors for dopamine and somatostatin, as well as voltage-gated calcium channels. 

It seems that secretory activity in tumors of each transcriptomic subgroup may be driven 

by a slightly different mechanism. The first group is characterized by high expression of 

GHRHR, GIPR, and VGCCs as well as the highest expression of GH-encoding gene. The 

second group includes tumors which seem to be mainly related to hypothalamic GHRH 

stimulation, as they show high GHRHR expression. Tumors in the third group, in turn, 

are probably dependent on ghrelin signaling since they present with the highest expres-

sion of gene encoding ghrelin receptor. 

GIPR, which is highly expressed in group 1 tumors, encodes the receptor of glucose-

dependent insulinotropic polypeptide (GIP) that has a well-known role in neuroendocrine 

tumors [25]. Upon ligand binding GIPR activates coupled heterotrimeric G-protein com-

plex containing a stimulatory G subunit and leads to activation cAMP pathway. There-

fore, GIPR activation is considered to be mimicking GHRHR stimulation by hypothalamic 

GHRH hormone [25]. Acromegaly patients with GIPR expression commonly react to oral 

glucose load with a paradoxical increase in GH level, which resembles the induction of 

hormone secretion in food-dependent Cushing’s syndrome [11]. DNA methylation pro-

filing in GIPR-high versus GIPR-low somatotroph PitNETs showed a difference in ge-

nome-wide methylation pattern which is in line with our results, indicating that this 

group represents a separate molecular subtype [12]. Interestingly, high expression of 

NR5A1 encoding SF-1 transcription factor was found exclusively within this transcrip-

tional group. According to classification of PitNETs, SF-1 is a well-established marker of 

gonadotroph tumors and the observation that it is also expressed in a particular subtype 

of somatotroph tumors may suggest a need of slight revision of classification criteria. We 

observed that GIPR-high somatotroph PitNETs express NR5A1 at the level comparable to 

gonadotroph tumors. Of note, the expression of NR5A1 in some somatotroph PitNETs 

was also recently noticed by Mario Neou et al. [42]. 

The results of our immunohistochemical staining with antibodies against SF-1 and 

PIT-1 in tumors of transcriptomic subtype 1 clearly show that they are expression-positive 

for both transcription factors. Nuclear SF-1 immunoreactivity was observed in these tu-

mors, as could be expected in staining of gonadotroph PitNETs according to the most up-

to-date diagnostic criteria [43]. The expression of both PIT-1 and SF-1 was previously 

shown in rare double pituitary adenomas that are composed of multiple PitNETs in one 

Figure 8. Relative expression level of key regulatory genes involved in somatotroph cell functioning
measured with qRT-PCR in the entire patient cohort, with patients stratified according to three
transcriptomic groups. Horizontal dashed line indicates median.

4. Discussion

The symptoms of acromegaly result from GH oversecretion by pituitary tumors which
develop from PIT-1-positive anterior pituitary cell lineage. Our results show that the profile
of gene expression clearly discriminates somatotroph tumors into three transcriptomic
groups that differ in the expression level of a large number of genes. According to GSE
results, the expression differences are mainly related to process of cell signaling including
G-protein signaling and ion transport, both of which play key roles in regulation of secretory
activity of pituitary cells [7,41] as well as to cellular adhesion and differentiation.

Importantly, DEGs include genes directly involved in regulation of GH secretion like
those coding for receptors of somatoliberin, gastric inhibitory polypeptide and ghrelin, and
receptors for dopamine and somatostatin, as well as voltage-gated calcium channels. It
seems that secretory activity in tumors of each transcriptomic subgroup may be driven
by a slightly different mechanism. The first group is characterized by high expression of
GHRHR, GIPR, and VGCCs as well as the highest expression of GH-encoding gene. The
second group includes tumors which seem to be mainly related to hypothalamic GHRH
stimulation, as they show high GHRHR expression. Tumors in the third group, in turn, are
probably dependent on ghrelin signaling since they present with the highest expression of
gene encoding ghrelin receptor.
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GIPR, which is highly expressed in group 1 tumors, encodes the receptor of glucose-
dependent insulinotropic polypeptide (GIP) that has a well-known role in neuroendocrine
tumors [25]. Upon ligand binding GIPR activates coupled heterotrimeric G-protein complex
containing a stimulatory G subunit and leads to activation cAMP pathway. Therefore, GIPR
activation is considered to be mimicking GHRHR stimulation by hypothalamic GHRH
hormone [25]. Acromegaly patients with GIPR expression commonly react to oral glucose
load with a paradoxical increase in GH level, which resembles the induction of hormone
secretion in food-dependent Cushing’s syndrome [11]. DNA methylation profiling in
GIPR-high versus GIPR-low somatotroph PitNETs showed a difference in genome-wide
methylation pattern which is in line with our results, indicating that this group represents
a separate molecular subtype [12]. Interestingly, high expression of NR5A1 encoding SF-1
transcription factor was found exclusively within this transcriptional group. According
to classification of PitNETs, SF-1 is a well-established marker of gonadotroph tumors and
the observation that it is also expressed in a particular subtype of somatotroph tumors
may suggest a need of slight revision of classification criteria. We observed that GIPR-high
somatotroph PitNETs express NR5A1 at the level comparable to gonadotroph tumors. Of
note, the expression of NR5A1 in some somatotroph PitNETs was also recently noticed by
Mario Neou et al. [42].

The results of our immunohistochemical staining with antibodies against SF-1 and
PIT-1 in tumors of transcriptomic subtype 1 clearly show that they are expression-positive
for both transcription factors. Nuclear SF-1 immunoreactivity was observed in these
tumors, as could be expected in staining of gonadotroph PitNETs according to the most
up-to-date diagnostic criteria [43]. The expression of both PIT-1 and SF-1 was previously
shown in rare double pituitary adenomas that are composed of multiple PitNETs in one
tumor [43,44]. In double PitNETs two areas of tumor tissue with distinct expression of
PIT-1 or SF-1 can be observed [44]. In contrary to double tumors our tissue staining of
somatotroph PitNETs of transcriptomic group 1 clearly showed the co-expression of PIT-1
and SF-1 over the entire tumor sample area, clearly indicating the homogenous nature of
these double-positive somatotroph PitNETs. From a histological point of view, they are
unequivocally somatotroph tumors (based on both immunohistochemistry and electron
microscopy) [45].

In our study we clearly demonstrated that somatotroph tumors with SF-1 expression
are those that express GIPR. It appears to be functionally related. GIPR plays a role in
steroidogenesis, as previously observed in adrenal cortex-derived cell line and mice. The
experiments showed that manipulating GIPR expression results in changes of transcription
levels of NR5A1, STAR, and CYP11A1 [39,40]. Transcriptomic group 1 tumors are those
with significantly highest expression of GIPR, NR5A1, STAR, and CYP11A1 as compared
to tumors from other groups. Accordingly, correlation analysis indicates that these genes
are co-expressed with GIPR. This suggests that high expression level of NR5A1 in tran-
scriptomic group 1 of somatotroph tumors results from high GIPR-related signaling. The
mechanism underlying high GIPR expression in somatotroph tumors was the matter of
previous research and it is still unclear [12].

High expression of NR5A1 in tumors in transcriptomic group 1 may suggest the
potential contamination of tissue samples with normal pituitary tissue. In fact, subtype
1 tumors do express NR5A1, but they do not differ in the expression of other transcription
factors specific for pituitary lineages, such as TBX19. If our results would be biased by the
presence of normal anterior pituitary, we would expect the difference in the expression
of other markers of pituitary lineages. The clearly observed co-expression of PIT-1 and
SF-1 in this subtype of somatotroph PitNETs (Figure 5D) also shows that this result of
transcriptome-based classification is not biased by normal pituitary. We cannot exclude any
potential contamination with normal tissue at sampling procedure but we are convinced
that it did not significantly affect the results of our study.

Transcriptomic classification of acromegaly-causing tumors may have clinical implica-
tions. The use of SRLs is basic pharmacological treatment for acromegaly patients. Therapy
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response and prognosis were previously found to be related to expression of somatostatin
receptor genes (SSTR2 and SSTR5) [27,46], genes involved in EMT [26], and those involved
in cell proliferation like CDKN1B (p27) [27] or MKI67 (Ki-67) [35]. Loss of cadherin E
was clearly linked with a poor response to SRLs [47]. Importantly, striking differences in
the expression of CDH1 were observed between transcriptomic groups with the highest
expression in group 2 and the lowest in group 3. The expression profile of other genes that
were previously shown to be related to SRLs response [27,28,31,33,46] suggests also that
tumors in transcriptomic group 2 may be the most sensitive to somatostatin analogs. They
have a favorable pattern of gene expression—those related to EMT (high RORC and ESRP1
and low ARRB1 (β-arrestin)) as well as SSTR5 (the highest expression among subtypes),
MKI67 (low expression), and CDKN1B (high level).

Preliminary analysis of clinical data from samples included in RNA-seq showed that
transcriptomic profile corresponds to pathomorphological diagnosis. In general, tran-
scriptomic group 1 includes GNASwt, densely granulated somatotroph PitNETs, group 2
includes GNASwt and GNASmut DG tumors, and transcriptomic group 3 includes pre-
dominantly SG tumors. Unfortunately, the proportions between the pathomorphological
subtypes of somatotroph tumors among the samples included in our RNA-seq do not
reflect those in general population of acromegaly patients. Therefore, we made an attempt
to evaluate the true proportions in patient numbers in individual groups and clinical signif-
icance of transcriptomic classification in a large group of acromegaly patients, without any
intentional preselection. We evaluated candidate marker genes that allow for stratification
of patients into three transcriptomic subtypes and used three most potent markers to clas-
sify the entire patient cohort. This classification based on three markers was not adequate
only in six patients that were subsequently excluded from the analysis. The results allow
some general conclusions to be drawn. They clearly show that in transcriptomic group 1
there are patients with GNASwt, DG tumors (mainly pure somatroph PitNETs but also
tumors that are positive for both GH and LH) with low frequency of invasive growth.
These tumors are positive for both NR5A1 (SF-1) and GIPR expression and probably in-
clude the patients with paradoxical GH response to glucose intake, according to previous
studies [11]. These patients are the least frequent and they account for approximately
20% of patients suffering from acromegaly. Transcriptomic group 2 seems to be the most
numerous (46% of acromegaly patients). It includes mostly GNASmut, densely granulated
tumors as determined with electron microscopy, diagnosed generally as DG somatotroph
PitNETs, and additionally mixed GH/PRL tumors. The smaller tumor size found in this
group is concordant with the observation that a favorable gene expression profile was
observed in these tumors. Accordingly, a low rate of invasive growth was reported for
these patients. This corresponds to general observation of better prognosis in patients
with densely granulated tumors rather than sparsely granulated tumors [5]. In the third
transcriptomic group there are sparsely granulated tumors with a low frequency of GNAS
mutations diagnosed mainly as SG somatotroph PitNETs. They account for approximately
35% of tumors causing acromegaly. These tumors have the highest rate of invasive growth
and unfavorable gene expression profile (low expression of CDH1, RORC, and ESRP1
and high ARRB1, MKI67, ZEB1, STAT3, and TGFB1 levels). They also have a high level
of DRD1 gene expression, encoding stimulatory dopamine receptor that activates cAMP
pathway [48]. This may affect the results of treating these patients with dopamine analogs
like cabergoline. In general, the identified gene expression patterns correspond to literature
data indicating that patients with sparsely granulated tumors are considered to have high
risk tumors [5] as they have worse prognosis, lower rate of postoperative remission, and
tumors with frequent invasive growth, a tendency to regrow after surgery, and lower
response to SRLs [5]. Our transcriptomic data indicate that these tumors may be signifi-
cantly driven by ghrelin signaling. They have higher expression of ghrelin receptor gene
as compared to densely granulated tumors. The role of ghrelin signaling in GH secretion
and pathogenesis of somatotroph PitNETs was already determined [49]. Importantly, the
ghrelin receptor was recognized as a therapeutic target [50]. Small inhibitors against this
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receptor are available and were already subjected to clinical trials on treatment of various
human diseases [50]. The use of this therapeutical approach may be potentially beneficial in
sparsely granulated tumors with high GHSR expression and it could complement standard
treatment with SRLs.

5. Conclusions

Whole-transcriptome analysis revealed three distinct molecular subtypes of soma-
totroph PitNETs. Each tumor subtype has a distinct molecular profile including gene
expression pattern and frequency of GNAS mutations as well as profile of diagnostic histo-
logical features based on results of immunohistochemical staining and electron microscopy.
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