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Abstract: Follistatin (FST) as a gonadal protein is central to the establishment and maintenance
of pregnancy. Trophoblasts’ migration and invasion into the endometrium are critical events in
placental development. This study aimed to elucidate the role of FST in the migration and invasion of
placental trophoblasts of mice. We found that FST increased the vitality and proliferation of primary
cultured trophoblasts of embryonic day 8.5 (E8.5) mice and promoted wound healing of trophoblasts.
Moreover, FST significantly induced migration of trophoblasts in a microfluidic device and increased
the number of invasive trophoblasts by Matrigel-coated transwell invasion assay. Being treated with
FST, the adhesion of trophoblasts was inhibited, but intracellular calcium flux of trophoblasts was
increased. Western blotting results showed that FST had no significant effects on the level of p-Smad3
or the ratio of p-Smad3/Smad3 in trophoblasts. Interestingly, FST elevated the level of p-JNK; the ratio
of p-JNK/JNK; and expression of migration-related proteins N-cadherin, vimentin, ezrin and MMP2
in trophoblasts. Additionally, the migration of trophoblasts and expression of N-cadherin, vimentin,
and MMP2 in trophoblasts induced by FST were attenuated by JNK inhibitor AS601245. These
findings suggest that the elevated FST in pregnancy may act as a chemokine to induce trophoblast
migration and invasion through the enhanced JNK signaling to maintain trophoblast function and
promote placental development.

Keywords: trophoblasts; migration; follistatin; JNK signaling

1. Introduction

Placental trophoblasts are major building blocks of placenta, which have capacity
of invading deeply into the decidualized maternal uterine tissue to remodel the uterine
spiral arteries so as to favor embryo development. These abilities are crucial in ensuring
the formation of a nutrient-supplying functional placenta. Defects in placental function
can result in fetal growth retardation in the second or third trimester of pregnancy in
humans and in the second half of gestation in mice such as pre-eclampsia, miscarriage,
and ectopic pregnancy [1,2]. Additionally, placental trophoblasts provide a main source of
pregnancy-associated hormones and cytokines to protect the semi-allogeneic fetus from
immune rejection, such as EGF, IL-1β, and TNF-α et al. [3]. Thus, we have to take notice of
cell molecular mechanisms in the early steps of placental development to better understand
the most common pregnancy complications.

Follistatin (FST) can suppress follicle stimulating hormone (FSH) release of the pitu-
itary and act as a negative regulator by binding activin with high affinity, so as to prevent
activin from binding to its receptors [4–6]. Previous studies have reported that activin A
and FST levels in serum rise progressively throughout pregnancy [7]. In humans, aberrant
expression of FST and activins has led to serious consequences in women, such as recurrent
miscarriage [8,9], hypertensive disorders during pregnancy [10], and repeated implantation
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failure after in vitro fertilization [11]. Furthermore, absence of FST in mice has led to poor
capacity of uterine receptivity, with lower levels of proliferation and differentiation in de-
cidualized uterus tissue [12]. The knockout and aberrant overexpression of FST frequently
cause perinatal mortality in mice [13] and female infertility resulting in thin uteri [14].
However, the role of FST in migration and invasion of placental trophoblasts remains
unclear.

Epithelial to mesenchymal transition is the process characterized by the loss of cell-
cell adhesion, reorganization of cytoskeleton and expression of matrix metalloproteinases
(MMPs), all of which are present in invasion of trophoblasts, metastasis of cancer cells,
and gastrulation [15,16]. In humans and mice, subsequent to the blastocyst adhesion to
the uterine wall, the trophoblasts invade into the endometrial matrix with a switch from
a polarized epithelial phenotype to a highly motile mesenchymal phenotype [17]. The
studies have reported that transforming growth factor beta (TGF-β) has a predominant
role in the induction and progression of EMT through Smads signaling and non-Smads
signaling, such as p38, ERK1/2, and JNK.

In the present study, the primary cultured trophoblasts of mice in the early stage of
pregnancy were utilized to investigate the effects of FST on migration and invasion of
placental trophoblasts. We found that FST promoted vitalities of trophoblasts and induced
migration and invasion of trophoblasts through JNK signaling, proving for the first time
that FST is a novel chemoattractant for the migration and invasion of trophoblasts to be
beneficial for placental development.

2. Materials and Methods
2.1. Reagents

Recombinant human FST288 was purchased from R&D systems (Minneapolis, MN,
USA). Cell Counting Kit-8 (CCK-8) was bought from GlpBio Biotechnology Co. (Shanghai,
China). Rabbit anti-GAPDH polyclonal antibody and JNK inhibitor AS601245 were pro-
vided by Absin (Shanghai, China). Rabbit anti-vimentin, anti-N-cadherin, and anti-ezrin
polyclonal antibodies were obtained from Cell Signaling Technology (Danvers, MA, USA).
Rabbit anti-E-cadherin polyclonal antibody was purchased from Proteintech (Chicago, IL,
USA). Rabbit anti-JNK and anti-p-JNK antibodies were provided by Wanlei (Shenyang,
China). Rabbit anti-MMP2, anti-p-Smad3 and anti-Smad3 polyclonal antibodies were
provided by Abclonal (Woburn, MA, USA). Fluo-4 AM was purchased from Thermo Fisher
Scientific (Ottawa, ON, Canada). Giemsa staining and FITC-labeled goat anti-rabbit IgG
were provided by Sigma-Aldrich (Oakville, ON, Canada).

2.2. Cell Culture

All mice experimental protocols were performed as approved by the Animal Commit-
tee of Jilin University (No 2021-214). Male and female BALB/c mice of 8–10 weeks of age
were mated in the same cage, and then the next morning, the vaginal plugs of female mice
were checked. The day when the vaginal plugs were found was considered as embryonic
day 0.5 (E0.5). The placentas were collected from female mice at embryonic day 8.5 (E8.5).
Fetus, fetal membranes, and additional decidual tissue were removed from the surface
of the placenta by gently peeling with forceps on ice. Then, placental tissue was quickly
minced with scissors or surgical blades and transferred into a phosphate buffer solution
(PBS) supplemented with 2% fetal bovine serum (FBS) (2% FBS-PBS). Chopped tissues were
digested with serum-free medium containing 2 mg/mL DNase and 0.1 mg/mL liberase
at 37 ◦C for 40 min. The undigested tissues were separated using a cell strainer, and the
obtained suspension containing placental trophoblasts were centrifuged 300× g for 5 min.
Placental trophoblasts were cultured in 10%-FBS-DMEM-F12 at 37 ◦C in a humidified incu-
bator containing 5% CO2. At E8.5, more than 40,000 living trophoblast cells were obtained
from a mouse placenta, and at least 95% of the living cells expressed CK-7 (Figure S1 in
Supplementary Materials) [18–20].
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2.3. Pretreatment of Primary Cultured Trophoblasts of Mouse with AS601245

Primary cultured placental trophoblasts of mice were pretreated with vehicle control
[dimethylsulfoxide (DMSO)] (Ctrl) or 1 µmol/L JNK inhibitor AS601245 in DMSO for 1 h
before treatment with 0 or 10 ng/mL FST. Next, Western blotting, microfluidic migration
assay and Matrigel-coated transwell invasion assay were conducted according to the
methods below.

2.4. CCK-8 Assay

Cell viability was determined using CCK-8 assay. The trophoblasts of mice (1 × 104 cells
per well) were seeded into a 96-well plate in triplicate and incubated in 2% FBS-DMEM-F12
containing 0–20 ng/mL FST at 5% CO2 for 24 h and 48 h, respectively. Next, 10 µL of
CCK-8 reagent was added to the culture medium (100 µL) of each well, and then cells were
incubated for 4 h at 37 ◦C. The absorbance was detected at 450 nm and 650 nm using a
microplate spectrophotometer (Gene Company Limited, Shanghai, China).

2.5. Real-Time Cell Analysis

Real-time cell analysis (RTCA) is a technology based on the principle of the microelec-
tronic biosensor chip, which can realize the real-time analysis of cells without markers in
the process of experiments [21]. The RTCA instrument (xCELLigence RTCA S16; ACEA
Biosciences, SD, CA, USA) was used to analyze the proliferation and adhesion properties
of primary cultured trophoblasts of mice. Briefly, 50 µL of culture medium was added to
the well of an E16 xCELLigence microtiter plate, which was then inserted into the RTCA
device. After 1 min, the background impedance was measured for each well. Subsequently,
trophoblasts of mice (1 × 104 cells in 50 µL culture medium) were added to each well and
cultured for 2 h and then treated with different concentrations of FST for another 72 h in
the proliferation assay. In the adhesion assay, trophoblasts of mice and FST were added to
each well together and cultured for 5 h. Cells were all monitored in 15 min intervals. The
cell index (CI) reflected the biological status of monitored cells, including the cell number,
viability, morphology and adhesion.

2.6. Giemsa Staining

The trophoblasts of mice were cultured in 2% FBS-DMEM-F12 without or with
10 ng/mL FST in a 96-well plate. After 24 h, cells were fixed with 4% paraformaldehyde,
stained with Giemsa solution and observed under an optical microscope.

2.7. Wound Healing Assay

The trophoblasts (3 × 105/well) of mice were seeded on a 12-well plate and allowed
to reach 90% confluency overnight. Then, a scratch-wound was made in the monolayer
cells using a 10 µL pipette tip, and the debris and floating cells were removed by washing
twice with PBS. Cells were cultured in 2% FBS-DMEM-F12 containing 0–20 ng/mL FST. For
each group, the images were taken at 0, 12, and 24 h after wounding, respectively, and the
distance from wound side to side was measured. Independent experiments were repeated
three times.

2.8. Microfluidic Cell Migration Assay
2.8.1. Microfluidic Chip Preparation

The standard photolithography and soft-lithography techniques were used for fabri-
cating the microfluidic device with quadruple testing units (D4-Chip). The prototype of
the D4-Chip was designed using the Solidworks software (2018 version, Dassault Systems,
MA, USA) and then manufactured in the Micro/Nano Research and Manufacturing Center,
University of Science and Technology of China [22]. The geometry of the microchannel was
defined by patterning two layers of SU-8 photoresist (MicroChem Corporation, Westbor-
ough, MA, USA) with different thicknesses on a silicon wafer through double exposures.
Polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning) was poured on the silicon
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wafer to create the main body of the D4-Chip by soft-lithography technology. The PDMS
replica with the inlet and outlet holes punched was then bonded to a commercial glass slide
(Official of Jiangsu Shitai Experimental Equipment Co., LTD, 75 mm × 51 mm × 1.2 mm)
by air plasma treatment (PDC-002, Micono Technology Co., LTD). Then, D4-Chip channels
were then coated with 0.4% BSA for 60 min at 37 ◦C before cell migration experiments. The
detailed structures of the D4-Chip are shown in Figure 1A–D.
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Figure 1. Illustration of the microfluidic D4-Chip device. (A,C) A schematic illustration of the fourth
docking microfluidic device containing four units. Every unit is made of a cell inlet, outlet, and a
dosing inlet containing medium and chemokine. (B) Soft-lithography adheres to the glass plate,
and the dosing inlets are added to the ink. Blue ink represents medium and red ink represents
chemokine. Moreover, both of them form the concentration gradient of chemokine in the main
channel of cell migration. (D) From the image of the four microfluidic channels, cells are aligned
beside in cell localization channel, and the formation of a concentration gradient in the main channel
of cell migration owes to adding medium and chemokine at the same time. (E) I The length of the
main channel of cell migration (Brillant blue), cell isolation zone (Red), and cell localization channel
(Yellow) are 200 µm, 20 µm and 50 µm, respectively. What is more, illustration of the microfluidic
migration assay simply involves cell seeding and solution loading followed by incubation and final
end-point imaging analysis.

2.8.2. Cell Loading

Before loading the trophoblasts of mice, all of the holes of the D4-Chip were emptied.
The 10 µL cell suspension (1 × 104 cells per well) were then loaded from the four-cell
loading inlets. Due to the pressure difference between the cell loading inlets and outlets,
trophoblasts were pushed and aligned beside the cell localization channels (Figure 1E).



Cells 2022, 11, 3816 5 of 17

2.8.3. Gradient Generation

Four gradient conditions were generated in the D4-Chip, including the medium-
medium, medium-FST (5 ng/mL), medium-FST (10 ng/mL), and medium-FST (20 ng/mL)
(Figure 1E). Equal volume of chemoattractant solution and medium were added into
corresponding inlets at the same time. Thus, a stable chemical concentration gradient was
formed in the main channel for cell migration. To maintain the gradient, the waste in the
outlet was discarded and the appropriate equal volume of chemoattractant solution and
medium was supplemented.

2.8.4. Image Capture

The migration progress of the trophoblasts was recorded as images by using an
inverted microscope camera. The image capture frequency was set as 1 frame per 2 h
for 12 h to track cell trajectories. The microfluidic device was kept in a 37 ◦C incubator
containing 5% CO2 between the imaging time points.

2.8.5. Image Analysis

The average cell migration distances were measured and analyzed by using the Image
J software. All migrated trophoblasts were chosen and tracked in the same field. The
trophoblast chemotaxis was expressed by the average migration distance of migrating cells
in the same size fields of microfluidic device in three separate experiments.

2.9. Matrigel-Coated Transwell Invasion Assay

The invasion abilities of trophoblasts of mice were evaluated by Matrigel-coated
transwell invasion assay (8 µm pore size; Corning, CO, NY, USA) [23–25]. Briefly, the
inserts of transwell chamber were coated with 200 µg/mL Matrigel (Corning, CO, NY,
USA) that was diluted with 100 µL ice-cold serum-free medium. The trophoblasts of
mice (5 × 104 cells in 200 µL DMEM-F12 containing 2% FBS) were seeded into the upper
chamber, and 750 µL culture medium containing 0, 5, 10, 20 ng/mL of FST was added
into the lower chambers, respectively. After incubation for 10 h, the non-migrated cells on
the upper side of the chamber membranes were removed with cotton swabs. Cells on the
bottom side of the chamber membrane were fixed with 4% paraformaldehyde for 20 min,
stained with Giemsa and photographed. Cell numbers were counted in five randomly
chosen fields from each chamber. Experiments were repeated three times.

2.10. Immunofluorescence Assay

In D4-Chips, the trophoblasts of mice (1 × 104 cells per well) were loaded to the
parallel test units of the microfluidic device from the cell inlets and aligned in the docking
structures. An equal volume of chemoattractant FST solution and culture medium were
added to the pairs of dosing inlets to configure different gradient conditions. After 4 h,
PBS was added into the outlets and cell inlets of the chip for washing twice. Then, 4%
paraformaldehyde was used to fix the cells for 30 min. The cells were permeabilized with
0.3% Triton-100 for 20 min, and then cells were washed three times with PBS for 5 min
each time. Furthermore, the cells were blocked in goat serum for 30 min at 37 ◦C, and
incubated with rabbit anti-ezrin antibody (1:200) at 4 ◦C overnight. The cells were washed
three times with PBS for 5 min each time, and incubated with FITC-labelled goat anti-rabbit
IgG antibody (1:100 dilution) at 37 ◦C for 30 min. Finally, nuclear counterstaining was
conducted with DAPI for 10 min. Fluorescence images were recorded using the Zeiss 20X
(0.8NA) Plan-Apochromat objective lens under an inverted fluorescence microscope.

2.11. Calcium Flux Assay

The trophoblasts of mice were incubated in 2% FBS-DMEM-F12 medium with 4 µmol/L
Fluo-4 in dark for 40 min at 37 ◦C. Cells were washed twice using the 2% FBS-DMEM-F12
and transferred to flow cytometric tubes. The baseline signal data (F0) was recorded for
1 min. Then, Fluo-4 signals of cells (F) stimulated with 0 or 10 ng/mL FST were recorded
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instantaneously for another 4 min. FlowJo software (FlowJo_v10.6.2, FlowJo LLC., Ashland,
OR, USA) was used to analyze the kinetics of Fluo-4 fluorescence intensity. The Fluo-4
fluorescence intensity was normalized to the baseline for comparison (F/F0). Independent
experiments were repeated three times.

2.12. Western Blotting

The trophoblasts of mice were lysed using a protein extraction reagent (Thermo
Fisher Scientific, USA) supplemented with the protease and phosphatase inhibitor cocktail
(Thermo Scientific, USA) and 0.5 mol/L EDTA solution. Proteins were quantified using a
Pierce BCA protein assay kit (Thermo Scientific, USA) following the manufacturer’s instruc-
tions. Proteins (20 µg) were separated by 8% or 10% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene difluoride membranes
(Millipore, USA). Membranes were blocked in 5% skimmed milk in TBS-T at room tempera-
ture for 2 h with gentle shaking and then incubated with the primary antibodies overnight
at 4 ◦C. Membranes were further incubated with secondary antibody conjugated with
horseradish peroxidase for 2 h at room temperature and followed by ECL detection (GE
Healthcare, UK). Finally, membranes were scanned with a LAS-4000 luminescent image
analyzer (Fujifilm, Japan). Independent experiments were repeated three times.

2.13. Statistical Analysis

All data were presented as mean ± standard deviation (SD). Statistical analysis was
performed using Student’s t-test or a one-way ANOVA followed by Tukey’s multiple
comparisons test. The difference at p < 0.05 was considered statistically significant.

3. Results
3.1. FST Increased Viability and Proliferation of Primary Cultured Trophoblasts of Mouse

The viability and proliferation of trophoblasts are associated with trophoblast move-
ment and placental function during pregnancy. Firstly, E8.5 mice primary cultured tro-
phoblasts were stained by the immunofluorescence staining with anti-cytokeratin-7 (CK7)
and Vimentin antibodies, in which at least 95% of the cells positively expressed cytokeratin-
7 as a trophoblast marker, while Vimentin as a marker of mesenchymal cells was expressed
negatively (Figure S1 in Supplementary Materials) [18–20]. Moreover, the viabilities of
trophoblasts of mice treated with FST were examined by the CCK-8 assay. As shown
in Figure 2A, compared with the culture medium control, 5, 10, and 20 ng/mL of FST
increased the viabilities of primary cultured trophoblasts of mice for 24 h and 48 h, respec-
tively. In addition, RTCA results also showed FST significantly promoted the proliferation
of primary cultured trophoblasts of mice (Figure 2B).

3.2. FST Promoted Wound Healing of Primary Cultured Trophoblasts of Mouse

To further analyze effects of FST on trophoblast activity, morphology, and wound
healing of primary cultured trophoblasts of mice were determined after treatment with
FST for 24 h. We found that the morphology of trophoblasts treated with 10 ng/mL of FST
exhibited a longer and polygonal shape, compared with that in control (Figure 3A). More-
over, a scratch wound healing assay showed that FST promoted wound healing of primary
cultured trophoblast cells of mice in a dose-dependent manner (Figure 3B,C). Additionally,
the migratory cells in the wound healing assay were also stained with cytokeratin-7 (CK7)
(Figure S2 in Supplementary Materials), which confirmed that the migratory cells in the
wound healing assay are indeed trophoblasts that expressed CK7 positively (Figure S2).
EMT is a critical process for embryogenesis, organogenesis, and cancer development [26,27].
In the process of placenta formation, the migration and EMT process of trophoblasts oc-
curred [28]. Our data suggested that FST-treated trophoblasts might undergo EMT and cell
migration.
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Figure 2. Effects of FST on viability and proliferation of primary cultured trophoblasts of mice.
(A) The primary cultured trophoblasts of E8.5 mice were treated with FST for 24 h and 48 h, respec-
tively, and the viabilities of cells were examined by the CCK-8 assay. The graph shows the absorbance
of OD450 (n = 6). * p < 0.05, compared with control. (B) The proliferation of primary cultured
trophoblasts of mice treated with FST for 72 h was examined by RTCA. The red arrow represents
the dosing point. Ctrl: 2% FBS culture medium control. F5: 5 ng/mL of FST. F10: 10 ng/mL of FST.
F20: 20 ng/mL of FST. (C) The graph showed the average cell index and standard deviation (n = 3).
* p < 0.05, ** p < 0.01 compared with control.
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Figure 3. Effects of FST on morphology and wound healing of primary cultured trophoblasts of mice.
(A) Morphology of mice trophoblasts were determined by Giemsa staining. Arrows indicated the
typical morphological changes of cells treated with 10 ng/mL FST for 24 h. (B) The scratch-wound
model was generated in monolayer trophoblasts, and then cells were treated with FST for 12 h and
24 h, respectively. (C) The graph showed the degree of wound healing (n = 3). Scale bar = 100 µm.
Ctrl: 2% FBS culture medium control. F5: 5 ng/mL of FST. F10: 10 ng/mL of FST. F20: 20 ng/mL of
FST. * p < 0.05. ** p < 0.01, compared with control.
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3.3. FST Induced Migration and Invasion of Primary Cultured Trophoblasts of Mice

In this study, the D4-Chip of a microfluidic device was used to assess the chemo-
tactic migration of trophoblasts towards FST gradients. The results revealed that FST
induced the migration of primary cultured trophoblasts of mice in a time-dependent and
dose-dependent manner. Compared with the culture medium control group, FST not
only increased more migrated cells, but also enhanced greater distance of cell migration
(Figure 4A–C).
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Figure 4. Effects of FST on migration and invasion of mice trophoblasts. (A) Images of trophoblast
migration towards 10 ng/mL FST gradient were taken every 2 h in microfluidic device. (B) Images of
trophoblast migration towards 0, 5, 10, and 20 ng/mL FST gradients were taken in the microfluidic
device at 0 h and 12 h, respectively. Scale bar = 100 µm. (C) The graph showed the average migrated
distance (left) and the number of migrated cells (right) in the same size fields of microfluidic device
(n = 3). Ctrl: 2% FBS culture medium control. F5: 5 ng/mL of FST. F10: 10 ng/mL of FST. F20:
20 ng/mL of FST. * p < 0.05, ** p < 0.01, compared with control. (D) Invasion of trophoblasts treated
with FST was determined by the Matrigel-coated transwell chamber invasion assay. Representative
images of cell invasion were shown and the graph represented the average number of stained cells
counted in five randomly chosen fields from each chamber (n = 3). Scale bar = 50 µm. * p < 0.05.
** p < 0.01, compared with control.

The Matrigel-coated transwell invasion assay was further conducted to evaluate the
effects of FST on the invasion of trophoblasts of mice. As shown in Figure 4D, compared
with the culture medium control group, FST significantly induced the increased invasion
of primary cultured trophoblasts of mice in a dose-dependent manner. The above data
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indicated that the increased FST as a chemokine in pregnancy might be involved in inducing
migration and invasion of trophoblasts into the uterine wall.

3.4. FST Suppressed Adhesion of Primary Cultured Trophoblasts of Mouse

Generally, the polarized epithelial cells lose their adhesion property and obtain mes-
enchymal cell phenotypes in the process of EMT in embryogenesis and diseases [29]. There-
fore, RTCA was conducted to examine the effect of FST on the adhesion of trophoblasts of
mice. The results showed that 10 ng/mL and 20 ng/mL of FST significantly suppressed
the adhesion of primary cultured trophoblasts of mice (Figure 5). Hence, it is a possibility
that FST induce trophoblast migration because it inhibits trophoblasts adhesion.
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Figure 5. Effects of FST on adhesion of primary cultured trophoblasts of mice. (A) The cell adhesion
was examined by RTCA in primary cultured mice trophoblasts subject to FST for 5 h. (B) The graph
showed the average cell index (CI) and standard deviation (n = 3). Ctrl: 2% FBS culture medium
control. F5: 5 ng/mL of FST. F10: 10 ng/mL of FST. F20: 20 ng/mL of FST. * p < 0.05, ** p < 0.01
compared with control.

3.5. FST Increased Expression of Migration and Polarity-Related Protein of Trophoblasts

To discuss the potential mechanism of FST on migration and invasion of trophoblasts
of mice, the expression of migration-related proteins was examined by Western blotting.
The results showed that FST increased the protein expression of N-cadherin, vimentin, and
MMP2 (Figure 6A), which were involved in EMT as well as cell migration and invasion.

Ezrin has the function of connecting the plasma membrane and the actin cytoskeleton
and is involved in cell adhesion, membrane edge fluctuation and microvilli formation [30].
Additionally, ezrin is a polarity marker that plays an important role in cell polarity es-
tablishment, migration, and division [31]. Because FST induced the migration of mice
trophoblasts, we further examined the effect of FST on the expression and localization of
ezrin in trophoblasts. Western blotting results showed that FST increased the protein level
of ezrin in primary cultured trophoblasts of mice (Figure 6B). Moreover, in the absence
of FST gradient, the ezrin staining had any expression and distributed randomly in the
cytoplasm and periphery of non-polarized trophoblast cells. However, in the presence of
FST gradient, the ezrin expressed highly compared with the culture medium control group
and concentrated at the direction of FST gradient in polarized trophoblasts (Figure 6C).
These results suggested that FST-induced cell polarization might underlie effect on the
chemotactic migration of trophoblasts.
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Figure 6. Effects of FST on expression of migration-related protein and polarization of mice tro-
phoblasts. (A) Migration-related protein expression was examined by Western blotting in primary
cultured trophoblasts treated with 2% FBS culture medium (Ctrl) and 10 ng/mL FST (F10) for 24 h.
The graph represents the relative levels of protein expression (n = 3). The expression levels of protein
were normalized against GAPDH expression. (B) Ezrin expression in primary cultured trophoblasts
of mice were analyzed by Western blotting. The graph represented the relative levels of ezrin protein
expression (n = 3). (C) Ezrin distribution in primary cultured trophoblasts of mice were examined by
immunofluorescent staining in microfluidic chip. IgG control, trophoblasts were stained with the nor-
mal rabbit IgG as isotype IgG control taking the place of anti-Ezrin antibody. Ctrl: trophoblasts that
were treated with 2% FBS culture medium were stained with anti-Ezrin antibody. F 10, trophoblasts
that were treated with 10 ng/mL FST were stained with anti-Ezrin antibody. Red arrows indicated the
typical changes of Ezrin distribution in cells treated by 10 ng/mL FST. Scale bar = 50 µm. * p < 0.05.
** p < 0.01, compared with control.

3.6. FST Increased Intracellular Calcium Flux and p-JNK Protein Level of Primary Cultured
Trophoblasts of Mice

Previous studies have shown that cell migration is closely related to intracellular
calcium flux [32]. In this study, we measured the intracellular calcium level in trophoblasts
by flow cytometry. The results indicated that FST elevated the intracellular calcium levels
in primary cultured trophoblasts of mice (Figure 7A). The effect of FST on intracellular
calcium levels is consistent with the effect on inducing migration of trophoblasts.
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Figure 7. Effects of FST on calcium signaling, Smad3, and JNK signaling of mice trophoblasts. (A) The
calcium levels were measured by the Fluo-4 signal intensity normalized to the baseline (F/F0). The
graph represented the comparison of the peak value of calcium signal upon stimulation under 2%
FBS culture medium (Ctrl) and 10 ng/mL FST (F10) (n = 3). ** p < 0.01, compared with control.
(B,C) Levels of Smad3, p-Smad3, JNK, and p-JNK proteins were examined by Western blotting in
mice primary trophoblasts subjecting to 10 ng/mL FST for 4 h. The graph represented the relative
level of proteins (n = 3). The levels of protein were normalized against GAPDH expression. * p < 0.05.
** p < 0.01, compared with control.

To further explain how FST influences the migration and invasion of trophoblasts of
mice, levels of Smad3 protein as activin canonical signaling molecule and JNK protein as
MAPK signaling molecule were examined by Western blotting. We found that levels of
p-Smad3 and p-Smad3/Smad3 did not change significantly in trophoblasts treated with
10 ng/mL of FST (Figure 7B). Interestingly, the levels of p-JNK and ratio of p-JNK/JNK
were significantly increased (Figure 7C). We hypothesized that the enhanced JNK signaling
might be involved in migration and invasion of primary cultured trophoblasts of mice.

3.7. JNK Inhibitor AS601245 Suppressed FST-induced Migration and Invasion of Primary
Cultured Trophoblasts of Mice

AS601245, a c-Jun NH2-terminal kinase (JNK) inhibitor, indiscriminately inhibit phos-
phorylation of JNK substrates. In order to determine that JNK signaling was involved in
regulating the migration and invasion of mice trophoblasts induced by FST, we examined
migration and invasion of trophoblasts pre-treated with the JNK inhibitor AS601245. The
results revealed that AS6011245 treatment attenuated the migration of trophoblasts induced
by 10 ng/mL FST (Figure 8A,B). The same result was obtained with the Matrigel-coated
transwell invasion assay (Figure 8C,D). Western blotting results showed that pretreatment
with AS601245 decreased the p-JNK levels and the ratio of p-JNK/JNK in primary cul-
tured trophoblasts treated with 10 ng/mL FST (Figure 8E). Concomitantly, AS601245 also
attenuated the protein levels of MMP2, N-cadherin, and vimentin in primary cultured
trophoblasts treated with 10 ng/mL FST (Figure 8E). These data further indicated that
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FST promoted the expression of migration-related proteins to facilitate cell migration and
invasion through JNK signaling.
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Figure 8. Effects of JNK inhibitor AS601245 on FST-induced migration and invasion of primary
cultured trophoblasts of mice. (A) The primary cultured trophoblasts were pre-treated for 1 h with
vehicle control (DMSO) or 1 µmol/L AS601245, and then migration of trophoblasts was determined
by D4 chip for 12 h. Scale bar = 100 µm. (B) The graph showed the average migration distance of cells
in the same size fields of microfluidic device (n = 3). (C) The invasion of primary cultured trophoblasts
pre-treated with vehicle control (DMSO) or 1 µmol/L AS601245 was determined by Matrigel-coated
transwell chamber invasion assay for 12 h. Scale bar = 50 µm. (D) The graph represents the average
number of stained cells counted in five randomly chosen fields from each chamber (n = 3). (E) Levels
of N-Cadherin, MMP2, vimentin, p-JNK, and JNK proteins in trophoblasts pre-treated with vehicle
control (DMSO) or 1 µmol/L AS601245 in DMSO were determined by Western blotting with GAPDH
as the internal control protein. The graph represents the relative level of proteins (n = 3). Ctrl: 2% FBS
culture medium control. F10: 10 ng/mL of FST. * p < 0.05, ** p < 0.01, compared with vehicle control.
# p < 0.05. compared with the indicted DMSO group.
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4. Discussion

FST that elevates progressively during pregnancy plays an important role in the
establishment and maintenance of normal pregnancy. The migration and invasion of
trophoblasts contribute to the remodeling of uterine spiral arteries and maintaining of a
nutrient-supplying functional placenta. In the present study, our data demonstrated that
FST induced migration of primary cultured trophoblasts of mice significantly in vitro with
a microfluidic device and invasion by Matrigel-coated transwell invasion assay, which
were related to increasing intracellular calcium flux and enhancing JNK signaling. These
findings suggest that FST is a novel chemoattractant for migration and invasion of placental
trophoblasts of mice.

Normal development and function of the placenta is essential for successful pregnancy.
The major cell type of the placenta responsible for its essential functions is the trophoblast,
which can invade the decidualized maternal endometrium, remodel the spiral arteries,
and develop a nutrient-supplying function placenta in early pregnancy. During placental
development in the mouse, blastocysts implant into the uterus on embryonic day 4.5 (E4.5),
and meanwhile it is triggered by the surrounding maternal endometrial stromal cells to
undergo a significant reaction termed decidualization [33]. At E8.5, fusion of the chorion
and allantois marks the beginning of forming a mature placenta, in which a process such as
abnormal fusion is the most common cause of embryonic lethality in the second trimester
(E 9.5–14.5) [34]. Therefore, the placenta of E8.5 mice was chosen in this study to isolate
placental trophoblasts because it is a time of active invasion in early pregnancy and because
separation of the fetus, fetal membranes, and decidual tissues from the surface of the
placenta are relatively easy to accomplish.

FST, as a secreted gonadal protein and activin-binding protein, is expressed in almost
all tissues, and linked to female reproduction, with concentration elevation in plasma in the
early stage of normal pregnancy [35–37]. Mice with uterine FST knockdown have severe
infertility caused by failure to decidualize to support an embryo implantation [12]. FST
has two major isoforms, FST288, which is anchored to the cell surface by interactions with
heparin sulfate proteoglycans, and FST315, which is the predominant form in circulation.
FST isoforms are implicated in uterine development that FST288 isoform is sufficient for
the development, and that loss of FST315 isoform results in fertility defects that resemble
activin hyperactivity and premature ovarian failure [38]. It was reported that FST enhanced
human umbilical vein endothelial cell (HUVEC) migration, vascularization, and osteoge-
nesis contributing [39]. In addition, TGF-β1-3, activin subunits, FST and follistatin-like 3
(FSTL3) were expressed in the placenta [40]. Interestingly, FST likely promoted trophoblast
differentiation into giant cells, which could be our new research in the future [41]. In this
study, we found that FST induced migration and invasion of primary cultured trophoblasts
of mice in a time-dependent and dose-dependent manner in vitro, indicating that it has
important implications for placental function in pregnancy.

The transformation of epithelial cells into motile mesenchymal cells, a process known
as EMT, is integral in development and wound healing and contributes pathologically to
fibrosis and cancer progression [42–44]. During the implantation of embryos, trophoblasts
had some tumor behavior, such as EMT and actin cytoskeleton reorganization to enable
dynamic cell elongation and directional motility [15,45]. Ezrin, a membrane-cytoskeleton
junction protein, plays an essential role in cell polarity establishment, cell migration, and
invasion [31]. In this study, we found that FST elevated expression of ezrin protein and
the localization of ezrin was concentrated in the anterior margin of primary cultured
trophoblast of mice towards FST gradient. It is essential to reorganize the cytoskeletal
architecture and polarity complexes in EMT, which results in cell morphology changes such
as cell elongation, membrane protrusions, and front-rear polarity, which in turn enables
directional migration. During EMT, cells express low levels of epithelial proteins, for
example, E-Cadherin, to reinforce the destabilization of adheres junctions, and acquire
an affinity for mesenchymal cells through N-Cadherin interactions [46,47]. Moreover,
remodeling of the extracellular matrix (ECM) during EMT is correlated with the increased
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expression of proteases, such as the matrix metalloproteinases 2 (MMP2) that enhances
ECM protein degradation to facilitate invasion [48]. Our study revealed that FST might
promote migration and invasion of primary cultured trophoblasts of mice by regulating
the expression of N-Cadherin, E-Cadherin, vimentin, and MMP2 to achieve EMT and ECM
degradation. Calcium signaling is important for cell migration and cell-substrate adhesion
and contraction of the actomyosin network [49]. In the present study, we found that FST
increased intracellular calcium levels of primary cultured trophoblasts of mice. The above
results suggest that migration and invasion of trophoblasts induced by FST are associated
with EMT and ECM degradation through calcium signaling.

Activin A induces invasion of human trophoblasts by up-regulating N-Cadherin
expression in a Smad3-dependent manner [16], and increases snail-mediated MMP2 ex-
pression through ALK4 [50]. Mitogen-activated protein kinases (MAPK) signaling pathway
involves p38 mitogen-activated protein kinases (p38-MARK) [51], extracellular signal-
regulated kinases 1 and 2 (ERK1/2) [52,53], and c-Jun NH2-terminal kinase (JNK) in a cell
type-specific manner [54]. These signaling proteins can transduce extracellular signals
from the activin A ligand to the nucleus to cause the corresponding cell biological effects
such as cell proliferation, apoptosis, differentiation, and migration. Previous studies have
reported that MAPKs activation plays an important role in the process of EMT [55,56].
Cell proliferation and production of ECM proteoglycans and collagen II expression were
decreased in follistatin-like protein 1 (FSTL1)-deficient mesenchymal stem cells (MSCs) and
TGF-β signaling including Smad3, p38 MAPK, and Akt was significantly suppressed [57].
FSTL1 induced MMP3 and MMP13 gene expression in rheumatoid arthritis synoviocytes
requiring MAPK, JAK/STAT3 and NF-κB pathways [58]. In line with ERK1/2, JNK seems
to be essential for phosphorylation of activating protein 1 (AP1), which is caused by stress
and exposure to various cytokines [59]. It was reported that osteosarcoma cell metas-
tasis was suppressed in vivo via blocking the p38 and JNK-mediated cAMP response
element-binding protein (CREB)-activating protein 1 (AP1) complexes formation [60]. Tro-
phoblast invasion was also mediated by the AP1 transcription factors c-FOS and c-JUN [61].
Restrained MAPK-ERK and AP-1 signaling resulted in poor migration and invasion of
trophoblast cell line HTR-8/SVneo cells [62]. Our present study revealed that FST induced
migration and invasion of mice trophoblasts of up-regulating EMT-related proteins by JNK
signaling. The effects were weakened by the treatment of the JNK inhibitor. In neuroen-
docrine cells, JNK plays an essential role in nerve growth factor (NGF) enhancement of
Ca2+-evoked release [63]. It has also been reported that the activation of the JNK pathway
could induce the increasing of mitochondrial Ca2+ influx in MCF-7 and MCF-7/MDR
cells [64]. Our data indicated that FST-induced migration and invasion of trophoblasts was
also related to increase in intracellular calcium flux and enhancing the activation of JNK
signaling.

5. Conclusions

In summary, our findings advance the novel concept that FST is a novel chemoattrac-
tant for the migration of placental trophoblasts of mice in vitro. These data suggest that
FST can induce migration and invasion of primary cultured trophoblasts of mice due to
EMT and ECM degradation by enhancing JNK signaling. Thus, this study sheds a new
light on understanding the role of FST in regulation of placental trophoblast activities.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cells11233816/s1, Figure S1: The origination and identification of
primary cultured trophoblasts of embryonic day 8.5 (E8.5) mice Figure S2: The migratory cells in the
wound healing assay were also stained with cytokeratin-7 (CK7).
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