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Abstract: Generation of motor neurons (MNs) from human-induced pluripotent stem cells (hiPSCs)
overcomes the limited access to human brain tissues and provides an unprecedent approach for
modeling MN-related diseases. In this review, we discuss the recent progression in understanding
the regulatory mechanisms of MN differentiation and their applications in the generation of MNs
from hiPSCs, with a particular focus on two approaches: induction by small molecules and induction
by lentiviral delivery of transcription factors. At each induction stage, different culture media and
supplements, typical growth conditions and cellular morphology, and specific markers for validation
of cell identity and quality control are specifically discussed. Both approaches can generate functional
MNs. Currently, the major challenges in modeling neurological diseases using iPSC-derived neurons
are: obtaining neurons with high purity and yield; long-term neuron culture to reach full maturation;
and how to culture neurons more physiologically to maximize relevance to in vivo conditions.

Keywords: hiPSC; motor neurons; small molecules; transcription factors; movement disorders

1. Introduction

Movement disorders are a group of neurological conditions that cause either increased
or decreased or slow movements. The movements may be voluntary or involuntary, and
implicated in many neurological diseases, such as Dystonia, amyotrophic lateral sclerosis
(ALS), Ataxia, Parkinson’s disease [1], and so on. Motor neurons (MNs) are a remarkably
powerful cell type in the central nervous system (CNS), and they are involved in both
autonomic and voluntary movements. Most prior research of movement disorders was
carried out using patient postmortem tissues or rodent models [2,3]. However, some subtle
alterations in brain tissues and the dysregulations in specific neuronal subtypes may be tran-
sient and therefore difficult to preserve and detect in posthumous patient tissues [4]. While
animal models provide insights into disease mechanisms, significant species-dependent
differences exist, and animal models only mirror the limited aspects of the pathophysiology
of human diseases. It is believed that these species-dependent differences caused the
high failure rate in clinical trials that have been derived from successful results in animal
models [5–7]. Additionally, when using posthumous patient tissues or rodent models,
it is difficult to decipher the molecular pathogenesis via biochemical approaches, which
require a large number of high-purity living neurons. Human induced pluripotent stem
cells (hiPSCs)-derived neurons overcome the limited access to human brain tissues and
provide an unprecedented approach to model human neurological diseases [8].

iPSC-based disease modeling starts from Yamanaka and his colleagues’ groundbreak-
ing studies, which demonstrated that somatic cells could be reprogrammed into pluripotent
stem cells by ectopic expression of four transcription factors (Oct4 (O), Sox2 (S), Klf4 (K),
and c-Myc (M)) under defined culture conditions [9,10]. An essential requirement for
fulfilling the potential of hiPSCs is the ability to reliably differentiate into all three germ
layers (ectoderm, mesoderm, and endoderm) and generate specific cell types with defined
phenotypic traits [11–13]. The development of iPSCs offered a new approach for patient
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specific stem cell-based research, bypassing the reliance on overexpression models, inter-
species differences of animal models, and also ethical concerns of using human embryonic
stem cells (hESCs) [14]. Given that iPSCs derived from somatic cells can preserve the
donor’s genetic background, less transplant rejection will occur when they are used for
cell therapy. The in vitro phenotypes of disease-specific iPSC-derived cells hold the most
promise to bridge the gap between the clinical phenotype and fundamental molecular and
cellular mechanisms, creating new strategies for drug screening and novel therapeutic in-
terventions [15,16]. Additionally, CRISPR engineering of iPSCs enables researchers to make
paired patient mutation lines and isogenic control lines, greatly facilitating the research for
understanding disease pathogenesis [12,13,17–19].

It is also well known that iPSCs and iPSC-derived cells have limitations, especially in
the context of culture heterogeneity and dosage variability. The best route of administra-
tion and survivability in the hostile inflammatory microenvironment is controversial [20].
Improved ways of making cells, gene-editing technologies, along with patient-derived
iPSC cells, have revolutionized the generation of experimental disease models. This pro-
vides an unlimited supply of any type of cells from once-inaccessible human tissues for
research [21,22]. Neurodevelopmental and neurodegenerative disorders are particularly
approachable using iPSC technology as iPSC-derived neurons retain the patient’s genomic
context and provide an excellent cellular model system in deciphering the pathophysiology
of diseases. Modulating the combination, concentration, and exposure time of crucial
signaling molecules has yielded protocols for generating neurons and glia from iPSCs [23].
Thus far, researchers have developed protocols by which several neural and glial cell types
could be generated, including glutamatergic neurons [24], GABAergic neurons [25,26],
dopaminergic neurons [27], serotonergic neurons [28], MN [29–32], astrocytes [33], and
microglia [34,35]. The improvement techniques and updated protocols in neural differenti-
ation and maturation greatly facilitate the generation of iPSC-derived cells.

On the other hand, iPSC-based disease modelling is relatively new in biomedical
research. Substantial progress has been made in developing differentiation protocols for
the generation of different cell types. Excitingly, some in vitro models can recapitulate
aspects of neuronal synaptic networks, which greatly advances functional modeling of
neurodevelopmental and neurodegenerative diseases. Recent studies generating iPSC-
derived MNs from movement disorders of ALS [36–38] and DYT1 patients [8,31,39] showed
great potential to experimentally model molecular events underlying disease pathogenesis.
The generation of patient-specific MNs provides an unprecedented approach in modeling
MN-related disorders and deciphering cellular and molecular pathogenesis. In this review,
we focused on the techniques for the generation of hiPSC-derived cholinergic MNs.

2. Generation of hiPSC-Derived MNs

Many studies are attempting to generate mature MNs from hiPSCs for modeling
movement disorders. Developmental biologists have identified the signaling molecules and
transcription factors that are involved in MN differentiation and maturation, providing the
foundation for the generation of hiPSC-MNs. Currently, scientists are using these extrinsic
factors to guide the MN differentiation from stem cells, thereby mimicking regionalization
processes during nervous system development. Many protocols have been developed
that rely upon core signaling pathways, which could synchronize neuronal induction to
MN-specific signaling cascades and upregulate the expression of MN-specific genes.

The generation of hiPSC-MNs is a consecutive process that consists of a variety of
induction stages, including iPSC induction, embryoid body (EB) formation, neural rosette
growth, neuron progenitor cells (NPCs) differentiation, and MN induction and maturation
(Figure 1A). At each induction stage, different culture media with different supplements
will be employed to support and drive the cell fate towards MNs. At each differentiation
stage, the cells show different growth patterns with unique cellular morphology and
express specific protein markers (Figure 1B). These features can be used to verify the cell
identity at each induction stage and perform quality controls to obtain highly pure MNs. In
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the following sections, we will discuss the process of iPSC-MN generation with a focus on
the approaches using small molecules (chemicals) and lentiviral delivery of transcription
factors. Meanwhile, the regulatory mechanisms of MN differentiation at different stages
will be discussed.
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Figure 1. Generation of iPSC-derived MNs. (A) Schematic shows the process of generating iPSC-
MNs. The culture media with different supplements are shown at different induction stages. (B) The
timeline of the induction process from hiPSC to MNs. At each stage, specific markers and typical
cellular morphology are shown. Image of MNs was adapted from [32].

2.1. Generation of NPCs from hiPSCs

Human nervous system development begins with neural induction converting ecto-
dermal cells into neuroectodermal cells, leading to the formation of the neural plate and
finally the neural tube [40,41]. How neural regionalization is precisely controlled to form
the forebrain, midbrain, hindbrain, and spinal cord along with the rostral-caudal (R-C) axis
remains unknown. Dorso-ventral, rostral, and caudal patterning are very important events
in neural tube maturation and specification. The gradients of various morphogens such
as the canonical WNT/β-catenin signaling pathway (Wnt), retinoic acid (RA), and Sonic
Hedgehog (Shh) signaling are involved in the determination of neuroaxis formation [42–44].
Insights from the model animals show that the rostral-caudal (R-C) axis patterning of NPCs
is controlled by modulating the Wnt and RA signaling, whereas dorso-ventral patterning
is controlled by the modulation of Shh signaling [45–48]. Most neuronal differentiation
schemes mimic embryonic developmental signals by small molecule patterning. This initial
study further showed that different combinations of small molecules used as patterning
factors could push NPCs toward distinct neuronal fates [49–51]. The neuroectoderm is
specified by inhibition of mesoderm and endoderm differentiation factors and acquires
an initial rostral neural character through the regulation of BMP (bone morphogenetic
protein), TGFβ (transforming growth factor-β), FGF (fibroblast growth factor), and Wnt
signaling [52–57]. The neural fate can be potentially induced by the inhibition of BMP and
TGFβ. These rostral neural progenitors are caudalized in response to Wnts, FGFs, and RA
during early development [4].

One of the many ways of generating different types of neurons is through the differen-
tiation of NPCs, which are a homogenous, multipotent, undifferentiated, self-renewable cell
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population. NPCs are committed to become neural lineage and to be differentiated to spe-
cific neuronal types in defined culture conditions [58]. iPSCs are induced to become NPCs
through neuralization, either by EB formation [59–62], or by dual SMAD inhibition in mono-
layers [49,63,64]. EB formation is the most widely used method for neuralization [65–69]. In
this process, cells grow in suspension and spontaneously arrange in three-dimensional ag-
gregates upon withdrawal of factors promoting pluripotency. The Dual-SMAD-Inhibition
method was developed in 2009 by Chambers and colleagues [49]. This method used a small
molecule (Noggin, SB431542) to suppress the TGF-β/Activin/Nodal pathway and the
BMP-canonical pathway [70,71]. After a 5-day exposure of the hiPSCs to Noggin/SB431542,
the cells became an early-stage neuroepithelial population with expression of SOX1, Paired
box protein 6 (PAX6), and Zic family member 1 (ZIC1) markers, and were able to form
neural rosette organization [49,72,73]. This protocol showed an 80% efficiency of hESC
and hiPSC differentiation into PAX6-positive NPCs. Once the iPSCs cells differentiate into
NPCs, the newly formed NPCs continue expressing neuroepithelial markers, such as SOX1
(SRY-Box Transcription Factor 1), SOX3 (SRY-Box Transcription Factor 3), (PSA-NCAM)
Polysialylated-neural cell adhesion molecule, and MS1 (Musashi RNA Binding Protein
1) [74–76]. Reinhardt and colleagues reported a protocol that NPCs can be generated using
only small molecules. Neural induction was introduced through inhibition of both BMP
and TGF-β signaling using Dorsomorphin and SB43152. To stimulate the canonical Wnt
signaling, CHIR99021, a GSK3β inhibitor, was added to the cell medium, and the Shh
pathway was stimulated by using purmorphamine. These neural progenitors are also able
to differentiate into different types of neurons, including MNs [70].

Recently, two approaches were reported for generation of NPCs using a combination
of small molecules: either RA and VPA (Valproic Acid) or LDN-193189 (SMAD inhibitor)
and SB431542 (Activin/BMP/TGF-beta Pathway Inhibitor) [29,77,78]. Both combinations
can successfully generate NPCs, which can be spontaneously differentiated into neurons
consisting of glutamatergic (~75%), GABAergic (~15%), and dopaminergic (TH+) (~5%)
neurons under defined culture conditions. These NPCs can also be differentiated into highly
pure (90%) cholinergic MNs via transduction of three transcription factors: NEUROG2
(Neurogenin 2), ISL1 (LIM homeobox 1), and LHX3 (LIM homeobox protein 3) [29,31,32].

2.2. MN Induction via Small Molecules

Small molecules are bioactive compounds that can modulate specific cellular pathways
involved in cell signaling, transcription, metabolism, or epigenetics, all of which are
modulated during cellular reprogramming. If selective epigenetic modulation can be
achieved with chemicals, it could remodel the chromatin structure and activate the gene
expression of transcription factors, achieving similar effects to the ectopic expression of
reprogramming factors. The advantage of using small molecules in reprogramming is that
their biological effects are typically rapid, reversible, and dose-dependent, allowing precise
control over specific outcomes by fine-tuning their concentrations and combinations. In
Table 1, we summarized the roles of small molecules, including chemicals and peptide
growth factors, in MN differentiation. These small molecules target different signaling
pathways (Table 2) that promote MN differentiation and maturation. In Table 3, we
summarized the chemical cocktails that have been reported in recent publications for the
generation of iPSC-MNs.

Table 1. Roles of small molecules in neuron differentiation.

Chemicals Functions References

Retinoic acid (RA) Agonist for RA receptors. Promotes neural differentiation. [14]

Valproic acid (VPA)
Histone deacetylase inhibitor. Facilitates the

reprogramming of fibroblasts into iPSCs. Promotes
neuronal differentiation.

[79]
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Table 1. Cont.

Chemicals Functions References

SB431542

Inhibitor of TGF-β, Activin and Nodal signaling.
Differentiation of human ES and iPSCs into neural

progenitors. Increase in reprogramming efficiency in
combination with other small molecules.

[49]

CHIR99021
Selective inhibitor of glycogen synthase kinase 3 (GSK-3).
Enables reprogramming of fibroblasts into iPSCs. Induces

neuronal differentiation.
[49]

Purmorphamine (PUR) Sonic Hedgehog (Shh) activator. Improves the efficiency of
MN differentiation. [80]

Dorsomorphin

Inhibitor of both activin/nodal/TGF-β and BMP pathways.
Induces rapid and high-efficiency neural conversion in both

hESCs and hiPSCs. Induces neuronal differentiation
in vitro.

[81]

Y-27632

Highly potent and selective inhibitor of Rho-associated,
coiled-coil-containing protein kinase (ROCK). Improves

embryoid body (EB) formation efficiency. Enhances survival
of hESC during cell passaging.

[82]

Forskolin (FSK)
Stimulates adenylate cyclase activity and increases cAMP.

Regulates neuronal specification and promotes
axonal regeneration.

[83]

Compound E NOTCH signaling inhibitor. Accelerates MN maturation. [84]

Brain-derived neurotrophic factor (BDNF)
Activates TrkB signaling. BDNF enhances the survival and

differentiation of neurons in vitro. Critical for neuronal
survival, morphogenesis, and plasticity.

[85]

Glial cell line-derived neurotrophic factor
(GDNF)

Activates tyrosine kinase receptor signaling. Promotes
neuronal differentiation in later culture periods. Potential

roles in various pathways, mediating growth,
differentiation, and migration of neurons.

[86]

Ciliary neurotrophic factor (CNTF)
Neurotrophic factor. Promotes the survival of different

neurons and the differentiation of neural progenitor cells
(NPCs) in vitro.

[87]

Neurotrophin-3 (NT3)
Neurotrophic factor-mediated Trk receptor signaling.
Neurotrophic factors promote the survival of neurons.

Growth factor involved in stem cell differentiation.
[88]

Basic fibroblast growth factor (bFGF)
Fibroblast growth factor family. Stimulates hESC to form

neural rosettes. Supports the maintenance of
undifferentiated human hESCs.

[89]

Epidermal growth factor (EGF)
Mitogen. Induces the in vitro and in vivo proliferation of

neural stem cells, their migration, and their differentiation
towards the neuroglial cell line.

[90]

Heparin
Promotes the growth of hESCs. Supports the binding of FGF
to its receptor and increases the stability of FGF. Activates

Wnt signaling for neuronal morphogenesis.
[91]

Table 2. Signaling pathways participating in MN differentiation.

Cell Signaling Functions References

Sonic Hedgehog (Shh) signaling
Shh signaling is required for the final specification of MNs.
Activator: Purmorphamine (PUR); Inhibitors: Cyclopamine

and HPI-1.
[92]
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Table 2. Cont.

Cell Signaling Functions References

Dual SMAD inhibition

Block endodermal and mesodermal cell fates and promote
neural conversion. Drive the rapid differentiation of hESCs

and hiPSCs into a highly enriched population of NPCs.
Inhibitors: SB431542, LDN193189, Noggin, LY364947,

RepSox, Dorsomorphin, DMH-1

[93]

Neurotrophic factors signaling Improves MN survival and maturation.
Activators: BDNF, GDNF, NGF, NT-3 [94]

Wnt/β-catenin signaling

Contributes to patterning, proliferation, and differentiation
throughout vertebrate neural development.

Activator: CHIR99021 (CHIR), Kenpaullone, SB216763
Inhibitor: APCDD1, Waif1/5T4

[95]

Notch signaling

Regulates the balance between MN differentiation and the
maintenance of the progenitor state.

Activator: Dll, Dl4
Inhibitor: DAPT, LY411575

[96]

Table 3. Chemical cocktails used for MN differentiation from iPSCs.

Chemical Cocktail and Cytokines Target Signaling Pathways Cellular
Markers Efficiency Days References

Chir-99021, SB431542, LDN1931899,
RA, SAG, DAPT, BME, Ascorbic

Acid, and Y-27632
Wnt, FGF, SHH signaling OLIG2, ISL1/2, HB9,

LHX1/2, FOXP2 ~77% 14 [68,97]

RA, PUR, Y-27632, VPA
and CHIR99021

SHH signaling,
WNT/b-catenin HB9, ISLET-1, ChAT ~85% 30–40 [98]

SB431542, CHIR99021, RA, PUR,
BDNF, GDNF

SHH, WNT/b-catenin,
and Notch TUJ1, MAP2, HB9, ChAT, SYP >85% 28 [99]

SB 431542, CHIR99021,
dorsomorphin, and Cpd E

Activin/nodal/TGF-β and
BMP pathways,
SHH signaling

ChAT, HB9, SOX11, PAX6,
nestin, OLIG2, TUJ1, MAP2 ~88% 21 [100]

SB 431542, dorsomorphin, BDNF,
RA, and ISL1/2

TGF-β, Activin, Nodal,
and canonical FOXP1, OXA5, MAP2, TUJ1 >40% 24 [101]

SB 431542, CHIR99021,
dorsomorphin, and RA

Activin/nodal/TGF-β, BMP
and GSK-3 ChAT, HB9, SMI-32 ~80% 24 [102]

SB 431542, dorsomorphin, B18R,
synTFs mRNAs of neurogenin and

NeuroD families, FSK, BDNF,
GDNF, and NT-3

Activin/nodal/TGF-β and
BMP pathways ChAT, HB9, and ISL1 ~86% 12 [103]

RA, SAG, BDNF, GDNF, and DAPT Neurotrophic factors, canonical
signaling ChAT, HB9, ISL1, SMI-32, TUJ1 70–95% 32 [104]

Dorsomorphin, SB431542,
CHIR99021, RA, PUR, ascorbic acid,

dibutyryl cAMP

Activin/nodal/TGF-β and
BMP pathways

OLIG2, SOX2, ISLET1, AP2,
HB9, SMI32, TUJ1 ~70 45 [105]

SB431542, DMH1, CHIR99021, RA,
PUR, Cpd E

BMP, Activin, WNT, SHH and
NOTCH

NKX2.2, OLIG2, ISL1, MNX,
TUJ1, ChAT, BTX >90% 28 [84]

PUR, RA Shh, Agonist for retinoic acid
receptors HB-9, TUJ1,OLIG2 >85% 28 [106]

Compound C, RA, cAMP
Neurotrophic factor BMP and Activin signaling TUJ1, MAP2

Synapsin I, HB9, ChAT ~70% 20 [107]

PUR, RA Shh signaling agonist HB9, ISL1/2, ChAT, OLIG2 ~80% 15 [108]

To acquire the MN progenitor identity, NPCs need to caudalize and ventralize with the
action of RA and Shh, respectively [42,109]. Shh induces the expression of homeodomain
transcription factors and basic helix-loop-helix (bHLH) [11], the critical intermediaries in the
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control of cell patterning and neuronal cell fate determination [110–113]. The combined actions
of RA and Shh are thought to establish a spatial and temporal regulation of the expression of
transcription factors, such as LHX1 (homeodomain transcription factors) [114–116], OLIGO2
(oligodendrocyte transcription factor), MNX1 (MN and pancreas homeobox 1, HB9), and
ISL1 [42]. All of these factors are necessary for the subsequent differentiation of NPCs to
MNs [117–119]. Several studies have identified that OLIG2 is a bHLH protein, which is
essential for establishing MN progenitor identity downstream of Shh signaling. OLIG2 also
has a key role in specifying the subtype identity and pan-neuronal properties of developing
MNs [117,120–122]. The expression of downstream transcriptional regulators, particularly
HB9, a homeodomain protein expressed in postmitotic MNs, is crucial to consolidate MN
identity [123–125].

Small molecules have a profound influence on neural induction and promote hiPSC
differentiation into MNs combined with the simultaneous inhibition of TGFβ activin,
Nodal, and BMP (also known as dual SMAD inhibition) signaling. Dual SMAD inhibition
is a well-established method which utilizes small molecules to block endodermal and
mesodermal cell fates and promote neuroectoderm conversion. It dramatically enriches
neural ectoderm from pluripotent cells with a high expression of PAX6 and sex-determining
region Y-box 2 (SOX2). Noggin and SB431542 are the most commonly used dual SMAD
inhibitory small molecules. Noggin acts as a BMP inhibitor and SB431542 inhibits the
Lefty/Activin/TGFβ pathways by blocking the phosphorylation of ALK4, ALK5, and
ALK7 receptors. The GSK-3β inhibitor promotes neural progenitor proliferation by stimu-
lating the canonical Wnt signaling pathway, which contributes to the maintenance of neural
precursors. Molecular activation of SHH by Purmorphamine, canonical WNT signaling,
and neural patterning by RA have been critical for MN induction. Previous studies have
found that Shh induces upregulation of transcription factors OLIG2, NK2 homeobox 2
(NKX2.2), and neurogenin2 (NGN2) to direct the expression of MN fate-consolidating genes
such as HB9 and ISL1. Neurotrophic and growth factors, such as BDNF, GDNF, and NT3
are also used as supplements to facilitate MN growth, maturation, and survival [8,29,126].
The entire differentiation process requires from 15 days to up to 2 months to generate fully
functional MNs. In 2002, Wichterle and colleagues reported that RA and Shh were used to
differentiate mouse ESCs into MNs through EB formation [127,128]. Wada and colleagues
differentiated hESCs from the human and monkey ESCs toward MNs through neural
rosette formation. They treated ESCs with 1 µM RA and 500 ng/mL Shh, leading to neural
precursors becoming Tubulin β III+, Hb9+, Islet1+, and choline acetyltransferase-positive
(ChAT+) neurons [129].

Scientists have been working continuously to advance our understanding of MN differen-
tiation and to improve the techniques for generating MNs from iPSCs. The rapid advancement
of RNA sequencing technologies contributed to a deep understanding of transcriptome com-
position and has discovered a large number of non-coding RNAs (ncRNAs) that participate
in MN differentiation (Table 4). These ncRNAs have intense regulatory activities in a wide
range of biological processes, including neuronal development, subtype diversification, speci-
fication, differentiation, and function [130–132]. Among the ncRNAs, long non-coding RNAs
(lncRNAs) and miRNAs (microRNAs) are especially abundant in the nervous system and
have been shown to be implicated in MN development and function.

Table 4. Noncoding RNAs and their functions in MN differentiation.

Noncoding RNA Function References

miR-9 miR-9 modifies MN columns by a tuning regulation of transcription factor
FoxP1 (Forkhead box protein 1) levels in developing spinal cords. [133–135]

miR-218
Expression of miR-218 is directly upregulated by the Isl1–Lhx3 complex, which

drives MN fate. Inhibition of miR-218 suppresses the generation of MNs in
both chick neural tube and mouse embryonic stem cells.

[136,137]
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Table 4. Cont.

Noncoding RNA Function References

mir-17~92 Confers MN subtype survival during development. [136,138,139]

mir-27
mir-27 as a major regulator coordinates the temporal delay and spatial

boundary of Hox protein expression, which contributes to the specification of
MN subtype identity.

[140]

miR-183-5p
miR-183-5p is a central regulator of MN survival under stress conditions.

Increased miR-183-5p is correlated with cell stress in MNs of ALS in
pre-symptomatic and early symptomatic stages.

[141,142]

miR-196

The timing and rostro-caudal extent of Hoxb8 activity in the neural tube
is tightly

regulated by miR-196, a miRNA species encoded within three Hox gene
clusters. miR-196 effectively suppresses endogenous Hoxb8.

[143]

miR-375 miR-375 facilitates human spinal MN development and protects MNs from
DNA damage-induced degeneration. [130,144,145]

Mature miRNAs are ∼22-nucleotide single-stranded RNAs that can recognize the
3′ untranslated region (UTR) of its target mRNAs and negatively regulate gene expres-
sion post-transcriptionally [146–148]. miRNAs are an integral part of the genetic program
controlling MN survival and acquisition of subtype-specific properties [137,138,149]. Sev-
eral studies also demonstrated that miRNAs mediated post-transcriptional regulation
participates in fine-tuning the program of MN progenitor specification [148,150], MN dif-
ferentiation [151–153], and subtype diversification [134–137,154,155]. miR-9 is involved in
fine-tuning the differentiation of MN subtypes. Notably, a recent study revealed that miR-9
is transiently expressed during MN differentiation and regulates the expression of FoxP1
(Forkhead Box P1) and HOX (Homeobox (HOX) transcription factors. These transcription
factors play a critical role in coordination of MN subtype identity and connectivity. In
mice, overexpression of miR-9 induces neuronal differentiation by inhibiting the nuclear
receptor [134,135], suggesting that miR-9 plays a role in fine-tuning the process of spec-
ification of MN subtype identity. Other studies showed that ISL1 expression by Onecut
transcription factors (OC1) was important to generate LMC MNs [133,156,157]. Studies
showed that miR-9 and OC1 are in mutually exclusive patterns in the embryonic spinal
cord and miR-9 efficiently represses OC1 expression, demonstrating that regulation of OC1
by miR-9 is a crucial step in the specification of spinal MNs.

miR-218 is the most abundant and highly enriched miRNA in developing and matur-
ing MNs [136,137,158]. miR-218 is decreased in human ALS postmortem spinal cord, and
cell-free miR-218 can serve as a marker for MN loss in a rodent model of ALS [159,160].
Studies showed that in the developing spinal cord, the expression of miR-218 is directly
upregulated by the Isl1–Lhx3 complex, which drives MN fate. Inhibition of miR-218 sup-
presses the generation of MNs in both chick neural tube and mouse ESCs, suggesting that
miR-218 plays a crucial role in MN differentiation [137]. Previously, it has been found
that complete loss of miR-218 results in the breakdown of neuromuscular synaptogenesis,
hyperexcitability, post-natal lethality, MN loss, and complete paralysis [136,154,155,161].

Chen and colleagues demonstrated that the repression of Olig2 mRNA (MN progenitor
marker) is controlled by mir-17-3p microRNA [138,150]. The expression of miR-17-3p is
repressed by Shh, which results in elevated expression of Olig2. Thus, a high amount of Shh
will direct neuronal progenitors to differentiate toward MNs [162,163]. Functional studies
indicate that miRNA plays a significant role in a broad range of cellular and developmental
processes of subsets of MN. By using an in vitro model of human spinal MN development,
it has been shown that miR-375 is strongly activated during spinal motor neurogenesis and
its expression is specific to MNs [130]. Knockdown of miR-375 significantly impairs MN
differentiation, highlighting its essential role in MN development. miR-375 also protects
MNs from DNA damage-induced degeneration by inhibiting p53 and therefore preventing
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apoptosis. Downregulation of the miR-375-3p in patients with spinal muscular atrophy
leads to an increase of the p53 protein level and thus to apoptosis [144,145].

Long non-coding RNAs (lncRNAs) are RNAs that exceed 200 nucleotides in length,
and they are not translated into proteins. LncRNAs participate in various stages during
MNs differentiation, including guiding neural fate choice by driving transcription factor
localization [164–166], regulating local translation at synapses [167,168], influencing MN
development, and contributing to the pathogenic mechanisms underlying MN diseases
(MNDs) [164,169].

The lncRNA CAT7 (chromatin-associated transcript 7) is a polyadenylated lncRNA
that lies upstream (~400 kb) of MNX1 (MN homobox1). CAT7 has been found to temporally
regulate MNX1 expression during the early stages of human ESC-MN differentiation. Loss
of CAT7 causes de-repression of MNX1 before committing to motor neuronal lineage [170].
Another lncRNA Meg3 plays a critical role in maintaining postmitotic MN cell fate by
repressing progenitor genes that regulate the differentiation of MN identity [171–173].

NEAT1 (nuclear-enriched abundant transcript 1) is a well-characterized lncRNA that
functions as a chromatin regulator and organizes nuclear structures called ‘paraspeckles’.
Paraspeckles contain proteins involved in transcription and RNA processing [174,175].
NEAT1 is highly enriched in neurons of the anterior horn of the spinal cord and in the
cortical tissues of ALS patients. Nishimoto and colleagues demonstrated NEAT1 upreg-
ulation and increased paraspeckle formation in the MNs during the early phases of ALS
pathogenesis [176–178]. The exact role of NEAT1 still needs to be resolved. Given their
dynamic expression patterns in MNs and emerging roles in MN development and func-
tion, it is not surprising that dysregulation of noncoding RNAs has been implicated in
MNDs. Understanding the mechanisms of action and functions of lncRNAs may assist the
development of new therapies for MNDs.

2.3. MN Induction via Lentiviral Delivery of Transcription Factors

Previous reports have underscored the essential roles of transcription factors in MN
development (Table 5). Decades of developmental studies have identified key signaling
molecules and cell-intrinsic transcriptional programs [179,180] that specify MN identity
during embryonic development. These transcription factors were transduced into neural
progenitor cells after differentiation from ESCs/iPSCs, and MNs can be obtained 11 days
after the transduction. These transcription factors are generally introduced into the cells
via viral transduction (generally the most efficient ones) [29,181]. This transcription factors-
mediated differentiation has been shown to produce highly efficient functional MNs with
repetitively firing MNs after two weeks post-viral infection (wpi) [31,32].

Table 5. Roles of transcription factors in MN differentiation.

Transcription Factor Functions References

Neurogenin 2 (NEUROG2)

Transcriptional regulator and actively involved in
neuronal differentiation.

Unique and critical role in determining MN
cell-type identity.

[182]

Sex determining region Y-box 2 (SOX2) Critical for early embryogenesis and for maintaining
embryonic stem cell pluripotency. [183]

ISL LIM homeobox 1 (ISL1)
ISL1 is a major transcription factor necessary for MN

identity. Fusion protein Isl1–Lhx3 specifies MN
fate differentiation.

[184]

LIM homeobox 3 (LHX3) Transcriptional activator involved in the development of
interneurons and MNs. [184]



Cells 2022, 11, 3796 10 of 25

Table 5. Cont.

Transcription Factor Functions References

POU class 5 homeobox 1 (POU5F1)

Critical for early embryogenesis and for embryonic stem
cell pluripotency.

Master regulator of initiation, maintenance, and
differentiation of pluripotent cells.

[80]

Achaete-scute family basic helix-loop-helix
transcription factor 1 (ASCL1)

Promotes cell cycle exit and develops neuronal progenitors
and differentiation when expressed in neural

progenitor cells.
[185]

POU Class 3 Homeobox 2 (POU3F2) Plays potential role in morphological complexity, maturity,
and action potentials of the neuronal cells [186,187]

Transcription factors ISL1 and LHX3 are sufficient to activate a MN gene expression
program in other neural progenitors and increase post-mitotic specification by directly
reprogramming pluripotent stem cells into MNs [188–190]. Specifically, a combinatorial
expression of LIM homeodomain transcription factors Lhx3 and Isl-1, together with the
expression of the pro-neural gene NGN2, have been shown to be critical to induce MN
specification during development [114,191–193]. The combinatorial expression of Lhx3 and
Isl1 will form an Isl1-Lhx3-hexamer, which will trigger MN specification in a chick spinal
cord, ESCs, and iPSCs [114,194–197]. The binding of the Isl1-Lhx3 complex activates the
transcription of genes that are essential for MN specification such as HB9 and promotes
the expression of a wide range of terminal differentiation genes, including a battery of
cholinergic pathway genes that enable cholinergic neurotransmission [198,199].

The combination of different transcription factors was often used to obtain a high
quality of iPSC-MNs. These transcription factors need to be delivered into cells via lentiviral
vectors or other vehicles (Table 6). In 2013, the group of Hynek Wichterle demonstrated
that overexpression of three transcription factors (Ngn2, Isl1 and Lhx3) was sufficient to
rapidly and efficiently program spinal MN identity from the mouse ESCs. Replacement of
Lhx3 by Phox2a (Paired Like Homeobox 2A) led to the specification of cranial, rather than
spinal MNs. Isl1-Lhx3 and Isl1-Phox2a heterodimers showed different DNA-sequence pref-
erences for the basis of cell reprogramming, indicating that there are synergistic interactions
between programming factors underying specification of alternate MN fates [189,200–202].
Goto et al. have used a single sendai virus-mediated overexpression of the TF cocktail
NGN2, ISL1 and LHX3 in both mice and human iPSCs to promote the expression of MN
markers. Notably, after 3 weeks of differentiation, NGN2/ISL1/LHX3-overexpressing
neurons were electrophysiologically active and formed neuromuscular junctions (NMJ)
with cultured myocytes [203]. The MNs derived via this method from ALS patient’s iPSCs
have also shown disease phenotypes. De Santis et al. expressed transcription factors of
Ngn2, Isl1, and Phox2a in human iPSCs via Piggy-bac transposable vectors and converted
human iPSCs into cranial MNs and upregulated pan-MN genes such as TUBB3, ISL1,
and ChAT within the first 3 days of differentiation. HB9 expression was increased when
LHX3 was co-expressed, whereas PHOX2B and TBX20 (T-Box Transcription Factor 20)
were detected by day 5 [144]. Finally, the authors of this study functionally characterized
the cranial MNs obtained after 12 to 13 days to observe that these cells were capable of
firing action potentials upon current stimulation, and almost half of all analyzed cells even
displayed spontaneous glutamatergic postsynaptic currents.

Table 6. Transcription factors used in generation of iPSC-MNs.

Transcription Factors Delivered Delivery Vector Cellular Markers Efficiency Days
to Reach Maturation References

NGN2, ISL1, LHX3 Lentiviral MAP2, SMI32, TUBB3, HB9, ChAT >95% 35 days [29,32]
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Table 6. Cont.

Transcription Factors Delivered Delivery Vector Cellular Markers Efficiency Days
to Reach Maturation References

NGN2 Lentiviral ChAT, HB9, SMI-32, ISL1, FOXP1,
MAP2, TUJ1 ~95% 30 days [204]

NGN2, SOX1, ISL1, and LHX3 Lentiviral HB9, ChAT, TUBB3, MAP2,
and synapsin 45–50% 35 days [29,31]

POU5F1(OCT4) and LHX3 Lentiviral MAP2, TUJ1, HB9, ChAT 70 ~ 90% 28 days [205]

NGN2, ISL1, LHX3 and NGN2,
ISL1, PHOX2A Piggy-bac transposable PHOX2B, TUJ1, ISL1, ChAT ~90% 11–12 days [144,206]

NGN2, ISL1, LHX3 Sendai virus HB9, MAP2, ChAT, Tuj1, ~93% 14 days [203]

NGN2, ISL1, LHX3 Adenoviral HB9, CHAT, SMI-31, HOXC6 60–70% 30 days [191]

Ascl1, Brn2 (POU3F2), Myt1l, Hb9
(MNX1), NGN2, ISL1, and LHX3 Retroviral MAP2, vChT, HB9, ISL1 ~60% 35 days [187]

Goparaju et al. showed that overexpression of NGN1 (Neurogenin 1), NGN2 (Neuro-
genin 2), NGN3 (Neurogenin 3), NEUROD1 (Neuronal Differentiation 1), and NEUROD2
(Neuronal Differentiation) in human PSCs combined with RA, forskolin, and dual SMAD
inhibition via SB431542 and dorsomorphin yields highly pure neuronal cultures expressing
the MN markers HB9, ISL1, and ChAT [103]. MNs generated from this method have
shown functional activity (repetitive action potentials and calcium-transient) within a week.
We have reported that a single lentiviral vector expressing three factors (NGN2, ISL1,
and LHX3) is necessary and sufficient to induce iPSC-derived MNs (iPSC-MNs) [29,32].
MNs derived using these methods robustly expressed general neuron markers, such as
microtubule-associated protein 2 (MAP2), neurofilament protein (SMI-32), tubulin β-3
class III (TUBB3), and MN-specific markers HB9 and CHAT. These MNs showed electrical
maturation within 3 weeks [32].

3. Quality Control: Validation of Neuron Identity and Purity

To ensure that the high quality and purity of MNs can be obtained from hiPSCs, it is
necessary to validate the cell identity at each stage during the process of induction and
differentiation. Specific markers at different stages could be examined and used to estimate
the induction quality and the MN purity (Figure 1B). As the passage number of iPSC may
affect the differentiation of iPSC-derived neurons [207], using a lower passage number is
recommended in the generation of hiPSC-derived MNs.

3.1. Markers of Early Induction from hiPSC to NPC

Patient-specific somatic cells, such as skin fibroblast cells and peripheral blood mononu-
clear cells (PBMC), can be reprogrammed into the pluripotent state through ectopic ex-
pression of Yamanaka factors (Oct3/4, Sox2, Klf4, and c-Myc). The iPSC must be fully
characterized to ensure quality before differentiation into neurons or other cell types. The
morphology of iPSCs should demonstrate a typical hESC-like appearance composed of
tightly packed cells in phase contrast microscopy (Figure 1B). A healthy iPSC line should
robustly express the pluripotency markers (SSEA4, TRA-1-81, OCT3/4, and SOX2) and
show a normal karyotype [12,13]. There are several techniques that can be used to assess the
pluripotency. The pluripotency markers could be examined at protein levels by immuno-
cytochemistry (ICC) and western blot or by using real-time PCR to measure transcription
levels. Newly generated iPSC lines need to be validated that they can differentiate into
three germ layers: endodermal, mesodermal, and ectodermal cell lineages. This can be
verified by two approaches: 1) in vitro differentiation of iPSCs in suspension to form EBs,
which highly express trilineage markers [59,208], and 2) EBs injected into immunocompro-
mised NOD/SCID mice will form teratomas, which consist of three germ layers [209,210].
Similarly, three germ layers specific markers can be examined using ICC or western blot at
protein level or RT-PCR at transcription level. The iPSCs and differentiated cells need to be
confirmed as mycoplasma-negative before establishing a cell line stock.
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3.2. Markers of MNs at Early Immature Stages

To achieve more accurate disease modeling and maximize the potential applications,
quality controls are critical to verify cell identity and purity. Many methods could be used,
including specific marker expression, molecular and functional properties, cellular morphol-
ogy assay, electrophysiological analysis, and animal transplantation. Many protocols analyze
samples within 2 to 5 weeks from the onset of differentiation. Early stages of MNs showed the
typical polygonal cell body with few and short dendrites (Weeks 1–2). However, the genera-
tion of ISL1/2 and HB9-expressing cells can vary from 3 days to 2 weeks after differentiation.
Longer differentiation protocols have an advantage over shorter ones when preparing fully
functional mature neurons, which could be used to examine the electrophysiological activity
and synaptic network. After treatment with lentivirus-expressing-specific transcription factors
or small molecules, usually within a week the cell will become neuron-like with condensed
nuclei, long axons, and multiple neurites. Generation of MNs requires the identification of
genes that are expressed at the initial stages of MN differentiation. At day 13 of differen-
tiation, studies observed the expression of early MN-specific factors, PAX6, OLIG2, ISL-1
and NEUROD [191]. PAX6 and OLIG2 are required to initiate a general MN fate differenti-
ation [43,117,119]. Studies have also found that ISL1 is the earliest marker involved in the
establishment of MN fate. The expression of MN-specific genes becomes evident at week
3 or later, including strong expression of LHX3, ISL1, and HB9. Early MNs are commonly
characterized by transient co-expression of HB9 and ISL1/2 [123,211]. Homeobox gene HB9 is
required for the consolidation of MN identity, and its expression is restricted to somatic MNs
of the hypoglossal nucleus. Transcriptional upregulation of MN markers such as ISL1, HB9,
and OLIG2 was shown in the early stage of MN differentiation in several studies.

3.3. Markers of MNs at Late Mature Stages

As HB9 is downregulated over the course of MN maturation, the expression of choline
acetyltransferase (ChAT) appeared and temporally increased [212]. As ChAT is an enzyme
responsible for the synthesis of neurotransmitter acetylcholine in cholinergic MNs; the
expression of ChAT indicates that the cells reach maturation stage. miR-218, abundantly
and selectively expressed in maturing MNs, is being recently used as a molecular marker
to identify MNs [136,137].

The final maturation can be achieved with the action of neurotrophic factors (BDNF,
GDNF, NT3) and demonstrated by increased dendrites arborization and cell-cell connec-
tions (weeks 2–6). Mature MNs display larger soma, increased cell shape, complexity of
neurite outgrowth, and electrophysiological properties. iPSC-derived MNs are generally
considered mature after 3 weeks of differentiation [100]. Higher expression of neuronal
markers of TUBB3, MAP2, non-phosphorylated neurofilament heavy chain (SMI32), ChAT,
and vesicular acetylcholine transporter (vAChT) indicates the maturation of the MNs. Mon-
itoring the electrophysiological status of MNs in vitro is currently the most comprehensive
method to assess their maturation. To demonstrate maturation, MNs are Synapsin-positive
and electrophysiologically active. The electrophysiologically mature MNs are able to fire
repetitive action potentials and generate spontaneous activity that requires the develop-
ment of intrinsic (e.g., sufficiently polarized resting membrane potentials) and extrinsic
(e.g., synapse formation) properties. Mature MNs are also capable of recreating NMJs
when cocultured with myotubes in vitro and expressing acetylcholine receptor (AChR)
clusters. All these characteristics indicate that hiPSCs had efficiently differentiated into
fully functional MNs.

4. Modeling Neurological Diseases Using hiPSC-Derived MNs

Modeling MN-related diseases using hiPSC-based approaches requires culture condi-
tions in a dish that can recapitulate the events underlying MN differentiation, maturation,
aging, and degeneration. Several protocols exist to generate MNs from hiPSCs, and these
cells have been used to study the pathophysiology of MN-related diseases, such as ALS,
spinal muscular atrophy, and DYT1 dystonia [213–218]. The known disease-dependent cel-
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lular deficits are excellent features that can be used to validate the hiPSC-MNs in modeling
the disease. For example, using patient-specific MNs, we have identified disease-dependent
cellular deficits in DYT1 dystonia, including abnormal nuclear envelope morphology, dis-
rupted neurodevelopment, impaired nucleocytoplasmic transport, and mislocalized nuclear
Lamin B1 [31,39]. For each preparation of DYT1 iPSC-MNs, we routinely examined these
cellular features to ensure that the materials we used are valid in modeling DYT1 dystonia.
To identify and characterize functional molecular features of MNs, different technologies
have been employed, ranging from fluorescence-based antibody staining of target mark-
ers to RNA-seq analysis. We usually perform ICC, Western blot, PCR, and qRT-PCR to
verify the expression levels of neural markers at different stages during the induction
process. Examination of well-characterized molecular markers is useful for determining
the accuracy and efficiency of a protocol. Whole-transcriptome sequencing or RNA-seq,
single cell sequencing is also often used to further characterize the expression of these
markers in an unbiased manner. Modeling ALS with iPSC-derived MNs has recapitulated
several known pathological findings in patient-derived cells, reinforcing the high value
of the approach. Compared with healthy controls, patient iPSC-derived cells can be used
to identify disease phenotypes at different levels, including molecular profiles, cellular
features, and physiological functions. The development of high-throughput single-cell tran-
scriptomics has changed the paradigm, empowering rapid isolation and profiling of MN
nuclei, revealing remarkable transcriptional diversity within the skeletal and autonomic
nervous systems. In addition, patient-specific iPSCs may also serve as powerful resources
for personalized medicine, including drug discovery, genetic testing, and ultimately cell
replacement therapy.

5. Future Challenges and Perspectives

Generation of hiPSC-MNs overcomes the limited access to human brain tissues and
provides an unprecedented approach for modeling MN-related diseases, offering an ex-
cellent platform for developing therapeutic treatments. However, several challenges arise
from using this cellular system for disease modeling [32]. First, the purity and yield of
iPSC-derived neurons. Current human iPSC-MN induction protocols vary in timescale
(ranging from 15 days to more than six weeks) and efficiency, with few protocols achieving
both high efficiency and rapid MN generation [219,220]. Some studies require a large
number of MNs with high purity, such as transcriptomic studies, to elucidate the alterations
of genome-wide gene expression and proteomic studies to identify dysregulated factors
in diseased neurons. Second, to obtain fully functional and mature neurons. Because
of the lack of simplified and consistent protocols, the generated hiPSC-derived MNs in
most studies are often functionally immature and heterogeneous. Some disease-dependent
cellular and molecular deficits cannot be noticed until neurons reach full maturation,
especially for age-related neurodegenerative diseases such as ALS, Alzheimer’s disease
(AD), and Parkinson’s disease (PD). Modelling these late-onset diseases usually requires
the long-term culture of neurons from several weeks to a few months, during which the
neuron survival and potential contaminations are huge challenges. Third, how to culture
the neurons more physiologically? Although chemical or physical modifications of the
cell culture plates, such as coating with extracellular matrix (ECM), have been shown to
be an efficient method to better mimic in vivo cell behavior [221], the outcomes of some
experiments using in vitro cellular systems could be very different from the studies using
in vivo models. iPSC-derived neurons cocultured with glial cells and the development of
hiPSC to brain organoids under three-dimensional culture conditions could maximize the
relevance to in vivo conditions.

To resolve these issues, studies are needed to understand the precise regulatory
mechanisms of neural differentiation and maturation using in vivo models. Meanwhile,
the protocols for the generation of iPSC-derived neurons need to be updated, simplified,
and finally standardized to obtain consistent outcomes for biomedical research. The
generation of different neuronal subtypes requires different protocols consisting of different
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induction factors, specific culture conditions and supplements, and particular treatments
and processes. Generally, induction efficiency and neuron survival are paramount to
achieve good yield and purity. The combinations of small molecules and/or transcription
factors will enhance the induction efficiency and maximize the purity, while the optimized
culture conditions will promote neuron maturation and survival, which will lead to a higher
yield. One major difficulty in obtaining fully mature iPSC-MNs is the long-term culture
issue, in which both neuron survival and potential contaminations are huge challenges.
We generate iPSC-MNs using lentiviral delivery transcription factors, and these MNs can
reach full maturation at 3 wpi with characterization of high expression of presynaptic
proteins, cholinergic markers, and firing action potentials. For setting up experiments
that require fully mature neurons, we usually culture iPSC-MN for 4 wpi [29]. For such
a long-term culture, culture media supplemented with neurotrophic factors and neurons
cocultured with astrocytes are required. For chemical-induced iPSC-MNs, once the MN
identity is verified, in theory, the neurons will reach full maturation after culture for a long
enough time. However, we have not directly compared the maturation, the culture time,
and the detailed characterizations of iPSC-MNs that are generated by different approaches.
It is hard to say which approach is better than the other. Excitingly, the techniques of
genome-editing and three-dimensional culture of brain organoids greatly expanded the
applications of hiPSC in disease modeling, cell therapy, and drug development [222,223].
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Abbreviations

ALS Amyotrophic lateral sclerosis
ASCL1 Achaetescute family bHLH transcription factor 1
ATRA All-trans retinoic acid
bHLH Basic helix-loop-helix
bFGF Basic fibroblast growth factor
BMP Bone morphogenetic protein
BDNF Brain-derived neurotrophic factor
CNS Central nervous system
Wnt Canonical WNT/β-catenin signaling pathway
CNTF Ciliary neurotrophic factor
ChAT Choline acetyltransferase
Cpd E Compound E
CAT7 Chromatin associated transcript 7
EGF Epidermal growth factor
ESCs Embryonic stem cells
FGF Fibroblast growth factor
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FOXP1 Forkhead box protein 1
FGF2 Fibroblast growth factor 2
GDNF Glial cell line-derived neurotrophic factor
GSK-3 Glycogen synthase kinase 3
hiPSCs Human induced pluripotent stem cells
HOXC6 Homeobox C6
HB9 Homeodomain
HST Hoechst 33342
ISL1 Insulin gene enhancer 1
LHX3 LIM/homeobox 3
LHX1 Lim homeodomain transcription factors
LncRNAs long non-coding RNAs
miRNAs microRNAs
MAP2 Microtubule Associated Protein 2
MNs Motor neurons
MS1 Musashi RNA Binding Protein
MYT1L Myelin transcription factor 1 like
MNX1 Motor neuron and pancreas homeobox 1
NPCs Neural progenitor cells
NGN2 Neurogenin-2
NMJs Neuromuscular junctions
DAPT N-[N- (3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester
NKX2.2 NK2 homeobox 2
NT3 Neurotrophin-3
ncRNAs Non-coding RNAs
NEAT1 Nuclear-enriched abundant transcript 1
NGN1 Neurogenin 1
NGN2 Neurogenin 2
NGN3 Neurogenin 3
NEUROD1 Neuronal Differentiation 1
NEUROD2 Neuronal Differentiation 2
Olig2 Oligodendrocyte transcription factor
OC1 Onecut transcription factors
PSA-NCAM Polysialylated-neural cell adhesion molecule
POU5F1 POU class 5 homeobox 1
PHOX2A Paired like homeobox 2A
POU3F2 POU class 3 homeobox 2
Pax6 Paired box protein 6
PUR Purmorphamine
qPCR Quantitative PCR
RA Retinoic acid signaling pathway
ROCK Rho-associated coiled-coil containing protein kinase
Shh Sonic Hedgehog signaling pathway
Sox2 Sex determining region Y-box 2
SAG Smoothened agonist
SOX1 SRY-Box Transcription Factor 1
SOX3 SRY-Box Transcription Factor
SOX11 SRY-box transcription factor 11
Synapsins Regulation of neurotransmitter release at synapses
TGFβ Transforming growth factor-β
TUBB3 Tubulin Beta 3 Class III
TBX20 T-Box Transcription Factor 20
UTR 3′Untranslated region
VPA Valproic Acid
VAChT Vesicular acetylcholine transporter
WPI Weeks post viral infection
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ALS Amyotrophic lateral sclerosis
APCDD1 Adenomatosis polyposis downregulated
1ASCL1 Achaetescute family bHLH transcription factor 1
ATRA All-trans retinoic acidbHLH, Basic helix-loop-helix
bFGF Basic fibroblast growth factor
BMP Bone morphogenetic protein
BME β-mercaptoethanol
BDNF Brain-derived neurotrophic factor
CNS Central nervous system
Wnt Canonical WNT/β-catenin signaling pathway
CNTF Ciliary neurotrophic factor
ChAT Choline acetyltransferase
Cpd E Compound E
CAT7 Chromatin associated transcript 7
Dl1 Delta-like 1
Dl4 Delta-like 4
DMH1 a bone morphogenetic protein (BMP) inhibitor
EGF Epidermal growth factor
ESCs Embryonic stem cells
FGF Fibroblast growth factor
FOXP1 Forkhead box protein 1
FGF2 Fibroblast growth factor 2
GDNF Glial cell line-derived neurotrophic factor
GSK-3 Glycogen synthase kinase 3
hiPSCs Human induced pluripotent stem cells
HOXC6 Homeobox C6
HST Hoechst 33342
ISL1 Insulin gene enhancer 1
LHX3 LIM/homeobox 3
LHX1 Lim homeodomain transcription factors
LncRNAs Long non-coding RNAs
miRNAs microRNAs
MAP2 Microtubule Associated Protein 2
MEG3 Maternally expressed gene 3
MNs Motor neurons
MS1 Musashi RNA Binding Protein
MYT1L Myelin transcription factor 1 like
MNX1/HB9 Motor neuron and pancreas homeobox 1
NPCs Neural progenitor cells
NMJs Neuromuscular junctions
DAPT N-[N- (3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester
NKX2.2 NK2 homeobox 2
NT3 Neurotrophin-3
ncRNAs Non-coding RNAs
NEAT1 Nuclear-enriched abundant transcript 1
NGN1 Neurogenin 1
NGN2 Neurogenin 2
NGN3 Neurogenin 3
NEUROD1 Neuronal Differentiation 1
NEUROD2 Neuronal Differentiation 2
Olig2 Oligodendrocyte transcription factor
OC1 Onecut transcription factors
PSA-NCAM Polysialylated-neural cell adhesion molecule
POU5F1 POU class 5 homeobox 1
PHOX2A Paired like homeobox 2A
POU3F2 POU class 3 homeobox 2
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PAX6 Paired box protein 6
PUR Purmorphamine
qPCR Quantitative PCR
RA Retinoic acid signaling pathway
ROCK Rho-associated coiled-coil containing protein kinase
Shh Sonic Hedgehog signaling pathway
SOX2 Sex-determining region Y-box 2
SAG Smoothened agonist
SOX1 SRY-Box Transcription Factor 1
SOX3 SRY-Box Transcription Factor
SOX11 SRY-box transcription factor 11
Synapsins Regulation of neurotransmitter release at synapses
SYP Synaptophysin
SMI-32 Neurofilament
TGFβ Transforming growth factor-β
TUBB3 Tubulin Beta 3 Class III
TBX20 T-Box Transcription Factor 20
UTR 3′Untranslated region
VPA Valproic Acid
VAChT Vesicular acetylcholine transporter
WPI Weeks post-viral infection
Waif1/5T4 Wnt-activated inhibitory factor 1
ZIC1 Zic family member 1
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