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Abstract: Dementia is reported to be common in those with type 2 diabetes mellitus. Type 2 dia-
betes contributes to common molecular mechanisms and an underlying pathology with dementia.
Brain cells becoming resistant to insulin leads to elevated blood glucose levels, impaired synaptic
plasticity, microglial overactivation, mitochondrial dysfunction, neuronal apoptosis, nutrient de-
privation, TAU (Tubulin-Associated Unit) phosphorylation, and cholinergic dysfunction. If insulin
has neuroprotective properties, insulin resistance may interfere with those properties. Risk factors
have a significant impact on the development of diseases, such as diabetes, obesity, stroke, and other
conditions. Analysis of risk factors of importance for the association between diabetes and dementia
is important because they may impede clinical management and early diagnosis. We discuss the
pathological and physiological mechanisms behind the association between Type 2 diabetes mellitus
and dementia, such as insulin resistance, insulin signaling, and sporadic forms of dementia; the
relationship between insulin receptor activation and TAU phosphorylation; dementia and mRNA
expression and downregulation of related receptors; neural modulation due to insulin secretion
and glucose homeostasis; and neuronal apoptosis due to insulin resistance and Type 2 diabetes
mellitus. Addressing these factors will offer clinical outcome-based insights into the mechanisms and
connection between patients with type 2 diabetes and cognitive impairment. Furthermore, we will
explore the role of brain insulin resistance and evidence for anti-diabetic drugs in the prevention of
dementia risk in type 2 diabetes.

Keywords: type-2 diabetes mellitus; dementia; insulin signaling; neurodegeneration; insulin resistance

1. Introduction

Type-2 diabetes mellitus (T2DM) is the most common type of metabolic disorder
caused by abnormal regulation of insulin. Insulin is a non-glycosylated, 51-amino acid
hormone secreted by β cells in the islets of Langerhans of the pancreas [1]. Insulin plays an
important role in pathophysiological conditions and clinical complications, such as neu-
ropathy, cardiovascular diseases, nephropathy, retinopathy, and cognitive impairment [2].
Aside from diabetes, other risk factors for dementia development include hypertension,
genetics, diet, physical inactivity, smoking, and body mass index (Figure 1). Non-alcoholic
fatty liver disease is involved in the development of vascular and nonvascular demen-
tia. More than 18 million people are living with dementia globally and the number of
cases is rising due to the lack of a clear mechanism between diabetes and the develop-
ment of dementia. Dementia is caused by increased concentrations of the gut microbiome,
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higher levels of pro-inflammatory bacteria, and a reduced anti-inflammatory biome [3,4].
Hyperlipemia, which is associated with vascular disease, can develop into dementia
(Figure 1) [3,4]. Blood glucose levels are regulated by negative feedback inhibition to
maintain balance in the human body by pancreatic islet cells; this regulation is known as
homeostasis of glucose [4,5]. Insulin lowers the blood glucose level and glucagon raises it;
glucagon receptors are found in liver cells, which break down stored glycogen into glucose
and release glucose in the blood, the glucose-dependent stage in human insulin regulation
that does not work correctly in T2DM (Figure 2) [4,5]. Insulin is mainly synthesized by
proinsulin, after which it is converted into c-peptide and insulin. C-peptide is stored in
secretory granules, released on demand, and regulated by the transcription and transla-
tion processes (Figure 3) [3–7]. The blood–brain barrier (BBB) is crossed by insulin via
a receptor-mediated mechanism [6]. During postmortem investigations, the hypothalamus
has been shown to contain a significant amount of insulin [7].
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Figure 3. Proinsulin is transformed into insulin and C-peptide and stored in secretory vesicles,
where it can be released when needed. Insulin is secreted by pancreatic beta cells to regulate
glucose homeostasis. Through the GLUT transporters, glucose is freely taken in by the beta cell and
metabolized to produce ATP. This triggers a series of signals inside the beta cell that are required for
glucose-induced insulin production.

The uptake of glucose in brain cells increased after activation of the ERK (extracellular
signal-regulated kinases) and AKT (protein kinase B) pathways [8]. The P13K/AKT signal-
ing pathway plays an important role in memory-encoding mechanisms and neuromodu-
lation [9]. The insulin level in neuronal cells is determined by the rate at which it crosses
the BBB by receptor-mediated transport and diffusion mechanisms. GLP-1 (glucagon-like
peptide-1) regulates blood glucose levels by reducing glucagon secretion and decreasing
food intake [10]. In T2DM, the GLP-1 receptor (GLP-1R) is responsible for the genes’ regu-
latory elements involved in neuronal survival and function. As GLP-1 agonists, they are
used as targets in neurological disorders [10]. Some studies have shown that GLP-R is
activated via the cAMP (cellular levels of cyclic AMP)/PKA (Protein Kinase A) pathways
and is involved in neuroprotective action. The GLP-1R analog crosses the BBB and provides
neuroprotection via cAMP/PKA signaling [11]. In this article, we will discuss the role of
insulin signaling in the development of dementia and other neurological disorders. The
discussion on GLP-1 activators and biomarkers linked to the development of T2DM and
dementia revealed some remarkable points.

2. T2DM and Dementia

T2DM patients are 1.5–2.5-times more likely to develop neurological complications
than people without diabetes. Insulin resistance (IR) is linked with Alzheimer’s disease
(AD), and dysregulation in the molecular mechanism of insulin secretion may lead to
histopathological lesions in AD. Hyperglycemia is a major risk factor for cognitive impair-
ment and dementia. Cognitive function may also be impacted negatively by hypoglycemia.
IR is the major problem contributing to the emergence of clinical complications. The abnor-
malities caused by raised glucose levels were identified using the mechanisms of the insulin
signaling network, including protein and lipid levels, which may cause IR. In major tissues,
such as liver muscles and adipose tissues, insulin activity and its receptor regulate signaling
via gene expression, phosphorylation, and vascular trafficking, increasing the consumption
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of nutrition, and reducing the catabolic reaction. Insulin receptors are expressed in the brain
and regulate energy consumption, diet intake, behavior, and vascular function. In the last
few years, molecular mechanisms and the identification and characterization of genes and
proteins, circulating lipids, exosome micro-RNA, and metabolites have provided significant
outcomes for IR in T2DM. AD is more common in diabetic patients than in nondiabetic pa-
tients and it is associated with a higher incidence or mortality rate [12]. The development of
dementia and other neurological disorders is common in T2DM, although a sporadic form
of dementia is more common (Table 1) [13]. The pancreatic islets contain alpha and beta
cells, which regulate glucagon and insulin, respectively. Insulin lowers the effects of glucose
uptake in the skeletal muscles, liver, and brain. Blood glucose is increased by glucagon
during the gluconeogenesis and lipolysis processes. The energy level is maintained by the
brain in various parts of the body with a glucose homeostasis mechanism. Neuronal control
of peripheral insulin sensitivity and glucose is shown in Figure 4. Glucose intolerance
has been investigated in up to 80% of dementia patients [14]. In more than 11 years of
study, researchers observed a higher prevalence of dementia and AD, and a 50–100% higher
risk of developing dementia in diabetic patients [15,16].The common cause of dementia
is AD, an irreversible disorder, which develops slowly (Figure 4). Common signs and
symptoms of dementia are loss of memory, difficulty concentrating, difficulty with familiar
tasks, altered behavior, and confusion in time and place. There are various types of de-
mentia, such as vascular dementia, Lewy body dementia, frontotemporal dementia, mixed
dementia, Huntington’s disease-related dementia, and Parkinson-related dementia [17].
An epidemiological study showed that more than 55 million people are suffering from
dementia and, every year, more than 10 million cases are diagnosed [18]. Dementia affects
various events, such as memory, thinking, orientation, comprehension, calculation, learning
capacity, language, and judgment. The brain cells affected by tau protein accumulation and
plaque formation, which may cause dementia and lead to irreversible neuronal cell damage,
are more common in the frontal and temporal lobes [16]. Lewy body dementia is caused by
an abnormal accumulation of alpha-synuclein (-Syn) in the neurons of the substantia nigra
in Parkinson’s disease [12]. Vascular dementia is caused by deformities in brain tissue,
blood clots, and abnormalities of blood vessels [7]. It can be used as a component or as an
interface. T2DM and dementia are associated with age and affect millions of people around
the world. Patients with dementia show abnormal blood glucose levels. The regulation
of signal transduction pathways depends on the signaling of extracellular chain reactions;
each response is based on the course of signaling requirements. In adipose tissue and
muscles, glucose enters through the GLUT 2 receptors in the beta cells of the pancreas and
in the liver cells (uptake of glucose in muscle and adipose tissue via enhanced diffusion
at GLUT4 receptors). GLUT 1 and GLUT allow glucose to reach cells, including the brain,
retina, kidney, RBC, and other parts of the body (Figures 3–5).

Table 1. The common occurrence of neurological complications in insulin-resistant patients.

S.N. Disease Type of Study Disease Model Concerned Area
of the Brain Factor Involvement Outcome of

the Study References

1. Type-2DM

Clinical study
Prospective

population-based
cohort study

T2DM patients Cerebrum

Risk of dementia
(hazard ratio-HR, 1.3 to
2.8), ↑ (Increased) risk
of Alzheimer’s disease

(HR 1.2 to 3.1).

Increased risk
of dementia [19]

2. T2DM
Clinical study
Longitudinal
cohort study

16,667 patients, Mean
age: 65 years

Morbidity: T2DM,
without prior

diagnoses of dementia

Cerebrum

VCI (Vascular cognitive
impairment) Incident

VCI (RR-Relative risk):
1.62; 95%

CI-Confidence interval:
1.12–2.33)

Increase
extracellular

plaques
deposition

[20]
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Table 1. Cont.

S.N. Disease Type of Study Disease Model Concerned Area
of the Brain Factor Involvement Outcome of

the Study References

3
Abnormal

insulin
Level in AD

Clinical study

Patients with,
abnormal insulin

Level in Alzheimer’s
Disease (AD) and

healthy adults

Blood plasma,
Cerebrospinal

fluid

↓ (Decrease) CSF
(cerebrospinal fluid)
insulin concentration

led to more
advanced dementia. ↑
Plasma insulin levels

signified more
advanced dementia.

Increased risk
for the

development
of AD

[21]

4. Type-2DM Longitudinal study
2322 adult male

participants, Mean
age: 50 years old

Hippocampus,
cerebellum

↑risk of dementia, and
VD with severe systolic

hypertension or
heart disease.

Increased risk
of AD

dementia
[22]

5 Type-2DM Epidemiological
study

Cohort study 1892
Jewish male civil

servant, Mean age:
82 years

Cerebrum
↑dementia risk

factor;(HR = 2.83, 95%
CI = 1.40 to 5.71).

Increase the
pathogenesis
of dementia

[23]

6 Type-2DM
Population-based

Longitudinal
cohort study

2322 adult male
participants, Mean
age: 50 years old

Hippocampus
is the

affected part.

Increased risk of AD
dementia (HR = 1.31;

95% CI, 1.10–1.56), VD
(HR = 1.45; 95% CI,

1.05–2.00).

Increase the
risk of

cognitive
impairment.

[24]

7 Type-2DM

Clinical study
Retrospective
longitudinal
cohort study

Adult diabetic
patients with prior
hypoglycaemia had

a significantly higher
rate of dementia.

Cerebral cortex One episode (HR = 1.26;
95% CI = 1.03–1.54)

Increased risk
of

hypoglycaemia
[25]

8 Type-2DM

Clinical study
Retrospective
longitudinal
cohort study

Age >65 years,
diagnosed with

T2DM, with no prior
diagnosis of dementia

Cerebral cortex

One episode (HR = 1.26;
95% CI = 1.03–1.54)

was associated with an
increased risk.

Hypoglycaemia
is associated
with a higher

risk of
dementia.

[26]

9 Type-2DM longitudinal studies

6184 subjects with
diabetes and 38,530

subjects
without diabetes

Cerebral cortex
and

hippocampus

Increased risk of any
dementia (RR: 1.51,

95% CI: 1.31–1.74) and
increase risk of MCI

(RR: 1.21, 95% CI:
1.02–1.45).

Diabetes is
a risk factor for

incident
dementia

(including AD,
VD, and

any dementia).

[27]

10 Type-2DM Prospective study
1066 men and women

with T2DM Age:
60–75 years

Cerebral and
hippocampus

Severe hypoglycaemia
is associated with
impaired initial

cognitive ability and
cognitive decline.

Diabetes is
a risk factor for

incident
dementia

[28]

11 Type-2DM
Retrospective

national record
linkage cohort study

343,062 people with
T1DM; 1,855,141

people with T2DM
Cerebral and
hippocampus

Risk for developing
dementia in T1DM

people (RR = 1.65; 95%
CI 1.61, 1.68).

Risk of
developing
dementia in

the
hippocampus.

[29]

12 Type-2DM
Long-term
prospective
cohort study

135 autopsies of
residents of Hisayama

town (74 men and
61 women)

Cerebral and
hippocampus

The risk of neurotic
plaque formation

Increased risk
of AD

pathology.
[30]

2.1. The Glucose Transporter’s Function in Cognition

T2DM increases the risk of cognitive impairment and IR is linked to a more rapid
reduction in the memory-encoding mechanism and thinking skills [31]. Various types of
genes, including SLC2A1–SLC2A14 and molecules (GLUT1–GLUT14), are actively involved
in the transport of glucose in various regions of the brain and each cell type expresses
multiple proteins [32]. GLUT proteins are classified into three classes. Proteins GLUT
1–GLUT 4 and GLUT 14 are classified as group I, GLUT 5, GLUT 7, GLUT 9, and GLUT
11 are classified as group 2, and GLUT 6, GLUT 8, GLUT 10, GLUT 12, and GLUT 13 are
classified as group 3 [33,34]. GLUT 2 controls energy regulation, neurotransmitter release,
and glucose release in glial cells. Brain stem nuclei and tanycytic, vagus motor nucleus,
astrocytes, hypothalamus, arcuate nucleus, olfactory bulbs, nucleus tractus solitarius,
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paraventricular hypothalamic nucleus, lateral hypothalamic area, and neurons all contain
GLUT 2 [34]. GLUT 3 is found in cell bodies, neurons, and dendrites; brain micro vessels;
and brain astroglia cells. It has been observed that insulin accelerates the translocation
of GLUT 3 and increases glucose uptake by neurons [35]. Glucose entry into the cells is
carried out by GLUT 4, which is mainly found in the hippocampal region and maintains
insulin regulation and improves cognitive development. It also acts as an insulin-sensitive
glucose transporter [36]. There is evidence of GLUT 5 in microglial cells. The brain has
a low fructose concentration, and glucose transport activity is substantially lower than that
of fructose. Studies on animal models have demonstrated that fructose can pass across
the BBB and be used as an energy source by brain cells [31]. The importance of GLUT 5 in
the brain remains unclear and requires further investigation. GLUT 6 is involved in the
nervous system’s physiological activity and transports hexoses across the membrane [34].
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Figure 4. Neuronal control of peripheral insulin sensitivity and glucose metabolism. The pancreatic
islets contain alpha and beta cells, which regulate glucagon and insulin, respectively. Insulin lowers
the effects of glucose uptake in the skeletal muscles, liver, and brain. Blood glucose is increased by
glucagon during the gluconeogenesis and lipolysis processes. The energy level is maintained by the
brain in various parts of the body with a glucose homeostasis mechanism.
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Figure 5. Key steps of the insulin signaling pathway, including insulin binding, signal cascade, exocy-
tosis, and glucose entry. The regulation of signal transduction pathways depends on the signaling of
extracellular chain reactions; each response is based on the course of signaling requirements. Glucose
is taken up in adipose tissue and muscles via the GLUT 2 receptors in pancreatic beta cells and liver
cells, with enhanced diffusion at GLUT 4 receptors. GLUT 1 and GLUT 2 allow glucose to reach cells,
including the brain, retina, kidney, RBC, and other parts of the body.

2.2. Insulin Signaling and Neuro-Complications

IR in dementia is caused by the amyloid precursor protein GSK3 (Glycogen syn-
thase kinase 3) enzyme, involved in glycogen metabolism, oxidative stress, mitochondrial
dysfunction, brain inflammation, ion channel activation, and the Shc family of signaling
adaptor proteins. IR causes cell breakdown and destruction as well as increased glucose
uptake, metabolism, and intake, all of which contribute to abnormal tau aggregation,
inhibit lipolysis, and inhibit gluconeogenesis (Figure 6) [6]. If brain cells becoming too
resistant to insulin leads to elevated blood glucose, impaired synaptic plasticity, microglial
overactivation, mitochondrial dysfunction, neuronal apoptosis, nutrient deprivation, TAU
phosphorylation, and cholinergic dysfunction, dementia is a group of symptoms affect-
ing memory-encoding mechanisms, including difficulty in visual and spatial abilities,
problem-solving, handling complex tasks, planning and organizing, coordination and mo-
tor functions, loss of memory, and changes in cognitive functions. Advanced dementia may
develop into Alzheimer’s disease (AD). Dementia patients have synuclein aggregates and
plaque accumulation, blood–brain barrier leakage, and neuroinflammation (Figure 7). Dis-
integrating microtubules and amyloid beta plaques are formed in AD (Figure 8). Sporadic
forms of dementia are more common; both semantic and episodic memory are caused by
cognitive impairment and visuospatial impairment. Motor coordination is also affected in
severe cases of disease (Figure 5). [7]. IRs affect intellectual ability, increase the generation
of excitability, and promote memory consolidation. IR in cognitive impairment is signified
by mitochondrial dysfunction, which is involved in neurodegeneration by reducing glu-
cose transport and inducing the formation of phosphorylated tau protein (Figure 6) [37].
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The activation of IR autophosphorylation (IRP) leads to the tyrosine phosphorylation of
IRS-1 (insulin receptor substrate 1), which activates PI3K (phosphoinositide 3-kinase) and
decreases synaptic plasticity and memory [37,38]. The NMDARs (N-methyl-D-aspartate
receptors) are activated by calcium ion channels and activated signaling is linked to the
development of neurological complications. NMDAR and IR-dependent signaling molecu-
lar mechanisms resulted in amyloid oligomer accumulation, increased TNF-α release, and
increased concentrations of stress-induced JNK (Jun N-terminal kinase), resulting in IRS-1
inhibitory phosphorylation. The amyloid β oligomers activate further extracellular exclu-
sion of IRs from the cell surface. All these events block the neuronal regulation of insulin,
leading to impaired synaptic plasticity (Figure 9) [37,38]. Dementia is a group of symptoms
affecting memory-encoding mechanisms, including difficulty in visual and spatial abilities,
problem-solving, handling complex tasks, planning, and organizing, coordination and
motor functions, loss of memory, and changes in cognitive functions. Advanced dementia
can progress to Alzheimer’s disease [36]. Dementia patients have synuclein aggregates and
plaque accumulation, blood–brain barrier leakage, and neuroinflammation, as shown in
Figure 10. Disintegrating microtubules and amyloid beta plaques are formed in AD, as
shown in Figure 7.
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Insulin plays an important role in cell growth, repair, activation, dendritic develop-
ment, synaptic maintenance, and neuroprotection and is actively involved in learning and
memory. Various investigations have shown that changes in insulin levels in the brain
lead to the development of neurological complications [39]. Insulin also activates the
N-methyl-D-aspartate receptor on the cell membrane, cortical cerebral glucose metabolism,
acetylcholine, and norepinephrine, which are actively involved in memory-encoding mech-
anisms [40]. In the cerebral cortex, IRS (insulin receptor substrate 1) is abundant in the
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cerebral cortex, hippocampus, hypothalamus, olfactory bulb, septum, and amygdala. In-
sulin signaling is also involved in regulating synaptic remodeling, which is involved in
memory consolidation [9]. T2DM patients have lower brain insulin receptor sensitivity,
downregulate the IRS-1, and have lower levels of insulin-like growth factors, as well as
lower insulin levels in CSF [30]. Insulin signaling is controlled by mTOR pathways, as
shown in Figure 8.

IRs are actively involved in memory and tau phosphorylation, due to the loss of
IR receptor activity and downregulated Aβ (Amyloid beta) oligomer binding sites in the
synapse [29]. The accumulation of Aβ leads to the development of AD. IGF signaling activa-
tion promotes amyloid-protein precursor (APP-A) trafficking, as well as the accumulation
of amyloid processing, tau phosphorylation, and a reduction in cerebral blood flow [41]. IRs
are transmembrane receptors and are made with alpha and beta subunits. Both the subunits
are activated by insulin, which then activates tyrosine kinase enzymes for phosphorylation,
which leads to conformational changes in their structure [38]. Changes in their structures
favor binding with PI3K (phosphoinositide 3-kinases) and binding with the IRS [9]. After
interaction with IRs, the inactive form of PI3K becomes active. The active PI3K enzyme
is generated by PIP2 (phosphorylate phosphatidylinositol (4,5)-bisphosphate) in the cell
membrane, which then causes the creation of phosphatidylinositol (3,4,5)-trisphosphate
(PIP3), which activates AKT/PKB (Figure 8) [42]. Studies on animal models have revealed
that IR inhibitors prevent the memory-encoding mechanism. Injecting insulin in an animal
model increases the memory-encoding process [42]. IR decreases AKT activity, which
inhibits GSK-3 and causes tau protein to be hyperphosphorylated [43]. AKT signaling
regulates various responses at the cellular level, such as glycogen synthase kinase-3 beta
(GSK3) neuronal survival and TAU phosphorylation [41]. Increasing the synthesis of
GSK3β may alter the post-translational modifications in MAPs (microtubule-associated
proteins), such as tau protein [41]. Dementia is also caused by mutations in APP (amyloid
precursor protein). Synaptic signaling is interrupted by Aβ fibrils infiltrating into synaptic
clefts [42]. Polymers of Aβ also play an important role in the development of dementia [38].
The collection of APP alters the ion channel mechanism and disrupts the altered glucose
homeostasis, leading to neuronal integrity degradation and cell death [44].

2.4. Development of Dementia due to Genetic Modifications

mRNA expression and the downregulation of associated receptors are linked to demen-
tia [45]. The oxidative-phosphorylation-related genes are expressed in dementia patients.
The mtDNA irregularities are associated with phenotypic variability [46]. Genetic abnor-
malities are caused by chromosomal defects and damage from neuronal oxidation. The
development of dementia due to T2DM is linked with genetic variability [47]. APO E
(apolipoprotein E) is expressed by chromosome 19 and exists in three isoforms: apo e2,
apo e3, and polymorphic in nature [48]. More than 75 loci have been identified for the
development of disease traits [49]. ADAM17 (A disintegrin and metalloprotease 17), ICA1
(Islet Cell Autoantigen 1), DOC2A (Double C2 Domain Alpha), DGKQ (Diacylglycerol
Kinase Theta), and ICA1L (Islet Cell Autoantigen 1 Like) are the genes responsible for the
regulation of APP metabolism via non-amyloid pathways. Cognitive impairment is caused
by HMGB1 (High-mobility group box protein 1), RAGE (Receptor for Advanced Glycation
End Products), and TLR4 (Toll-like receptor 4) in hyperglycemic conditions [50]. All these
genes impair endothelial cell function and may disrupt various signaling pathways, result-
ing in an accumulation [51]. Dementia is also associated with the APP, PS1 (presenilin 1),
and PS2 genes. Mutations in these genes cause IR in astrocytes and microglial cells [52].

2.5. Progression of Dementia due to Dopamine Dysregulation in Substantia Nigra

Insulin secretion and glucose homeostasis serve as a basis for neural modulation.
Degenerative and functional disorders of the central nervous system are directly related
to dementia. Dopamine is a neurotransmitter that plays a major role in neurological
complications, as shown in Figure 11.



Cells 2022, 11, 3767 12 of 21

Cells 2021, 10, x FOR PEER REVIEW 12 of 23 
 

 

synthase kinase-3 beta (GSK3) neuronal survival and TAU phosphorylation [41]. Increas-
ing the synthesis of GSK3β may alter the post-translational modifications in MAPs (mi-
crotubule-associated proteins), such as tau protein [41]. Dementia is also caused by muta-
tions in APP (amyloid precursor protein). Synaptic signaling is interrupted by Aβ fibrils 
infiltrating into synaptic clefts [42]. Polymers of Aβ also play an important role in the de-
velopment of dementia [38]. The collection of APP alters the ion channel mechanism and 
disrupts the altered glucose homeostasis, leading to neuronal integrity degradation and 
cell death [44]. 

2.4. Development of Dementia due to Genetic Modifications  
mRNA expression and the downregulation of associated receptors are linked to de-

mentia [45]. The oxidative-phosphorylation-related genes are expressed in dementia pa-
tients. The mtDNA irregularities are associated with phenotypic variability [46]. Genetic 
abnormalities are caused by chromosomal defects and damage from neuronal oxidation. 
The development of dementia due to T2DM is linked with genetic variability [47]. APO E 
(apolipoprotein E) is expressed by chromosome 19 and exists in three isoforms: apo e2, 
apo e3, and polymorphic in nature [48]. More than 75 loci have been identified for the 
development of disease traits [49]. ADAM17 (A disintegrin and metalloprotease 17), ICA1 
(Islet Cell Autoantigen 1), DOC2A (Double C2 Domain Alpha), DGKQ (Diacylglycerol 
Kinase Theta), and ICA1L (Islet Cell Autoantigen 1 Like) are the genes responsible for the 
regulation of APP metabolism via non-amyloid pathways. Cognitive impairment is 
caused by HMGB1 (High-mobility group box protein 1), RAGE (Receptor for Advanced 
Glycation End Products), and TLR4 (Toll-like receptor 4) in hyperglycemic conditions 
[50]. All these genes impair endothelial cell function and may disrupt various signaling 
pathways, resulting in an accumulation [51]. Dementia is also associated with the APP, 
PS1 (presenilin 1), and PS2 genes. Mutations in these genes cause IR in astrocytes and 
microglial cells [52]. 

2.5. Progression of Dementia due to Dopamine Dysregulation in Substantia Nigra 
Insulin secretion and glucose homeostasis serve as a basis for neural modulation. De-

generative and functional disorders of the central nervous system are directly related to 
dementia. Dopamine is a neurotransmitter that plays a major role in neurological compli-
cations, as shown in Figure 11. 

 
Figure 11. Progression of dementia due to dopamine dysregulation in substantia nigra. Figure 11. Progression of dementia due to dopamine dysregulation in substantia nigra.

Poor insulin activity in the brain is linked with a high level of cholinergic action,
leading to the development of dementia [53].

Furthermore, the development of dementia also occurs due to alterations in the
dopamine pathway in the substantia nigra. A PPAR agonist causes memory loss by increas-
ing intracellular glucose oxidation uptake in neurons [54]. Dysregulation in cholinergic
neurotransmission alters the performance of the hippocampus area, the recollection of
memory, acetylcholine-induced responses, and increased ChE activity in the brain dur-
ing cognitive deficits. In low amounts, choline acetyltransferase (ChAT) is observed in
patients with dementia and neuronal dysfunction [55]. All these findings can be used for
identification and the development of etiology and treatment options.

2.6. Neuronal Apoptosis in Dementia

IR and T2DM result in neuronal death. Different neurological conditions, such as
Huntington’s disease, amyotrophic lateral sclerosis and dementia, Parkinson’s disease,
and Alzheimer’s disease, may occur because of apoptosis [56], IGF (insulin-like growth
factor) [57], increased Bax/Bcl-x ratio, hippocampal neuronal death and L caspase-3 activity,
mitochondrial dysfunction, cerebral blood vessel dysfunction, myelin and axon damage,
intracytoplasmic calcium deposition, and Purkinje cell damage; IGF-I, IGF-IR, and IR
activity; endoplasmic dysfunction, BBB degradation; ependymal [58].

2.7. Significance of Ketone Bodies in Diabetes-Related Dementia

Brain cells use ketone bodies as a source of energy in situations of nutrient deprivation,
after exercise, or low carbohydrates. Regulation of ketone bodies is also linked with gluco-
neogenesis, the tricarboxylic acid cycle, and fatty acid b-oxidation. Antioxidant responses
to ketone bodies are increased [59]. Hyperglycemic conditions can reduce the activity
of GABA and glutamate neurotransmitters. Cholinergic transmission was found to be
dysregulated in the brain hippocampus [60]. Another neurotransmitter, dopamine, is also
associated with behavior, cognition, and emotions. Reduced levels of dopamine receptors
have been observed in patients with type 2 diabetes [61]. The 5-HT (5-hydroxytryptamine)
neurotransmitters are associated with neuronal cell regeneration and synaptic plasticity.
Glucagon-like peptide-1 hormone (GLP-1H) inhibits IR and neuroinflammation in the brain
under oxidative stress. GLP1H is also involved in the regulation of synaptic plasticity and
neurogenesis [62]. Ketosis increases the levels of GABA (gamma-aminobutyric acid) and
excitatory glutamate and regulates the levels of serotonin and dopamine, which are linked
with depression and anxiety [63]. Ketone bodies in the hydroxybutyrate form are involved
in neuronal anti-apoptosis pathways and cell survival [63]. In the mouse model, fat-rich
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animals induce APP/PS1xdb/db deposition, whereas ketone bodies improve cognitive
impairment function [60]. Ketone bodies regulate neural signaling, increase the sensitivity
of insulin, reduce the effects of oxidative stress, increase synaptic activity, and maintain
the level of neurotransmitter activity. Low ketone body levels may cause pathological
conditions in T2DM [64]. More research is needed to understand the regulation of ketone
bodies at low levels in neuroprotection and neurotoxicity at high levels in diabetes-induced
dementia treatment options.

2.8. The Function of Mitochondria in Diabetes-Related Cognitive Impairment

Cell signaling molecules and transcription factors play a very important role in intra-
cellular energy metabolism in the mitochondria. Brain disorders linked with diabetes are
caused by abnormalities in mitochondrial functions [65]. IR is also caused by mitochondrial
dysfunction, oxidative stress, neuronal damage, decreased mETC (mitochondrial electron
transport chain) activity and ATP synthesis, apoptosis, lipid peroxide accumulation, de-
creased glutathione peroxidase activity, ferroptosis, and An accumulation, all of which can
lead to cognitive impairment [66]. Mitophagy is regulated by PINK1 (PTEN-induced kinase
1) and protects the neurons, as has been observed in animal models. PINK1-dependent
mitophagy via MT2/Akt/NF-κB is achieved by melatonin, which prevents ROS (reactive
oxygen species) accumulation and apoptosis (Figure 12) [67].
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In diabetic mice, increased levels of LC3-II (microtubule-associated protein 1A/1B-
light chain 3) and p62 (nucleoporin p62) and decreased levels of PINK1 have been observed,
which leads to blocked autophagy [68]. Dephosphorylation of FUNDC1 was also observed
in T2DM mice. Cognitive impairment in T2DM mice occurs due to homeostasis, impaired
mitophagy, proteostasis disorder, and damage to multiple mechanisms [69]. Although
various mechanisms are not completely known, we need to explore new mechanisms and
pathways for the prevention and treatment of dementia. Figure 7 depicts the roles of
sensor and signaling molecules, as well as transcription factors, in dietary intervention
and treatment options regulated by effector pathways for early diagnosis and treatment,
regulated by effector pathways for early diagnosis and treatment.

2.9. Progressive Dementia Due to Microglial Overactivation

Microglia cells are expressed by the AAβ protein and increase brain insulin levels
due to Aβ accumulation. Protein synthesis is being studied as a potential target for drug
development and dementia development. Apoptosis occurs due to the generation of
ROS and AGE products [70]. Neuroinflammation is also observed due to plaque and
tangle formation, oxidative stress markers, oxidized lipids and proteins, and ROS, which is
insulin resistant and causes dementia. Microglial cell stimulation and increased levels of
proinflammatory cytokines, such as interleukin-1, IL-6, and tumor necrosis factor, inhibit
neurogenesis and cause cognitive deficits (Figure 13) [71]. More research is needed to
investigate the potential of neuroinflammation treatment, and the cognitive impairment
caused by diseases in their early stages.
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3. Antidiabetic Drug Development

Various anti-diabetic drugs are available for patients with T2DM as monotherapy or
combination therapy [72]. Most of the drugs mainly target neurological, cognitive, and
cardiovascular clinical complications. Antidiabetic drugs are classified based on their
mechanism of action [73]. The clinical evaluation of anti-diabetic drugs in diabetic patients
with cognitive dysfunction was investigated in various studies (Table 2).



Cells 2022, 11, 3767 15 of 21

Table 2. Antidiabetic drug list, including mechanisms of action, significance, and risk factors.

Type of Class Antidiabetic Agent Types of Patients Mechanism of Action Major Role Risk Contraindications

Potent inhibitor of the
sodium-glucose
cotransporter 2

(SGLT-2)

Canagliflozin Patients with T 2 DM without renal
failure Polyuria and glycosuria are caused by

glucose reabsorption in the glomerulus
tubule of the kidney and reversible
inhibition of SGLT-2 in the proximal

tubule of the kidney.

Inhibition of SGLT-2
in the kidney

Glucosuria Ketoacidosis
and excessive urination

Weight loss
Chronic kidney diseaseDapagliflozin Used in patients to improve glycaemic

control with T2DM

Empagliflozin Used to reduce the risk of cardiovascular
death in patients with T2DM

Sulfonylureas

First generation
Chlorpropamide promote insulin release with T2DM Prevent calcium influx, insulin secretion,

transmembrane depolarization, and
ATP-sensitive potassium channels in

pancreatic cells.

Increase insulin
secretion from

pancreatic β cells

hypoglycemia
Disulfiram-like reaction

agranulocytosis,
hemolysis

Cardiovascular
comorbidity Obesity

Severe renal or
liver failure

First generation Tolbutamide promote insulin release with T2DM

Second generation Glyburide Used in elderly patients with diabetes

Dipeptidyl peptidase-4
(DPP-4) inhibitors

Saxagliptin Patients with Renal Impairment
with T2DM Indirectly increase the effect of

endogenous renin-angiotensin by
inhibiting the DPP-4 enzyme, which

disintegrates GLP-1, insulin secretion,
glucagon secretion, and delayed

stomach emptying.

Inhibit GLP-1
degradation

Pancreatitis
Nasopharyngitis,

Headache, dizziness
Arthralgia Edema

Liver failure
Renal failureSitagliptin Used to reduce blood sugar levels in

adults with T2DM

Linagliptin Used to reduce blood sugar levels in
adults with T2DM

Meglitinides

Nateglinide Increase the secretion of insulin
released by the pancreas with T2DM ATP-sensitive potassium channels are

blocked, cell membranes are depolarized,
calcium influx occurs, and insulin

secretion is increased.

Increase insulin
secretion from

pancreatic β cells

hypoglycemia
Weight gain Severe liver failure

Repaglinide
It is used when Insulin is not

synthesized by the body in a patient
with T2DM

Thiazolidined iones
Pioglitazone

Used to reduce the risk of
cardiovascular death in patients with

T2DM
Enhancing adipokine transcription,
peroxisome proliferator-activated

receptors (PPARs) activation can decrease
IR. increased insulin secretion.

Reduce IR
Edema Cardiac failure

Weight gain
Osteoporosis

Congestive heart failure
Liver failure

Rosiglitazone Increase the secretion of insulin
released by the pancreas with T2DM

Amylin analogs Pramlintide used to reduce blood sugar levels in
adults with T2DM

The secretion of insulin is stimulated by
decreased glucagon release, a slower pace

of stomach emptying, and an elevated
level of satisfaction.

Decrease
glucagon release hypoglycemia Nausea Gastroparesis

Metformin Biguanides
preventing the production of glucose

in the liver and improving insulin
sensitivity in T2DM patients

Metformin increases AMPK activity,
lowers cAMP, reduces the production of

gluconeogenic enzymes, improves insulin
sensitivity (via effects on fat metabolism),

Enhances the effect
of insulin

Lactic acidosis
Weight loss

Gastrointestinal
Diarrhoea,

Before the administration
of iodinated contrast
medium and major

surgery, metformin must
be stopped.

Glucagon-like
peptide-1 (GLP-1)
agonists (incretin

mimetic drugs

Exenatide used to reduce blood sugar levels in
adults with T2DM

Increased food intake stimulates the
digestive tract’s endocrine cells to

generate GLP-1, which the enzyme DPP-4
breaks down to boost insulin secretion.

Stimulate the
GLP-1 receptor

pancreatitis cancer
Nausea

Gastrointestinal
motility disordersLiraglutide used to reduce T2DM by improving

insulin sensitivity

Albiglutide used to reduce blood sugar levels in
adults with T2DM
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3.1. Glucose–Sodium Co-transporter 2

SGLT2 (sodium–glucose co-transporter 2) is an inhibitor of the reabsorption of glucose
in the renal tubules. In a mouse model, the efficacy of empagliflozin and dapagliflozin
was investigated. In treated mice, plaque burden and neuronal deactivation have been ob-
served [73]. In another study, improved mitochondrial function and cognitive impairment
were observed in rats treated with dapagliflozin [74].

3.2. Pioglitazone

Pioglitazone has been shown to improve cognitive impairment and reduce tau protein
deposition in triple-transgenic mice [75]. Pioglitazone has also been shown to activate
microglia in another model [76]. Pioglitazone treatment also normalizes metabolic and
vascular functions, reduces IR, and maintains ROS (reactive oxygen species) in the hip-
pocampus and cerebral cortex for learning and memory [77].

3.3. Rosiglitazone

In various investigations, the clinical efficacy of rosiglitazone was observed. A ran-
domized double-blind study showed improved cognitive impairment in early-stage AD
patients without the ApoE4 allele [78]. Treatment with rosiglitazone has shown mitochon-
drial biogenesis in the mouse brain [79] and combination therapy with metformin has
shown stable results [80].

3.4. Metformin

Metformin is an oral hypoglycemia drug; various clinical investigations are carried
out on cognitive dysfunction in T2DM. Metformin in combination with sulfonylureas has
reduced dementia by up to 35% [81]. Long-term metformin treatment has been linked to
the development of Alzheimer’s disease. No dementia or neurological complications have
been observed with other drugs, such as thiazolidinediones, sulfonylureas, or insulin.

3.5. Thiazolidinediones

Thiazolidinediones are PPAR agonists that increase insulin secretion in T2DM pa-
tients. Two drugs, namely rosiglitazone and pioglitazone, belong to the thiazolidinediones.
Clinical efficacy has been shown to improve cognitive impairment [82].

3.6. GLP-1-Based Therapies

It has been observed that the expression of GLP-1 in mice improves cognitive function.
Glp-1-expressing mice also had severely impaired LTP in the CA1 area of the hippocampus.
GLP-1 plays an important role in memory formation [83].

3.7. GLP-1 Analogs

Exendin-4 reduced HbA1c and cerebrovascular A in a 16-week trial in 5XFAD mice
(3xTgAD). Exendin-4 also reduces neuronal apoptosis, activates the CREB transcription
factor, and induces BDNF activity. Another 16-week study in 5XFAD mice looked at
maintaining mitochondrial functioning and cognitive impairment [84].

3.8. Liraglutide

Improved cognitive impairment has been observed after a 3-month administration of
liraglutide in a mouse model. Another study analyzed a 28-day liraglutide treatment in
3xTg-AD female mice and observed that it prevented memory impairment [85]. In treated
liraglutide HFD-fed mice or ob/ob mice, neurogenesis and hippocampal synaptic plasticity
were significantly improved [86].

3.9. Dulaglutide and Lisisenatide

The clinical efficacy of dulaglutide was investigated in 371 sites in 24 countries and
reduced cognitive impairment in T2DM by 14%. Lixisenatide was found to be effec-
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tive against plaque deposition and neuroinflammation in the brains of tau mice after
2 months of treatment. In HFD-fed mice, lixisenatide has been shown to reduce IR and
neurogenesis [87].

3.10. New GLP-1 Analogs

GLP-1 and gastric inhibitory peptide (GIP) receptor agonists may be more effective in
the treatment of Alzheimer’s disease [88]. In an intracerebroventricular STZ-induced IR
AD rat model, working memory and spatial memory deficits were reversed by DA5-CH, a
new dual GLP-1/GIP receptor agonist [89]. In the 3xTg mouse model, a new GLP-1/GIP,
and GIP were found to enhance working memory.

3.11. DPP-4 Inhibitors

Current diabetic treatments, such as sitagliptin, vildagliptin, alogliptin, and linagliptin,
all use different forms of DPP-4 inhibitors to maintain the levels of endogenous GLP-1.
DPP-4 inhibitors have been shown to greatly prevent dementia with metformin and thiazo-
lidinedione [90].

3.12. Linagliptin A

In a 3xTg-AD mouse model, linagliptin treatment for 8 weeks resulted in a notable
improvement in cognitive impairment. Linagliptin also lessens the development of amyloid
beta-amyloid and neuroinflammation [91]. Furthermore, linagliptin also increases cerebral
blood flow and cognitive decline in a tauopathy mouse model. The DPP-4 inhibitor also
increased the levels of the tight-junction protein claudin-5 and prevented neuronal loss in
the hippocampus and cortex of these mice.

3.13. Alogliptin

Alogliptin mainly activates CREB in insulin-positive β cells of the islets and increases
anti-apoptotic bcl-2. Another study carried out in Zucker diabetic rats for 10 weeks showed
neuroprotective proteins in the brain and reduced the level of inflammatory markers [92].

3.14. Vildagliptin

A 6-month clinical trial with vildagliptin improved HbA1c and cognitive impairment
in T2DM patients [93]. In HFD rats, combined therapy with pioglitazone improved den-
dritic spines in the CA1 hippocampus and reduced apoptosis of hippocampal neurons [93].

3.15. Sitagliptin

The efficacy of sitagliptin has been studied in animal models. Improved cognitive
impairment and reduced plaque deposition have been observed in APP/PS1 mice after
oral administration of sitagliptin for 8 weeks [94]. Furthermore, they reduced the activity
of inflammatory markers and suppressed white-matter lesions.

4. Conclusions

Determining the mechanisms associated with T2DM can lead to new approaches to
dementia’s early detection and treatment. The link between T2DM and cognitive dysfunc-
tion is mainly reliable and a study on humans and animals can explore the most effective
mechanism that could be useful. There is a very tough puzzle to solve for T2DM and the
degeneration of neurons. Neurofibrillary tangles and neurotic plaques, cerebrovascular
abnormalities, decreased brain volume, markers of white-matter injury, retinal measures,
retinal nerve fiber, retinal vascular tortuosity, and fluid markers for gliosis and neurodegen-
eration are all targets for cognitive dysfunction. The development of glycoproteomic-based
tools may be useful for the identification of novel biomarkers for early diagnosis and treat-
ment. The development of novel treatment options for T2DM in dementia IR is developed
due to altered insulin signaling, which is essential for energy metabolism, neuronal growth,
neuroprotection, and synaptic plasticity. Peripheral and central IR are common in neuro-
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logical disorders and can be used as potential targets for intervention in and treatment of
dementia. Various clinical trials have improved cognition. As a result, insulin treatment
must be tested in a variety of contexts, including known resistance or patients with T2DM,
screening, and including patients at all stages. We can reduce the global burden of demen-
tia by applying these promising areas of research and novel approaches for patients with
T2DM and dementia.
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