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Abstract: Skin senescence is characterized by a decrease in extracellular matrix and the accumulation
of senescent fibroblasts in the dermis, and their secretion of humoral factors. Ependymin-related
protein 1 (EPDR1) is involved in abnormal fibroblast metabolism and collagen deposition, however,
its relation to skin aging is unclear. We investigated whether and how EPDR1 is involved in age-
related dermal deterioration. When young dermal fibroblasts and senescent cells were co-cultured
in a semipermeable membrane separation system, the young fibroblasts showed decreased gene
expression of collagen type I α1 chain (COL1A1) and elastin, and increased expression of matrix
metalloproteinase (MMP)1 and MMP3. Senescence marker expression and EPDR1 production were
increased in the culture medium of senescent cells. Treatment of young fibroblasts with recombinant
EPDR1, enhanced matrix-related gene expression and suppressed COL1A1 expression, whereas
EPDR1 knockdown had the opposite effects. EPDR1 gene and protein expression were increased in
aged skin, compared to young skin. These results suggest that senescent cells affect nearby fibroblasts,
in part through EPDR1 secretion, and exert negative effects on matrix production in the dermis.
These results may lead to the discovery of potential candidate targets in the development of skin
anti-aging therapies.

Keywords: ependymin-related protein 1; skin aging; fibroblast; senescence-associated secretory
phenotype; senescence

1. Introduction

Cellular senescence is a state of irreversible growth arrest caused by stress signals such
as telomere shortening, oxidative damage, oncogene activation, and hypoxia [1]. Senescent
cells have an enlarged cytoplasm, multiple nuclei, and different patterns of metabolism
and gene expression, compared to proliferating cells [2]. They secrete various cytokines
(senescence-associated secretory phenotype [SASP]) that affect the tissue microenvironment
and disrupt tissue structure and function through paracrine effects [3,4]. This results in
impaired tissue regeneration and contributes to age-related tissue damage, including
impaired tissue homeostasis and tumorigenesis. López-Otín et al. [5] hypothesized that
skin aging is attributed to the SASP caused by senescent cells accumulated in the epidermis
and dermis, and the subcutaneous adipose tissue depot. The dermis is rich in extracellular
matrix composed of collagen and elastin, which contribute to skin elasticity and surface
morphology maintenance. Abnormal metabolism of the extracellular matrix by senescent
cells causes skin aging. The amount of matrix decreases with age, leading to loss of skin
elasticity, delayed wound healing, and changes in surface morphology [6,7].

The existence of senescence-inducing factors secreted by senescent cells has been
demonstrated by heterochronic parabiosis experiments; when old and young mice were
surgically connected and the blood was allowed to circulate between them, some tissues of
the young mice developed aging-related phenotypes, such as delayed regeneration after
injury [8,9]. Complement factor C1q [10] and growth differentiation factor 11 [11] have been
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identified as senescence-inducing factors; however, humoral factor-induced senescence in
skin fibroblasts remains unclear.

We noted similar histological and biochemical changes in the wound repair of aged
connective tissue and tissue affected by Dupuytren’s contracture [12]. In particular, there
are metabolic abnormalities in the deposition of extracellular matrix proteins (especially col-
lagen) and the presence of contractile myofibroblasts [13]. Genetic analysis of Dupuytren’s
contracture revealed a marked elevation of ependymin-related protein 1 (EPDR1) gene ex-
pression [14], which reportedly contributes to excessive collagen contractility and fibroblast
abnormalities [15].

Little is known about EPDR1. The protein is also known as mammalian ependymin-
related protein 1 (MERP1) and as UCC1, which is upregulated in colorectal cancer [16].
Calcium-induced conformational changes in ependymin have been reported to be im-
portant for its interaction with the extracellular matrix, particularly with collagen [17,18].
Recent studies have shown that EPDR1 expression in beta cells is increased under metabolic
overload (obesity) and directs glycolysis-derived pyruvate to the mitochondrial TCA cy-
cle, thus enhancing stimulated secretory coupling and increasing insulin secretion [19].
Interestingly, through this mechanism, EPDR1 may reflect compensatory mitochondrial
biosynthesis that replaces defective mitochondria, suggesting that its expression increased
as a result of age-related cell organ dysfunction [20]. However, their function in the skin,
particularly in the dermis, and their behavior during aging remain unresolved.

Activation of p16 INK4a expression has proven to be one of the most useful markers
of senescence. As a cell cycle regulator, p16 INK4a limits cell cycle progression from G1
phase to S phase by inhibiting CDK4 and CDK6 (CDK4/6) kinases [21]. In addition, p16
INK4a expression is highly dynamic, barely detectable in healthy young tissues, but rapidly
elevated in many tissues after aging or certain types of tissue damage [22–24]. Mouse
studies suggest that accumulation of p16 INK4a leads to age-related loss of replication
capacity in selected tissues, thereby causing some phenotypic aspects of aging [25].

Alternatively, the function of MMP in relation to the extracellular matrix is important
for tracking aging; MMP have the ability to irreversibly degrade ECM components and
shed the outer domains of cell surface receptors [26]. Numerous studies have linked cellular
senescence to increased expression of MMP family members, which was also investigated
in this study.

We aimed to investigate the role of EPDR1 in aging fibroblasts of the dermis, using
a co-culture system in which young and aging dermal fibroblasts were separated by a
semipermeable membrane to examine the association between EPDR1, and the effects of
aging dermal fibroblasts on young dermal fibroblasts.

2. Materials and Methods
2.1. Cell Culture

Normal human dermal fibroblasts (NHDF; C-12300) were purchased from Takara-
Bio (Shiga, Japan). The cells were grown in low-glucose Dulbecco’s modified Eagle’s
medium (DMEM; Wako Pure Chemical Industries, Osaka, Japan) supplemented with
10% fetal bovine serum (FBS; Thermo Fisher Scientific, Waltham, MA, USA) and 1%
penicillin/streptomycin (Thermo Fisher Scientific). Fibroblasts exhibiting proliferative
senescence were defined as having a population doubling level (PDL) of 50 or greater, and
visually arrested proliferation as a result of consecutive passages over a 3-month period.
Intracellular senescence-associated (SA)-β-gal activity was assessed using the Senescence
β-Galactosidase Staining Kit from Cell Signaling Technology (Danvers, MA, USA), fol-
lowing the manufacturer’s introduction. To assess cell division, cells were incubated with
bromodeoxyuridine (BrdU) at 37 ◦C for 24 and incubated with BrdU-FITC antibody (Br-
dUFlowEx FITC Kit; EXBIO Praha, a.s., Vestec, Czech Republic) for 30 min. Then, the
cells were analyzed using a flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA) and
FlowJo (version 10.3).
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2.2. Cell Co-Culture

Fibroblasts were cultured in DMEM containing 10% (w/v) FBS at 37 ◦C in humidified
air with 5% CO2. UniWells Horizontal Co-Culture Plates (Ginreilab, Ishikawa, Japan)
were used for co-culture. Senescent and young fibroblasts were seeded at a density of
1250 cells/cm2 into one of the two compartments. After two days, the fibroblasts and
culture medium from both compartments were collected.

2.3. Immunocytochemistry

Cells were placed on glass slides and fixed in 4% paraformaldehyde at room tempera-
ture (20–25 ◦C) for 10 min. The cells were incubated with anti-EPDR1 antibody (PA5-140254,
Thermo Fisher Scientific) and anti-p16ink4a antibody (ab211542; Abcam, Cambridge, UK)
diluted 1:100 in phosphate-buffered saline (PBS) at 4 ◦C overnight. After three washes with
PBS, the cells were incubated with Alexa Fluor 488-conjugated goat anti-rabbit antibody and
Alexa Fluor 555-conjugated donkey anti-goat antibody (each from Thermo Fisher Scientific),
diluted 1:2000 in PBS at room temperature for 1 h. After incubation, the slides were washed
three times with PBS and counterstained for nuclear visualization using ProLong Gold
Antifade Mountant (Thermo Fisher Scientific) containing 4′,6-diamidino-2-phenylindole.

2.4. Immunohistochemistry

Whole human skin fragments were collected from the trunks of healthy male volun-
teers (aged, 10- and 78-years). The volunteers had no obvious underlying diseases, no
history of internal medicine use. The slides were deparaffinized by washing in xylene three
times at room temperature (20–25 ◦C, 5 min per soak). Then, the slides were soaked twice
in 100% ethanol (3 min per soak) and then stepwise in 95%, 80%, and 75% ethanol (3 min
per soak), and rehydrated at room temperature. The slides were incubated with 3% goat
serum in PBS at room temperature for 1 h to block nonspecific binding sites. The slides
were then incubated with a 1:100 dilution of anti-EPDR1 antibody (PA5-140254, Thermo
Fisher Scientific) in PBS at 4 ◦C overnight. After three washes with PBS, the slides were
incubated with a 1:500 dilution of biotinylated rabbit anti-goat antibody (Vector Laborato-
ries, Burlingame, CA, USA) in PBS at room temperature for 1 h. The signal was amplified
by the avidin-biotinylated peroxidase complex (ABC) method using the VECTASTAIN
ABC Kit (Vector Laboratories) and 20 mg/dL 3,3′-diaminobenzidine solution (FUJIFILM
Wako Pure Chemicals, Osaka, Japan) for 1–3 min to develop color. Then, the sections were
washed once with running tap water for 5 min before nuclear counterstaining with Gill’s
hematoxylin solution (Merck Millipore, Billerica, MA, USA) at room temperature for 6 s.
Finally, the sections were rinsed with tap water for 5 min, dehydrated in ethanol (twice in
95% and twice in 100%, 5 min per soak), rinsed with xylene three times, and sealed with
Mount Quick Sealant (TaKaRa Bio, Shiga, Japan). The samples were observed using an
integrated stereomicroscope (BZ-X800; Keyence, Osaka, Japan).

2.5. RNA Interference and Transfection Method

Cells were transfected with EPDR1 siRNA (122,437, 122,438, and 122,439; SilencerTM

siRNA, Thermo Fisher Scientific) using Lipofectamine 2000 (11668-019; Life Technologies,
Invitrogen, Carlsbad, CA, USA). After 72 h, RNA was collected from the cells and specific
gene knockdown was assessed using quantitative reverse transcription (RT-q) PCR.

2.6. Treatment of Dermal Fibroblasts with Recombinant Human Proteins

Young human skin fibroblasts (PDL 10-15) were maintained in DMEM containing
15 µg/mL recombinant EPDR1 (rEPDR1; ab162830, Abcam). The rEPDR1-containing
medium was refreshed every 2 days. The cells were analyzed after 10 days. Cell viability
after rEPDR1 intervention was measured using the MTT assay kit (CellQuanti-MTTTM Cell
Viability Assay Kit (CQMT-500, Bioassay Systems, Hayward, CA, USA)) according to the
manufacturer’s protocol.
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2.7. RNA Isolation, and Reverse Transcription

Total RNA was extracted from cells or skin tissues using a monophasic solution of
phenol and guanidine isothiocyanate (ISOGEN; NipponGene, Tokyo, Japan) according
to the manufacturer’s instructions. The RNA was mixed with a random primer, reverse
transcriptase, and dNTP mixture (Takara Bio, Tokyo, Japan). The mixture was incubated in
a T100TM thermal cycler (Bio-Rad Laboratories, Hercules, CA, USA) at 25 ◦C for 5 min,
55 ◦C for 10 min, and 80 ◦C for 10 min to heat-inactivate the reverse transcriptase and
synthesize cDNA.

2.8. RT-qPCR

RT-qPCR was performed on an Applied Biosystems 7500 Fast Real-Time PCR System
(Thermo Fisher Scientific). Briefly, 40 cycles of 95 ◦C for 3 s (denaturation) and 60 ◦C
for 30 s (annealing and extension) were run, and the fluorescence of each sample was
measured at the end of each cycle. In subsequent melting curve analysis, the temperature
was increased from 60 ◦C to 95 ◦C and fluorescence was measured continuously. Gene
expression was determined using primers for EPDR1 (assay ID: Hs01556067_m1), COL1A1
(Hs00164004_m1), elastin gene (ELN) (Hs00355783_m1), MMP1 (Hs00899658_m1), MMP3
(Hs00968305_m1), and p16ink4a (Hs00923894_m1) (all from Thermo Fisher Scientific) and a
PCR master mix (Cat. No. 4352042; Applied Biosystems, Foster City, CA, USA) following
the manufacturers’ instructions. GAPDH (Hs02786624_g1) was used as a reference gene for
normalization. The gene expression level in the proliferating cell population was used as
the baseline, and fold change values were determined by the 2−∆∆CT method.

2.9. Western Blotting

Total protein was extracted from cells using lysis buffer (50 mM Tris-HCl (pH 8.0),
150 mM NaCl, 0.5% Nonidet P-40, 0.5% sodium deoxycholate, and phenylmethylsulfonyl
fluoride (all from FUJIFILM Wako Pure Chemical)). Equal volumes (40 µg) were elec-
trophoresed on 10% polyacrylamide gels (Mini-PROTEAN TGX Precast Gels; Bio-Rad
Laboratories) and transferred onto polyvinylidene difluoride membranes (Millipore, Bed-
ford, MA, USA) using a Trans-Blot Turbo Transfer System (Bio-Rad Laboratories). After
blocking with 3% nonfat milk at room temperature for 2 h, the membranes were incubated
with primary antibodies against EPDR1 (PA5-140254; Thermo Fisher Scientific, 1:200),
CDKN2A/p16INK4a (EPR1473; Thermo Fisher Scientific, 1:200), MMP9 (ab52631; Abcam,
1:2000), MMP3 (ab52915; Abcam, 1:1000), ELN (sc-58756; SantaCruz Biotechnology, Dallas,
TX, USA, 1:500) and COL1A1 (GTX26308; GeneTex, Irvine, CA, USA, 1:200), diluted in
blocking solution at 4 ◦C overnight. The next day, the samples were incubated with donkey
anti-goat IgG H&L (HRP) (ab6885; Abcam) and goat anti-rabbit IgG H&L (HRP) (ab205718;
Abcam) at a 1:1000 dilution at 37 ◦C for 2 h. After washing, immunoreactive protein bands
were visualized using an Electrochemiluminescence Detection Kit (Pierce Biotechnology,
Rockford, IL, USA). Images of the bands were acquired using a chemiluminescence imager
(ImageQuant LAS 4000 mini; GE Healthcare, Chicago, IL, USA). Image analysis was per-
formed using ImageJ (version 1.53p, National Institutes of Health, Bethesda, MA, USA).
Each assay was repeated three times.

2.10. Enzyme-Linked Immunosorbent Assay (ELISA)

Senescent cells were prepared as described above, and the medium was changed
to serum-free medium containing antibiotics. After 24 h, the conditioned medium was
collected and EPDR1 expression was quantified using a Human Mammalian ependymin-
related protein 1 (EPDR1) ELISA Kit (abx522130; Abbexa, Cambridge, UK), according to
the manufacturer’s protocol.

2.11. Statistical Analysis

Statistical analyses were performed using GraphPad Prism (version 9; GraphPad
Software, San Diego, CA, USA) or SPSS 22.0 (SPSS, Chicago, IL, USA). Mann–Whitney’s U
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test was used to analyze differences between the two groups. One-way analysis of variance
and Tukey’s post hoc test were used to analyze differences among three or more groups.
Statistical significance was set at p < 0.05.

3. Results
3.1. Senescent Fibroblasts Influence Extracellular Matrix Expression in Young Fibroblasts via
Humoral Factors

Senescent cells were obtained by long-term culture (>3 months, population doubling
level [PDL] ≥ 50) of adult human skin fibroblasts and exhibited a typical senescent cell
phenotypic features, including cytoplasmic expansion, SA-β-galactosidase expression, and
decreased division (p = 0.00092) (Figure 1A,B). When these cells were co-cultured with
young fibroblasts (PDL ≤ 30) in a semipermeable membrane separation system, gene
expression of type I collagen α 1 chain (COL1A1, p = 0.00021) and elastin (ELN, p = 0.00034)
in the young cells was significantly decreased, whereas that of matrix metalloproteinase
(MMP)1 (p = 0.00022) and MMP3 (p = 0.000019) was significantly increased (Figure 1C). No
significant changes occurred when young fibroblasts were co-cultured (data not shown).

Consistent with the gene expression results, at the protein level, young cells co-cultured
with aged cells also showed decreased expression of COL1A1 (p = 0.00021) and ELN
(p = 0.00033), and increased expression of MMP1 (p = 0.00017) and MMP3 (p = 0.0035). As
the cells could not pass through the semipermeable membrane, aged fibroblasts negatively
affected fibroblast matrix-related gene expression in young cells through secreted factors,
rather than by direct cell contact.

3.2. EPDR1 Mediates the Negative Effects of Aging Skin Fibroblasts on Young Fibroblasts

The next step was to identify the secreted factors from aging cells that affected extra-
cellular matrix metabolism in young cells. We focused on EPDR1 and found that its gene
and protein expression were increased in senescent cells (Figure 2A–C). ELISAs confirmed
that the concentration of EPDR1 protein in the culture medium of aged fibroblasts was
significantly increased (p = 0.0023) (Figure 2D). To examine the effect of EPDR1, human
recombinant EPDR1 was added to young dermal fibroblast cultures. This did not affect cell
viability (p = 0.68) (Figure 2E), but in accordance with the changes observed in the co-culture
system of aged and young fibroblasts, MMP1 (p = 0.00022) and MMP3 (p = 0.000028), ex-
pression was increased in young fibroblasts treated with recombinant EPDR1, whereas
COL1A1 expression was decreased (p = 0.000031) (Figure 2F). ELN expression tended to
be decreased, albeit not significantly (p = 0.12). However, at the protein level, there was
an increase in MMP1 (p = 0.00022) and MMP3 (p = 0.000017), and a decrease in COL1A1
(p = 0.00038) and ELN (p = 0.0012) expression, all of which were significant (Figure 2G).

SiRNA-mediated knockdown of EPDR1 in aged fibroblasts decreased MMP1
(p = 0.00023) and MMP3 (p = 0.000339) expression and increased COL1A1 expression
(p = 0.000018) (Figure 2H). This was confirmed using another EPDR1 siRNA with a different
sequence. These results were also consistent at the protein level, with a decrease in MMP1
(p = 0.0013) and MMP3 (p = 0.00021), and an increase in COL1A1 (p = 0.0019) and ELN
(p = 0.031) expression (Figure 2I).
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Figure 1. Expression of extracellular matrix-related genes in senescent dermal fibroblasts. (A) SA-β-
gal staining of proliferating and senescent cells. Bar = 100 μm. (B) BrdU absorption in proliferating 
and senescent cells. (C) RT-qPCR analysis of extracellular matrix-related gene expression in young 
and senescent cells. GAPDH was used as a reference gene. (D) Western blot analysis of extracellular 
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imental triplicate. 

Figure 1. Expression of extracellular matrix-related genes in senescent dermal fibroblasts. (A) SA-β-
gal staining of proliferating and senescent cells. Bar = 100 µm. (B) BrdU absorption in proliferating
and senescent cells. (C) RT-qPCR analysis of extracellular matrix-related gene expression in young
and senescent cells. GAPDH was used as a reference gene. (D) Western blot analysis of extracellular
matrix-related protein expression in young and senescent cells. The expression levels of each protein
were normalized to the expression level of GAPDH. * p < 0.05. All assays were conducted in
experimental triplicate.
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DAPI, p16ink4a, and EPDR1. Bar = 20 μm. (B) RT-qPCR analysis of p16ink4a and EPDR1 gene ex-
pression. GAPDH was used as a reference gene. (C) Western blot analysis of EPDR1 expression in 
young and senescent cells. GAPDH was used as a loading control. (D) ELISA of EPDR1 protein 
levels in culture medium of senescent cells. (E) Cell viability after recombinant EPDR1 treatment. 
(F) RT-qPCR analysis of changes in gene expression following the administration of recombinant 
EPDR1. GAPDH was used as a reference gene. (G) Western blot analysis of protein expression after 
recombinant EPDR1 treatment. The expression levels of each protein were normalized to the 
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Figure 2. EPDR1 expression in aged dermal fibroblasts. (A) Immunostaining of p16ink4a and EPDR1
in young (proliferating) and senescent cells. Merge is a combined fluorescence image of DAPI,
p16ink4a, and EPDR1. Bar = 20 µm. (B) RT-qPCR analysis of p16ink4a and EPDR1 gene expression.
GAPDH was used as a reference gene. (C) Western blot analysis of EPDR1 expression in young
and senescent cells. GAPDH was used as a loading control. (D) ELISA of EPDR1 protein levels in
culture medium of senescent cells. (E) Cell viability after recombinant EPDR1 treatment. (F) RT-qPCR
analysis of changes in gene expression following the administration of recombinant EPDR1. GAPDH
was used as a reference gene. (G) Western blot analysis of protein expression after recombinant
EPDR1 treatment. The expression levels of each protein were normalized to the expression level of
GAPDH. (H) RT-qPCR analysis of changes in gene expression after EPDR1 knockdown. GAPDH was
used as a reference gene. (I) Western blot analysis of protein expression after EPDR1 knockdown.
The expression levels of each protein were normalized to the expression level of GAPDH. * p < 0.05.
All assays were conducted in experimental triplicate.

3.3. EPDR1 Expression Is Increased in the Dermis of Aged Human Skin

Finally, we examined whether EPDR1 is actually expressed in dermal layers of aged
(89-year-old) and young (3-year-old) individuals. Immunohistochemistry confirmed that
EPDR1 was increased in aged dermis, compared to young dermis (Figure 3A). EPDR1
expression was significantly higher in aged dermis than in young dermis (p = 0.00017), as
was MMP1 (p = 0.00033) and MMP3 (p = 0.00011) expression (Figure 3B). Similar changes
were observed at the protein level (p = 0.00017) (Figure 3C).



Cells 2022, 11, 3749 10 of 13

Cells 2022, 11, x FOR PEER REVIEW 10 of 13 
 

 

expression level of GAPDH. (H) RT-qPCR analysis of changes in gene expression after EPDR1 
knockdown. GAPDH was used as a reference gene. (I) Western blot analysis of protein expression 
after EPDR1 knockdown. The expression levels of each protein were normalized to the expression 
level of GAPDH. * p < 0.05. All assays were conducted in experimental triplicate. 

3.3. EPDR1 Expression Is Increased in the Dermis of Aged Human Skin 
Finally, we examined whether EPDR1 is actually expressed in dermal layers of aged 

(89-year-old) and young (3-year-old) individuals. Immunohistochemistry confirmed that 
EPDR1 was increased in aged dermis, compared to young dermis (Figure 3A). EPDR1 
expression was significantly higher in aged dermis than in young dermis (p = 0.00017), as 
was MMP1 (p = 0.00033) and MMP3 (p = 0.00011) expression (Figure 3B). Similar changes 
were observed at the protein level (p = 0.00017) (Figure 3C). 

 
Figure 3. EPDR1 expression in aged human skin. (A) Immunostaining of EPDR1 in human skin 
dermis. (B) RT-qPCR analysis of gene expression using total RNA extracted from human skin der-
mis. GAPDH was used as a reference gene. (C) Western blot analysis using proteins extracted from 
human skin dermis. * p < 0.05. All assays were conducted in experimental triplicate. 

4. Discussion 
To confirm the hypothesis that EPDR1, which is involved in cellular metabolic de-

rangement and collagen deposition, functions as one of the secreted factors that cause 
cellular senescence, we observed co-cultures of senescent cells with young cells and in-
vestigated changes in the senescence phenotype caused by external intervention of EPDR1 
expression. 

Our results show that EPDR1 secreted by aging dermal fibroblasts negatively affects 
matrix-related gene expression in nearby young dermal fibroblasts. In addition, we found 
that EPDR1 increased matrix-related gene expression in both aged and young fibroblasts. 
The knockdown of EPDR1 significantly blocked the increase in MMP-related gene expres-
sion. The in vitro findings, related to EPDR1, were also observed in human skin dermis 
samples. Overall, our findings indicate that EPDR1 plays at least a partial role in mediat-
ing age-dependent changes in dermal matrix status. 

Elastin and type I collagen decrease in aging dermis because of decreased synthesis 
and increased degradation [27]. In this study, aging cells reduced ELN and COL1A1 ex-
pression levels in surrounding fibroblasts. Exogenous EPDR1 supplementation decreased 
the expression of these genes, whereas siRNA-mediated knockdown increased their ex-
pression. 

Figure 3. EPDR1 expression in aged human skin. (A) Immunostaining of EPDR1 in human skin
dermis. (B) RT-qPCR analysis of gene expression using total RNA extracted from human skin dermis.
GAPDH was used as a reference gene. (C) Western blot analysis using proteins extracted from human
skin dermis. * p < 0.05. All assays were conducted in experimental triplicate.

4. Discussion

To confirm the hypothesis that EPDR1, which is involved in cellular metabolic derange-
ment and collagen deposition, functions as one of the secreted factors that cause cellular
senescence, we observed co-cultures of senescent cells with young cells and investigated
changes in the senescence phenotype caused by external intervention of EPDR1 expression.

Our results show that EPDR1 secreted by aging dermal fibroblasts negatively affects
matrix-related gene expression in nearby young dermal fibroblasts. In addition, we found
that EPDR1 increased matrix-related gene expression in both aged and young fibroblasts.
The knockdown of EPDR1 significantly blocked the increase in MMP-related gene expres-
sion. The in vitro findings, related to EPDR1, were also observed in human skin dermis
samples. Overall, our findings indicate that EPDR1 plays at least a partial role in mediating
age-dependent changes in dermal matrix status.

Elastin and type I collagen decrease in aging dermis because of decreased synthesis
and increased degradation [27]. In this study, aging cells reduced ELN and COL1A1 expres-
sion levels in surrounding fibroblasts. Exogenous EPDR1 supplementation decreased the
expression of these genes, whereas siRNA-mediated knockdown increased their expression.

The EPDR1 transcript is translated into proteins containing transmembrane domains
and/or ependymin domains, and the association of ependymin with collagen demonstrates
that these secreted proteins bind to collagen [28,29]. We propose the hypothesis that
the EPDR1 protein, which contains transmembrane and ependymin domains, promotes
collagen attachment by binding collagen via the ependymin domain, while remaining
anchored to the cell via the transmembrane domain. This hypothesis is supported by
previous findings that the knockdown of EPDR1 in a Dupuytren’s contracture model,
delayed and modestly attenuated contractility [30]. Furthermore, MMP1 a type I collagen-
degrading enzyme, is induced and increased in fibroblasts of aging dermis [31]. Thus, aging
cells may contribute to an age-dependent decrease in type I collagen by inducing MMPs
via EPDR1 secretion, leading to deterioration of the dermal matrix condition. However,
additional studies are needed to understand the biomolecular complexity of the EPDR1
protein in skin aging, as EPDR1 signaling itself is largely unexplored.
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Targeting the SASP involving EPDR1 may be an important strategy for controlling
the adverse effects of senescent cells. MMPs secreted by senescent cells may chronically
impair skin conditions but contribute to tissue remodeling or hypertrophy during wound
healing [32]. Thus, the SASP may have both positive and negative aspects; a better under-
standing of the SASP, and its effects on intracellular signaling in target cells, is required to
support the development of specific drugs for aging-related diseases.

The limitation of this study was that the mechanism, by which manipulation of EPDR1
expression affects the aging phenotype, was not determined. Future studies should examine
the effects of EPDR1 in adults using a knockout mouse model. In addition, our results
suggest that EPDR1 is effective in human skin fibroblasts and keratinocytes and may
contribute to the development of skin rejuvenation therapies, however, no conclusions
can be drawn regarding the aging of other cell types or fibroblasts of other tissues. If
EPDR1 proves to be useful in fibroblasts of other tissues as well, it could contribute to
the development of therapies to eliminate senescent cells in other organs. Finally, it will
be necessary to test and assess EPDR1 expression in other models of senescence (e.g.,
oncogene-induced senescence [33] or D-galactose (D-Gal)-induced senescence [34]) and
tumors when considering its application in systemic organs. Since human skin and rodents,
including mice, are different in nature, the previously used human-chimeric mouse model
should be employed to observe the phenotype of EPDR1 intervention on skin [35].

In conclusion, our results support that senescence-associated aged skin fibroblasts
adversely affect surrounding fibroblasts via secreted factors. One such factor is EPDR1,
which may represent a therapeutic target for the regulation of aging-related skin disorders.
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