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Abstract: Finding synergistic drug combinations is an important area of cancer research. Here, we
sought to rationally design synergistic drug combinations with an inhibitor of BTK kinase, ibrutinib,
which is used for the treatment of several types of leukemia. We (a) used a pooled shRNA screen to
identify genes that protect cells from the drug, (b) identified protective pathways via bioinformatics
analysis of these gene sets, and (c) identified drugs that inhibit these pathways. Based on this analysis,
we established that inhibitors of proteasome and mTORC1 could synergize with ibrutinib both
in vitro and in vivo. We suggest that FDA-approved inhibitors of these pathways could be effectively
combined with ibrutinib for the treatment of chronic lymphocytic leukemia (CLL).
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1. Introduction

Chronic Lymphocytic Leukemia (CLL) is a B cell malignancy characterized by the
progressive accumulation of monoclonal CD5/CD19 positive B lymphocytes in the periph-
eral blood, bone marrow, lymph nodes, and spleen [1,2]. It is the most common leukemia
in adults in Western countries, with a median age of diagnosis of 70 years, and while
recent developments in chemo- and immunotherapy have extended the overall survival
rate of patients with CLL, the disease remains incurable [3]. Until recently, the standard
treatment for CLL was a combination of chemotherapy (fludarabine/cyclophosphamide),
targeted monoclonal antibody therapy (rituximab), and, for some patients, allogeneic stem
cell transplantation [4]. However, many older adult (>75 years) patients and those with
comorbidities do not tolerate the toxic side effects associated with these treatments and
require other treatment options. In 2014, the US Food and Drug Administration (FDA)
approved ibrutinib for CLL patients who have received at least one previous therapy [5]. In
2016, the approval was extended to first-line treatment of patients with CLL [6,7]. Ibrutinib
is a small molecule that binds covalently to Cys-481 in the ATP binding of the kinase
domain of Bruton Tyrosine Kinase (BTK), which is overexpressed and constitutively active
in B cell malignancies, including CLL [8]. This binding prevents BTK from phosphorylating
its substrate PLCγ, thereby halting its ability to affect downstream activation of MAPK,
NFκB, and AKT pathways leading to inhibition of proliferation of the B cells [9].

In a phase I study (#NCT00849654), ibrutinib monotherapy showed a 69% overall
response rate, with 16% of patients achieving a complete response [3]. Therefore currently,
ibrutinib is one of the major BTK inhibitor therapies.

Despite ibrutinib’s promising activity, approximately 30% of patients have primary
resistance to the drug, while other patients develop secondary resistance [3]. There are
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several mutations in BTK that may be responsible for ibrutinib resistance [10]. Some of the
frequent mutations are at the ibrutinib binding site, leading to a reduction in BTK’s affinity
to ibrutinib. Another possible reason for ibrutinib resistance is constitutively active B cell
receptor (BCR) signaling, which activates signaling pathways that enhance cell survival
and proliferation independently of BTK signaling.

Understanding the mechanism of ibrutinib resistance in CLL can help develop next-
generation therapeutic strategies, such as drug combinations to prevent or reduce the
incidence of resistance [11]. Our goal was to find complementary drugs that can enhance
the anticancer activity of ibrutinib and overcome ibrutinib’s resistance to the treatment of
CLL patients.

2. Materials and Methods
2.1. Cell Culture and Reagents

HL-60 (human promyeloblast, ATCC Cat# CCL-240) cells were grown in RPMI-1640
(Cat# 01-100-1A) medium supplemented with 2 mM L-Glutamine, 1 % penicillin/streptomycin
(pen/strep), and 10% v/v Fetal Bovine Serum (FBS); MEC1 (human chronic lymphocytic
leukemia, ACC-497, a gift from Prof. Yair Herishanu Tel Aviv University) cells were grown
in Iscove’s Modified Dulbecco’s Medium (IMDM) (Cat# 01-058-1A, Sartorius, Haifa, Israel)
supplemented with 2 mM L-Glutamine, 1% penicillin/streptomycin (pen/strep), and 10%
v/v FBS; A20 (murine CLL) cells were grown in RPMI-1640 medium supplemented with
2 mM L-Glutamine, 0.4% pen/strep, and 10% v/v FBS. Cells were cultured in a humidified
atmosphere with 5% CO2 at 37 ◦C. All cell lines were tested for mycoplasma contamination
every 3 months using a commercial PCR-based kit (Sartorius, Israel). Ibrutinib was pur-
chased from LC Laboratories (Woburn, MA, USA) (Cat# BNI-3311), MG132 from Biomol
(Hamburg, Germany) (LKT-M2400.5), Bortezomib from Sigma-Aldrich (Rehovot, Israel)
(Cat# 5043140001), Rapamycin (Cat# sc-491222) and Hydroxychloroquine (Cat# sc-490660)
from Santa-Cruz (Enco, Petach Tikvah, Israel), Tofacitinib from TRC (Cat# C781351, Enco,
Petach Tikvah, Israel), EX-527 (Cat# HY-15452), SP600125 (Cat#HY-12041), 17-AAG (Tane-
spimycin Cat#HY-10211), and SB29063 (Cat#HY-11068) from MCE (MedChemExpress, NJ,
USA), and FX9847 was provided by Felicitex Therapeutics, Inc. (Natick, MA, USA).

2.2. Decipher Pooled shRNA Library

The Module 1 Decipher shRNA library (Cat. #DHPAC-M1-P) was purchased from
Cellecta Inc. (Mountain View, CA, USA) and used according to the manufacturer’s recom-
mendations, as used and reported in [12]. Briefly, the lentivirus expressing shRNA library
was produced and used to infect ibrutinib-sensitive HL-60 cells, as described below.

2.3. shRNA Library Lentivirus Preparation

Lentivirus shRNA library was prepared using the corresponding shRNA plasmids
(30 µg) (along with virus coat packaging plasmids using Lipofectamine 3000 infection
reagent (Cat# L3000015, Thermo Scientific) in HEK293T cells. Briefly, cells were passaged
and grown at 80–90% confluency in DMEM high glucose media supplemented with 4 mM
glutamine, 1 mM sodium pyruvate, and 5% heat-inactivated FBS. For transfection, reagents
were mixed in Opti-MEM (Cat# 31985070, Thermo Scientific, Waltham, MA, USA) supple-
mented with 4 mM glutamine and co-incubated overnight. The next day, the media was
changed with Opti-MEM supplemented with 5% FBS and 4 mM glutamine and kept for a
further 24 h. Viruses were harvested using a 0.45 µm filter and kept at −80 ◦C for further
use [12].

2.4. Infection of HL-60 Cells with shRNA Lentivirus

HL-60 cells at a seeding density of 1.5 × 106 cells/mL were infected with 20% shRNA
virus titer and 1% polybrene (Cat#TR-1003, Sigma-Aldrich). We titrated the virus to obtain
15–30% infectivity, as judged by observation of cells under Olympus Fluorescent Microscope
IX81 for detecting RFP-positively infected cells using Olympus cellSens Dimension software
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(Ver.1.18). Then, the cells were centrifuged at 250× g for 2.5 min at room temperature, the
supernatant was discarded, and the pellet was resuspended with fresh RPMI medium. We
tested the percentage of RFP signal 48 h after infection using a fluorescent microscope, as
described before and propagated them. Four days after infection, the cells were divided
into two groups and cultured for 24 h. The control group was cultured in a fresh medium
alone, while the experimental group was cultured in a medium containing 30 µM ibrutinib.
At the end of the culture period, viable cells were collected from both groups (refer to the
general protocol of infection [12]).

2.5. Collection of Viable HL-60 Cells

Viable HL-60 cells were collected with a Percoll gradient method [13,14]. The gra-
dient was obtained by preparing 20%, 30%, 40%, and 50% Percoll solutions in a mixture
containing Dulbecco’s Phosphate Buffered Saline (DPBS) (Cat# 02-020-1A, BI Israel), 1 M
HEPES buffer (Cat# 03-025-1B, BI Israel), and Trypan blue 0.4% solution (Cat#T8154, Sigma-
Aldrich). About 107 HL-60 cells in 2 mL DPBS were added to 2 ml of each Percoll gradient
and centrifuged at 500× g for 15 min at room temperature. After centrifugation, a band
of live cells appeared on top of the 40% phase gradient. These cells were collected and
cryopreserved at −80 ◦C for further analysis.

2.6. Genomic DNA Extraction

For extracting the DNA from the cells, we used DNeasy Blood & Tissue Kit (Cat#
69504, Qiagen), according to the manufacturer’s protocols as used and reported in [12].

2.7. Amplification of the Barcodes

We performed the first PCR using a wide, separated primer set to a region that covers
the entire region of barcodes. A second PCR reaction was then performed with primers
that were closer to each other but still covered the barcode region (Table S1, ordered from
Integrated DNA Technologies (IDT), Leuven, Belgium).

The first PCR (PCR 1) was performed using a Titanium Taq DNA Polymerase (Cat#
639209, Takara Bio). Separation of the PCR products from primers and gel purification was
conducted with QIAquick PCR & Gel Cleanup Kit (Cat# 28506, Qiagen, Hilden, Germany).
The second PCR (PCR 2) was carried out using nested primers, either generic or having
unique sample barcodes, as two rounds of nested PCR are necessary to increase the speci-
ficity of polymerization. PCR 2 was performed using Phusion High-Fidelity PCR Master
Mix (Cat#F531, Thermo Scientific). Since several samples could be sequenced in one chip,
all corresponding samples were multiplexed by adding an additional sample barcode dur-
ing the second round of PCR. Samples were normalized individually, then pooled together,
and purification of the PCR products was completed using AmpureXP magnetic beads
(Cat#A63882, Beckman Coulter, Budapest, Hungary) following manufacturer protocol [12].
Next, the barcodes were sequenced using the Ion Torrent Sequencing platform.

2.8. Bioinformatic Pathway Analysis

Bioinformatic pathway analysis was performed using the Broad Institute software
package for gene set enrichment analysis (GSEA); the pathways were denoted as being
significantly enriched if they passed the threshold of the false positive hits [15,16].

2.9. Synergy Tests

A test for sensitivity to drug combinations was performed with three cell lines. First,
we determined the subtoxic concentrations at each line by culturing them with different
drug concentrations for 24–72 h. Then, we combined the subtoxic concentration of each
drug with the subtoxic concentration of ibrutinib and cultured the cells with this combi-
nation for 24 h. The cytotoxic effect of drug synergy was determined by live/dead cell
counts by (i) hematocytometer (EVE™ Automated Cell Counter, NanoEntek, Seoul, Korea),
(ii) metabolic activity (XTT method (Catalog # 20-300-1000, Sartorius), (iii) flow cytometry
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cell cycle analysis (CytoFLEX S, Beckman Coulter flow cytometer) [17], (iv) flow cytometry
analysis of apoptosis using annexin V binding kit (Cat#640930, Biolegend and cat#ab14085,
Abcam), and (v) measuring Caspase substrate cleavage of poly(ADP-ribose) polymerase
(PARP) by immunoblotting [18,19].

2.10. Lentivirus Preparation

We used a plasmid mCherry-2A-luciferase_ LNT-Sffv-MCS-ccdB for preparing Luc-
mCherry lentivirus. Lentivirus was prepared using the Luc-mCherry plasmid along with
virus coat packaging plasmids using Lipofectamine 3000 infection reagent (Cat#L3000015,
Thermo Scientific) in HEK293T cells. Briefly, cells were passaged and grown at 80–90% con-
fluency in DMEM high-glucose media supplemented with 4 mM glutamine, 1 mM sodium
pyruvate, and 5% heat-inactivated FBS. For transfection, reagents were mixed in Opti-MEM
(Cat#31985070, Thermo Scientific) supplemented with 4 mM glutamine and coincubated
overnight. The next day, the media was changed with Opti-MEM supplemented with 5%
FBS and 4 mM glutamine and kept further for 24 h. Viruses were harvested using a 0.45 µm
filter and kept in −80 ◦C for further use.

2.11. A20 Cell Infection with Luc-mCherry Lentivirus

A20 cells were washed with PBS and cultured in an RPMI medium in the absence of
antibiotics and serum prior to infection. Infections were performed using cells at a density
of 1.5 × 106 cells per ml, 10% of lentivirus Luc-mCherry titer, and 1% of polybrene (Cat#
TR-1003-G, Sigma-Aldrich). The suspension was centrifuged at 500× g for 90 min at room
temperature. Then, the suspension with the cells in pellets was transferred to a 3.5 cm plate
and diluted with fresh RPMI medium to the density of 0.5 × 106 cells/mL. Forty-eight
hours after infection, the cells were tested by flow cytometry and Olympus Fluorescent
Microscope IX81 for mCherry red signal using Olympus cellSens Dimension software. A
week after infection, the mCherry-positive cells were sorted and propagated. Aliquots of
A20-luc-mCherry cells were frozen at −80 ◦C for future use.

2.12. Real-Time PCR Analysis

Total RNA was isolated from cells using Qiagen RNeasy Plus Mini kit (Cat. #74134;
GmbH) as used and reported in [16]. The qScript cDNA Synthesis Kit (Cat#95047-100,
Quanta Bio, Beverly, MA, USA) was used to convert 1 µg mRNA into cDNA. qRT–PCR
was performed using the PerfeCTa SYBR Green FastMix ROX (Cat #95073-012, Quanta
Bio, Beverly, MA, USA), according to the manufacturer’s protocols (18). Expression levels
of β-Actin were used as an internal control. Real-time analysis was performed with an
AriaMx Real-Time PCR System (Agilent AriaMx Real-time PCR System) using the primers
(Table S2) ordered from Integrated DNA Technologies (IDT), Leuven, Belgium).

2.13. Immunoblotting

Cells were lysed with lysis buffer (50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% Triton
X-100, 5 mM EDTA, 1 mM Na3VO4, 50 mM β-glycerophosphate, 50 mM NaF) supple-
mented with Protease Inhibitor Cocktail (Cat. #P8340, Sigma-Aldrich, Rehovot, Israel) and
Phenylmethylsulfonyl fluoride (PMSF). Samples were adjusted to have equal concentra-
tions of total protein and subjected to PAGE electrophoresis followed by immunoblotting
with respective antibodies [16].

2.14. In Vivo Assessment of Drug Combination in the Animal Model

All animals were housed under pathogen-free conditions, and the animal procedures
were approved by Ariel University Institutional Animal Care and Use Committee (Permit
number IL-216-01-21). Mice (BALB/c, female, 6 weeks, 17–19 g weight) were purchased
from Envigo, Israel, and maintained in a controlled environment (25 ◦C) with free access
to food and water. When the mice were 9 weeks old, 0.5 × 106 A20 Luc-mCherry cells
in 100 ul PBS were injected intravenously into the vein tail. A20 mCherry cell growth
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was evaluated by analyzing the percentage of mCherry signal in blood samples taken
from the tail vein on days 11 and 24. The samples were treated with Red Blood Cell lysis
buffer (Cat# 4333-57, Thermo Scientific) for 10 min at room temperature. The reaction was
stopped by the addition of an equal volume of PBS, followed by centrifugation at 500× g
for 10 min at room temperature. The cell pellet was resuspended in FACS buffer, and A20
mCherry positive cells were measured by flow cytometer. Acquired data were analyzed
using FlowJo software (v10.8.1). When the mCherry signal reached 7% of total white
blood cells (20 days after cells injection), the mice were randomly divided into 6 groups
of 4 mice each, and drug treatments began based on drug concentrations from published
protocols [20–24]. Group 1 mice received only vehicle (Control); Group 2 mice received
a daily intraperitoneal injection of 9 mg/kg of Ibrutinib; Group 3 received 0.5 mg/kg of
Bortezomib intraperitoneally twice a week; Group 4 received a combination of ibrutinib
(9 mg/kg) and with bortezomib (0.5 mg/kg) intraperitoneally twice a week. Blood tests
were taken eight days after treatment to evaluate the mCherry signal by flow cytometry.
Body weight was monitored twice weekly for the entire span of the experiment.

3. Results
3.1. Identifying Genes Involved in the Enhancement of the Response to Ibrutinib

Firstly, we sought to identify the genes, the depletion of which protects from ibrutinib
using pooled shRNA screen. We reasoned that small molecules that inhibit products of
these genes might enhance the ibrutinib sensitivity of cancer cells. CLL lines showed very
low efficiency of lentiviral infection, which is critical for performing the screen. Therefore,
we decided to use HL-60 AML cells, which demonstrated reasonably high efficiency of the
infection (15%), for the screen to predict synergistic drugs based on the screen, and then
validate drug effects with standard CLL lines. Briefly, HL-60 cells were infected with the
shRNA library. Two days postinfection, virus-carrying cells were selected with puromycin
and then split into untreated control and ibrutinib-treated groups. Upon treatment with
30 µM ibrutinib for 24 h, the death rate was about 90%. Following the treatment, viable cells
were separated from dead cells using the Percoll gradient. Genomic DNA was isolated from
40 million viable cells, and shRNA barcodes were amplified by PCR from the genomic DNA
mix and sequenced by Ion Torrent. The relative representation of each shRNA barcode
in the control group and treated cell populations were then compared to identify species
that became underrepresented in the treated cells. Upon analysis of the screening data,
our criteria in selecting sensitizing hits were (1) at least three shRNA species from five
that target a gene, showing similar changes in representation in treated vs. control cell
populations, and (2) a ratio of representation of shRNA species in treated versus control
cells of less than 0.3. These experiments allowed us to identify “sensitizing” shRNAs that
represent protective genes (Table S3). Top 25 of identified protective genes are: CASP3,
EIF4E, GPR1, HDAC9, HSP90AB1, IL6, JAK2, NFKB1, NFKB2, PARP1, PARP2, PSMA1,
PSMA6, PSMA7, PSMB2, PSMB3, PSMD7, PSMD8, RPS6KA1, RPTOR, STAT2, STAT3, TNF,
TRAF1, TRAF4 and TNFAIP3.

3.2. Pathways Involved in the Ibrutinib Response

After the data collection, we ran Gene Set Enrichment Analysis (GSEA) to identify
pathways that affect sensitivity to ibrutinib. Using the Molecular Signature Database [25],
several potential pathways involved in the ibrutinib response were identified, including
cell cycle, PI3K-AKT-mTOR, DNA repair, Interferon pathway, IL-6-JAK-STAT3 signaling,
protein processing, and protein secretion (Table S4). The screen also uncovered signaling
genes that did not belong to the GSEA-identified pathways. We decided to relax our criteria
and include these genes in further consideration. This gene set was analyzed using the
STRING network of protein–protein interactions. Besides pathways identified by GSEA,
the STRING network revealed the significance of the proteasome pathway (Figure S1).

Next, GSEA compound analysis was performed using Drug Signatures Database
(DSigDB) [26] in order to identify known small molecules that can inhibit pathways identi-
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fied in the shRNA screen. Among these, the focus was on FDA-approved drugs. Overall,
we composed a list of nine FDA-approved drugs that target the established pathways
(Table S5) and further tested if these drugs can sensitize the cells to ibrutinib.

3.3. Identifying FDA-Approved Drugs That Synergize with Ibrutinib

Firstly, using the XTT assay, we determined the maximal subtoxic concentrations
of the listed drugs in HL-60 cells (Table S6). Then, combinations of these subtoxic drug
concentrations were tested with 15 µM ibrutinib. The viability tests were performed with
HL-60 using XTT assay and FACS analysis (Figure 1A,B and Figure S2). Among eight
listed drugs, the proteasome inhibitor MG132, the mTORC1 inhibitor rapamycin, and
the autophagy inhibitor Hydroxychloroquine demonstrated clear synergy with ibrutinib.
Since the latter drug demonstrated toxicity in the FACS analysis, we excluded it from
further considerations.
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replicates (n = 4), (B). Effects of drugs on ibrutinib sensitivity of HL-60 cells tested by FACS analysis
(sub-G1 population). The experiment was performed in biological triplicates (n = 3), (C). Effects
of the combination of ibrutinib with MG132 and ibrutinib with rapamycin on cell viability (HL-60,
MEC-1, and A20) measured by annexin V apoptosis assay performed in biological triplicates (n = 3).
(D). Effects of the combination of ibrutinib with MG132 and Ibrutinib with rapamycin tested by
PARP cleavage. HL-60 and (E) MEC1 cells were incubated with drugs for 24 h. The experiment was
performed in biological triplicates (n = 3) for all the above experiments. PARP cleavage was assessed
by immunoblotting. Statistical analysis was performed using two-way ANOVA. All statistical
analysis was performed using Graphpad (v9), level of significance was taken as (“ns” = 0.1391,
**** “p < 0.0001”) as denoted appropriately on the above graphs.

Further validation of synergistic effects of MG132 and rapamycin with ibrutinib in
HL-60 cells and CLL cell lines MEC1 and A20 was performed using apoptosis Annexin IV
assay (Figure 1C, Figures S3 and S4). Each of the cell lines was incubated with a subtoxic
concentration of MG132 or rapamycin alone or in combination with 15–25µM ibrutinib for
24 h, and the viability of the cells was measured. A strong synergy between ibrutinib and
MG132 was seen in all three cell lines (Figure 1C). The rate of apoptosis in cells incubated
with ibrutinib alone was around 15–40%, depending on the cell line, while the rate of
apoptosis in cells treated with the combination of ibrutinib and MG132 was around 90–94%.
The synergy was confirmed on HL-60 and MEC1 cells by calculating the combination index
(CI) (Table S7) using the Loewe additivity equation and isobologram analysis [27]. There
was also a synergy between ibrutinib and rapamycin. The fraction of apoptotic cells treated
with rapamycin and ibrutinib together reached 54–88%.

Similar results were obtained when the cell death was measured by the PARP cleavage
(Figure 1D,E). Altogether, these data indicate that certain drugs predicted on the basis of
shRNA screen results can indeed synergize with ibrutinib in killing AML and CLL cell lines.

3.4. Synergistic Effects of the Proteasome Inhibitor Bortezomib and Ibrutinib in the Mouse
CLL Model

Further, we tested a combination of ibrutinib with the FDA-approved proteasome
inhibitor bortezomib in the xenograft CLL model. Briefly, BALB/c mice were IV injected
with 5 × 105 A20 cells expressing Luc-mCherry. When the fraction of mCherry-labeled
cells in the blood reached 6–8%, we started the treatments, as described in Materials and
Methods. We had four groups of mice, including (1) a nontreated control group, (2) an
ibrutinib-treated group (daily 9 mg/kg), (3) a bortezomib-treated group (0.5 mg/kg twice a
week), and (4) a combination group treated with ibrutinib 9 mg/kg daily and bortezomib
0.5 mg/kg twice a week. Blood samples were taken on days 11 and 24 after the beginning
of treatment, and the percentage of mCherry-positive cells in the blood was measured
using flow cytometry (Figure 2A).

In the control group (blue curve), A20-mCherry cells continuously propagated in
mice, and their presence in the blood over the course of the experiment increased almost
fourfold. In the groups of ibrutinib alone (red curve) and bortezomib alone (yellow curve)
treated mice, we observed an initial increase in the number of mCherry A20 cells by day
11, which was followed by a decrease, so that at the end of the experiment the number of
A20 cells was similar to that at the starting day of treatment. However, in the combination
group (ibrutinib + bortezomib) (green curve), the treatment led to a steady, almost fourfold
decrease in the mCherry-labeled A20 cells (Figure 2B).

Therefore, both in vitro and in vivo experiments demonstrate the clear benefits of
combining ibrutinib with a proteasome inhibitor in the CLL model.
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Figure 2. In vivo effects of ibrutinib and bortezomib on A20 leukemia. (A). Representative scheme
of the animal experiment where 0.5 × 106 A20 labeled Luc-mCherry cells were implanted by the
tail vein injection. Three weeks later, the mice were treated with (1) vesicle, (2) Ibrutinib 9 mg/kg,
(3) Bortezomib 0.5 mg/kg twice a week, and (4) combined Ibrutinib with Bortezomib. The influence
of the drug treatments was tested by sampling the blood taken from the tail vein at two time points
and analyzing it by FACS (B). Percentage of mCherry-positive A20 cells in the blood of mice treated
for 11 and 24 days; blue curve group treated with vehicle, red curve treated with ibrutinib, yellow
curve treated with bortezomib, and green curve treated with ibrutinib and bortezomib together.
Each group had n = 4 mice; the error bar represents the standard deviation between the replicates in
each group. Statistical analysis was performed using two-way ANOVA. All statistical analyses were
performed using Graphpad (v9), level of significance was taken as (*** “p” < 0.0002, **** “p” < 0.0001)
as denoted appropriately on the above graphs.
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3.5. Possible Synergy Pathways

We further attempted to address the mechanisms of synergy between ibrutinib
/bortezomib and ibrutinib/rapamycin. The complication was that each of the treatments
could affect multiple signaling pathways, both pro- and antiapoptotic; therefore, multi-
ple effects might be involved. One can envision a scenario that two drugs can enhance
the activity of a proapoptotic pathway in a synergistic way or reduce the activity of an
antiapoptotic pathway in a synergistic way. Alternatively, the drugs can affect distinct
pathways (either pro- or antiapoptotic), and their altered balance at a very downstream
stage facilitates the execution of apoptosis.

We considered both possibilities in the search for potential players in apoptosis-
regulating pathways that may play a role in the synergy. To search for synergy within
an apoptosis-related signaling pathway, we extracted published RNAseq data from the
GEO database on the gene expression effects of ibrutinib in the HL-60 cell line and
performed GSEA analysis to identify pathways activated and downregulated by the
drug (Tables S8 and S9). Among ibrutinib-activated pathways, several pathways were
found that may be relevant to either activation or suppression of apoptosis, including
TNF/inflammation, Myc, STAT3, and unfolded protein response (UPR). Therefore, we
tested the potential synergistic effects of the combination of ibrutinib and MG132 on the
activity of these pathways using RT-PCR of the corresponding target genes (Figure S5). We
observed a clear synergy upon evaluation of the components of the UPR pathway. In the
UPR pathway, three downstream targets were tested, including transcription factors ATF3,
ATF4, and CHOP in HL-60 and MEC1 (Figure 3). In line with the RNAseq data, ibrutinib
demonstrated moderate enhancement of expression of these targets. Surprisingly, and
contrary to published results with other cells, MG132 alone did not activate the pathway in
these lines [28]. However, together the two drugs showed strong synergistic activation of
the CHOP expression and a somewhat weaker, but still significant, synergistic activation of
the ATF3 expression in HL-60 and MEC1 cell lines (Figure 3A, B). ATF4 did not demonstrate
these effects.

Since CHOP is a major proapoptotic factor, these synergistic effects on the pathway
may contribute to the overall synergistic effects of ibrutinib and proteasome inhibition.

In another example of a pathway potentially involved in the synergy between ibrutinib
and MG132, we probed the effects of these drugs on Akt, a component of a well-known
antiapoptotic pathway [29]. We found that MG132 activates this pathway (Figure 3C),
which might partially mitigate proapoptotic effects of the proteasome inhibition, e.g., via
activation of JNK, stabilization of p53, or another proapoptotic effect. The addition of
ibrutinib suppressed the Akt pathway, and the addition of MG132 in the background of
ibrutinib did not reverse the effects of ibrutinib on the Akt activity (Figure 3). Accordingly,
synergy in the activation of apoptosis between ibrutinib and MG132 could involve inhibi-
tion of Akt by ibrutinib, which shifts the balance of pro- and antiapoptotic effects of MG132
towards enhanced apoptosis. Obviously, effects on other pathways may also contribute to
the synergy.
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Figure 3. Effects of Ibrutinib and MG132 on UPR and Akt pathways. (A,B) Expression of CHOP
and ATFs mRNA in response to ibrutinib and MG132 in (A) HL-60 and (B) MEC1. The cells were
incubated for 12 h with ibrutinib or MG132 or their combination, and expression of the indicated
species of mRNA was measured by qPCR. The experiment was performed in biological triplicates
(n = 3). Statistical analysis was performed using two-way ANOVA. All statistical analyses were per-
formed using Graphpad (v9), and the level of significance was taken as (“ns < 0.1234”, * “p” < 0.0332,
** “p” < 0.0021”, **** “p” < 0.0001), as denoted appropriately on above graphs. (C) Effects of MG132
and ibrutinib on phosphorylation of Akt and the mTORC1 substrate p70 S6 kinase (Thr421/Ser424).
The cells were incubated with 15 µM ibrutinib and/or 100nM MG132 for 3 h and (D) 6 h. The
phosphorylation state of the proteins was assessed by immunoblotting.

4. Discussion

Previously, there have been studies to identify drugs that can synergize with ibrutinib
and/or overcome ibrutinib resistance [3]. Most of them were based on prior knowledge of
the mechanisms of action of potential complementary drugs. Here, we approached this
problem in an unbiased way by using pooled shRNA screen to identify genes that affect
sensitivity to ibrutinib. On the basis of the screen, several pathways were identified, the
inhibition of which was predicted to enhance the cell’s sensitivity to ibrutinib. Then, we
validated these hypotheses by testing the effects of combinations of ibrutinib with inhibitors
of these pathways on the viability of AML and CLL cell lines. A synergistic combination of
ibrutinib and a proteasome inhibitor was successfully validated in a mouse model of CLL.

Using a combination of a proteasome inhibitor with ibrutinib has already been sug-
gested for multiple myeloma, and currently, there is an ongoing corresponding clinical
trial [30]. Using this combination was originally suggested based on the simple fact that
both drugs are used for the treatment of multiple myeloma. Our finding with the synergy
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between these drugs provides an experimental basis for the trial. Furthermore, it suggests
that there is a rationale for testing this combination on CLL and AML patients.

Previously, it has been shown that CC-115, an inhibitor of mTOR and DNA-PK,
chemically dissimilar from rapamycin, can effectively kill CLL cells resistant to ibrutinib
both in preclinical models and in the clinical setting [31]. It is unclear, however, if the
anti-CLL activity of CC-115 is related to the inhibition of mTOR or DNA-PK. In any case, it
was not used in combination with ibrutinib. Here, we demonstrate that the combination
of ibrutinib with rapamycin synergistically kills CLL cells and thus may be effective in
cancer treatment. Interestingly, at least MEC1 cells are highly resistant to ibrutinib, and thus
the activity of rapamycin on these cells could be considered as overcoming the ibrutinib
resistance. However, rapamycin alone showed a minimal effect, and only the combination
with ibrutinib demonstrated effective cell killing. Accordingly, this is a true synergy
between the drugs. Overall, this study identified synergistic drug combinations with
ibrutinib in an unbiased way. More extensive preclinical and clinical studies may pave the
way for these combinations in the clinic.

The mechanisms of synergy between proteasome inhibitors, rapamycin, and ibrutinib
have not been clarified because of the complexity of the system. Indeed, these drugs affect
multiple pro- and antiapoptotic pathways, and the outcome of treatments depends on
their combinations. So far, we uncovered a proapoptotic pathway that is synergistically
activated by ibrutinib and MG132 and an antiapoptotic pathway inhibited by rapamycin,
which might enhance cell death in response to ibrutinib. Overall, a balance of multiple
pathways might define the fate of cancer cells upon the execution of apoptosis.

Our data support the idea that CRISPR or shRNA screening is a powerful tool for
identifying synergistic drug combinations. The main efforts to design synergistic drug
combinations so far have been modeled on the basis of multiple OMICS approaches,
including –protein interaction networks, cMAP, etc. We think that incorporating data from
CRISP or shRNA screens in such modeling would introduce a functional component and
thus significantly enhance the approach.

5. Conclusions

To conclude, we integrated the strategy of a powerful genetic screen to identify the
potentially druggable pathways in this study. Further, this information was utilized to
rationally design the synergistic drug combinations in the animal model.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11223671/s1, Figure S1. STRING network analysis of genes
that were involved in pathways identified by GSEA, Figure S2. FACS quantification for Control
(Untreated), Ibrutinib (15µM), and combination of Ibrutinib with HQC and MG132, raw data sub-G1
in experiments described in Figure 1B for HL-60 cell line, Figure S3: Raw data of the Annexin V
tests described in Figures 1C and S4. Raw data of the Annexin V tests described in Figures 1C and
S5. Relative normalized expression of (A) TNFα and (B) IL-6 mRNA in response to ibrutinib and
MG132 was quantified through qPCR, Table S1. Sequences of first and second PCR primers, Table S2.
RT-PCR primers, Table S3. A list of sensitized genes from statistical data is attached to an excel file
(Sensitizers_genetic_screen.xlsx), Table S4. List of significant pathways identified in the screen, Table
S5. List of nine FDA approved drugs that were tested for synergy with ibrutinib, related inhibition
pathways and genes from the screen, Table S6. Synergy results of sub-toxic concentrations of the
drugs with ibrutinib, Table S7. Combination Index, Table S8. Up-regulated pathways in response to
ibrutinib in HL-60 cells, Table S9. Down-regulated pathways in response to ibrutinib in HL-60 cells.
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