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Abstract: Background: Immunogenic cell death (ICD) has emerged as a potential mechanism mediat-
ing adaptive immune response and tumor immunity in anti-cancer treatment. However, the signature
of ICD in high-grade gliomas (HGGs) remains largely unknown, and its relevance to immunother-
apies is still undetermined. The purpose of this study is to identify ICD-associated genotypes in
order to explore their relevance to tumor immunity, patient prognosis and therapeutic efficacy of
immune checkpoint blockade (ICB) therapy in HGGs. Methods: Bulk RNA-seq data and clinical
information on 169 and 297 patients were obtained from the Cancer Genome Atlas (TCGA) and China
Glioma Genome Atlas (CGGA), respectively. The functional enrichment and characterization of
ICD genotyping were detected, and the ICD prognostic signature prediction model was constructed
using least absolute shrinkage and selection operator (LASSO) regression. The responsiveness to
immunotherapy was predicted according to the scoring of the ICD prognostic signature. Results:
The HGG patients with high ICD gene signature (C1) showed poor outcomes, increased activity of
immune modulation and immune escape, high levels of immune-checkpoint markers, and HLA-
related genes, which may explain their reduced response to ICB immunotherapy. A gene set of the
ICD signature, composing FOXP3, IL6 LY96, MYD88 and PDIA3, showed an independent prognostic
value in both the TCGA and the CGGA HGG cohort. Conclusions: Our in silico analyses identified
the ICD gene signature in HGGs with potential implications for predicting the responsiveness to ICB
immune therapy and patient outcomes.

Keywords: glioma; immunogenic cell death; immune microenvironment; prognosis; immunotherapy

1. Introduction

High-grade diffuse gliomas in adults (HGGs), composing astrocytoma, IDH-mutant
grade 3–4, oligodendroma, IDH-mutant and 1p/19q co-deletion, grade 3, and glioblastoma
(GBM), IDH-wild type, grade 4, are the most aggressive malignant tumors of the central
nervous system, with dismal outcomes [1,2]. The standard-of-care treatment for HGGs,
including chemotherapy, radiotherapy, and maximized surgical resection, show limited
efficacy in improving HGG patients’ outcomes. Immune therapy, including immune-
checkpoint-blockade (ICB) therapy, has shown promising therapeutic effects in several
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malignant tumors but not in HGGs [3]. Accumulating data indicates that the high in-
filtration of suppressive immune cells, including regulatory T-cell and tumor-associated
macrophages, poses great challenges for ICB treatment in HGGs [4,5]. The investigation of
the mechanism underlying tumor-immunity dysfunction in HGGs is a prerequisite for the
development of effective immune therapy.

Immunogenic cell death (ICD) represents a functionally unique response pattern
after induction by organellar or cellular stress, specifically associated with apoptotic cell
death, and leads to the passive release of numerous damage-associated molecular patterns
(DAMPs) in a spatio-temporal manner [6–8].

There is increasing evidence showing that ICD is a prognostic factor associated with
long-term survival in cancer patients [9–12]. Reinforcing anti-cancer immune response
by ICD induction is emerging as a potential therapeutic option in cases of resistance
to conventional chemo- or radio-based treatment [13–15]. Thus, the evaluation of ICD
activity in tumors is important for therapeutic-efficacy prediction. Tumor cells with pre-
existing therapy-resistant variants pose a crucial challenge to the therapeutic use of ICD
inducers and ICD-associated danger signaling [16]. Further treatments are needed based
on combinations of ICD inducers that can be applied simultaneously in order to reduce
the probability of resistance arising. A recent work by Garg AD. et al. [17] identified a
33-metagene signature of ICD associated with improved survival of patients with lung,
breast or ovarian tumors [18]. However, HGGs showed significant tumor heterogenicity,
and an ICD evaluation method for HGGs has not been reported.

In this study, we aimed to demonstrate ICD-associated biomarkers and constructed
an ICD-signature gene set to identify its association with tumor immunity in HGGs, and
response to immune checkpoint blockade (ICB) immunotherapy in HGGs. We identified an
ICD-related genotyping method that may reflect ICD signatures and had a potential role in
predicting poor prognosis in patients with HGGs. Our in silico analyses identified the ICD
gene signature in the HGGs with potential implications for predicting the responsiveness
to ICB immune therapy and patient outcomes.

2. Material and Methods
2.1. Datasets

The gene-expression spectrum and single-nucleotide-mutation data of 169 HGG sam-
ples were obtained from The Cancer Genome Atlas (TCGA, https://cancergenome.nih.
gov/, accessed on 1 September 2022). RNA gene expression profiles of 325 HGG samples
were obtained from the China Glioma Genome Atlas project (CGGA, http://www.cgga.
org.cn/, accessed on 1 September 2022) [19]. The follow-up information of 159 patients
from TCGA and 297 patients from CGGA was obtained after excluding incomplete clinical
information. The details were showed in Table 1.

Table 1. Patient clinical information in TCGA and CGGA HGG cohort.

Dataset TCGA (n = 159) CGGA (n = 297)

Age (Years) 59.41 ± 13.66 43.31 ± 12.00
Gender (M/F) 100/59 181/116
Grade (2/3/4) / 91/73/133

IDH mutation (Y/N) / 140/157
1p/19q co-deletion (Y/N) / 235/62

MGMT promoter methylation
(Y/N) / 152/145

2.2. Consensus Clustering of ICD in HGGs

The “ConcensusClusterPlus” tool in R software was utilized to perform consensus
clustering using ICD gene expression and follow-up information of the patients after
univariate Cox regression analysis [17,20]. Subsequently, the ideal cluster numbers between
k = 2 to 9 were evaluated repeatedly, and the results were stable. The most appropriate

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
http://www.cgga.org.cn/
http://www.cgga.org.cn/
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ICD genotyping was found according to the strength of gene-expression correlation. The
cluster map was created by pheatmap tool of R software (version 4.0.3, Hadley Wickham,
Auckland, New Zealand).

2.3. Identification of Differentially Expressed Genes (DEGs), Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) [21,22]

DEGs were analyzed between C1 and C2 groups. The cut-off criteria for DEGs were
determined as adjusted p-value < 0.01 and | logFC | > 2 of false discovery rate (FDR).
DEGs of C1 and C2 groups were employed to evaluate GO and KEGG pathways using
the “clusterProfiler” package, “org.hs.eg. db” package, “Enrichplot” package, “GOplot”
package, and “GGplot2” package of R software.

2.4. Characterization of immune landscape and Correlation [23]

Immune and stromal cell scores were calculated after applying the Estimate algorithm
in “estimate” and “limma” of R-package to predict tumor purity and the presence of
infiltrating stromal/immune cells in glioma tissues. The immune cell content of each
glioma sample was calculated using “e1071” and “preprocessCore” of R packages. The
relationship between ICD genotyping and immune function was evaluated by comparing
the content of immune cells, the expression levels of HLA family genes and immune
checkpoint-related genes between ICD genotypings.

2.5. Construction of ICD Prognostic Signature Model and Survival Analysis [24,25]

Univariate cox regression analysis was used to identify ICD genes with prognostic
value. Least absolute shrinkage and selection operator (LASSO) Cox regression analysis
was performed for prognostic ICD genes using the “glmnet” package. Multivariate Cox
regression analysis was used to identify ICD genes with independent prognostic value.
The optimal-related gene prognostic markers were selected according to the lowest Akaike
Information Standard (AIC) value. The Risk Score of each patient was calculated according
to the following formula: Risk Score = ∑n k = 0 coef (k) * X (k), COEF (k) and X (k)
represent regression coefficients, and each value represents ICD gene. Kaplan–Meier
survival curves were drawn to compare the OS or PFS of glioma patients with different
ICD gene prognostic risk scores. The receiver operating characteristic (ROC) curve was
calculated by “survivalROC” of R package to show the prognostic value of ICD gene
prognostic risk score at 1, 3 and 5 years, as well as other clinical characteristics (age, sex,
pathological grade, IDH mutation, 1p19q co-deletion, MGMT methylation).

2.6. Prediction of response to ICB Immunotherapy [26,27]

“pRRophetic” of R package was used to screen potential sensitive drugs of glioma
based on ICD prognostic signature model. Spearman correlation analysis was applied to
detect the correlation between IC50 and ICD prognostic risk score. The significance of IC50
between two ICD prognostic risk score groups was detected. The expression of glioma
samples spectrums was imported into Tumor Immune Dysfunction and Exclusion platform
(TIDE, http://tide.dfci.harvard.edu/, accessed on 10 September 2022), and then, the TIDE
rating of each sample was calculated; subsequently, the TIDE score difference between two
ICD prognostic risk score groups was compared. On the TIDE web, predicted responder
predictions by the threshold of the TIDE score were set by a user (default is 0). The TIDE
score means “response” to ICB when it represents positive value; otherwise, “no response”.
ICB therapy, including anti-PD1 and anti-CTLA4 strategies, was employed in this study as
representative immunotherapy. T cell dysfunction and low level of cytotoxic T lymphocyte
(CTL) was used to predict the ICB immunotherapy response [18,28]. In the CTL-high
tumors, TIDE correlates with T cell dysfunction signature and predicts non-responders
with high scores of T cell dysfunction [29].

http://tide.dfci.harvard.edu/
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2.7. Statistical Analysis

All data were statistically analyzed using R software for non-parametric test. Wilcox
test was used to compare the two groups, and Kruskal test was used for global comparison
of multiple groups. Pearson correlation coefficient was used to perform the correlation
between immune cells. p values < 0.05 was considered statistically significant.

3. Results
3.1. The ICD-Associated Gene Signature in HGGs

Given that the ICD signature in HGGs remains unclear, we performed bioinformatic
analyses using the TCGA database to identify ICD gene metagene [17,18]. The workflow of
the study is shown in Figure 1. The expression of these ICD-related genes (33 genes panel)
in HGGs samples and the corresponding patient survival data were used in gene clustering.
Clustering numbers (k) between two to nine were evaluated (Figure S1). The classification of
glioma samples into two clusters showed an ideal clustering effect (Figure 2A). ICD-related
genes were upregulated in Cluster 1 (C1) and were downregulated in Cluster 1 (C2) (Figure 2B).
We also found that patients stratified into the C1 group had a worse survival in comparison
with those stratified into the C2 group (Figure 2C). The differentially expressed genes (DEG)
between the C1 and C2 groups were identified by ICD genotyping (Figure 2D,E).
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Figure 2. Identification of ICD genotyping by consensus clustering in HGGs. (A) Heatmap of the 
ideal consensus clustering solution (k = 2) for 33 genes in glioma samples. (B) Heatmap of differen-
tial ICD genes in different ICD genotypes. (C) Survival analysis of patients in different ICD geno-
types. (D,E) Volcano plot and heatmap of DEGs in different ICD genotypes. (green dots mean down-
regulated genes; black dots mean unaltered genes; red dots mean upregulated genes). 
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related with cytokine receptor interaction and other signaling associated with immunity 
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Figure 2. Identification of ICD genotyping by consensus clustering in HGGs. (A) Heatmap of
the ideal consensus clustering solution (k = 2) for 33 genes in glioma samples. (B) Heatmap of
differential ICD genes in different ICD genotypes. (C) Survival analysis of patients in different ICD
genotypes. (D,E) Volcano plot and heatmap of DEGs in different ICD genotypes. (green dots mean
downregulated genes; black dots mean unaltered genes; red dots mean upregulated genes).

3.2. Potential Biological Functions and Signal Pathways Associated with ICD Signature

To elucidate the potential functions and the underlying pathways associated with
ICD gene signature, we performed GO enrichment analysis and KEGG enrichment anal-
ysis using DEGs between ICD signature-high group (C1) and ICD signature-low group
(C2). GO enrichment analyses showed that DEGs were positively correlated with hu-
moral immune response, immunoglobulin complex, antigen binding and other immune
functions (Figure 3A,B). KEGG enrichment analyses indicated that DEGs were positively
correlated with cytokine receptor interaction and other signaling associated with immunity
(Figure 3D). We also performed KEGG enrichment analysis on C1 genes, and the results
showed that enriched ICD signature was associated with cytokine signaling activation
(Figure 3C). In addition, the C1 group showed upregulation of adaptive immune response,
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complement activation and humoral immune response (Figure 3E). C2 group, on the other
hand, the results showed reduced immunological activity and were enriched by other
pathways associated with tumor progression or neurological functions, including DNA
conformation change, intrinsic component of synaptic membrane and neuron-to-neuron
synapse (Figure 3F).
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3.3. Upregulated ICD Signature Was Correlated to Reduced Somatic Tumor Mutations and High
Infiltration of Immune Cells in HGGs

To further explore the value of ICD genotyping, we analyzed the gene mutation
frequencies between ICD-differential C1 and C2 groups. Our data identified reduced tumor
gene mutation frequency in the C1 group relative to the C2 group, including TP53 (32%
in C1 vs. 34% in C2), EGFR (16% in C1 vs. 34% in C2), TTN (27% in C1 vs. 28% in C2)
and MUC16 (14% in C1 vs. 17% in C2) (Figure 4A). We also analyzed the association
between ICD gene signature and tumor immunity in HGGs. We found that ICD signature-
high C1 showed high ESTMATES score, ImmuneScore and StromalScore, supporting
that upregulated ICD signature was associated with increased immune cell infiltration
(Figure 4C–E). In contrast, ICD signature-high C1 showed a reduced Tumor Purity Score
(Figure 4F). To evaluate the relationship between ICD gene signature and immune cell
proportion, the scoring of immune cell components was analyzed in HGG samples using
bulk RNA-seq data (Figure 4G). In silico analyses showed that increased ICD signature
was correlated with high infiltration of gamma delta T cells and plasma cells but was
negatively associated with the proportion of infiltrating monocytes and M0 macrophages
(Figure 4H). Meanwhile, the frequency of memory B cells and CD4 memory T cells were
upregulated in the C1 group relative to the C2 group (Figure 5A). Furthermore, immune
checkpoint-related genes (CD274, SIGLEC15, CTLA4, LGA3, PDCD1LG2, PDCD1, TIGIT,
HAVCR2), as well as most of the HLA family genes, were also upregulated in C1 HGGs
samples (Figure 5B,C). To determine the prognostic value of the ICD gene signature, we
performed univariate cox analysis using the TCGA HGGs cohort and found that increased
ICD genes were associated with poor prognosis of HGGs patients (Figure 5D).

3.4. Construction of ICD Risk Signature Model and Its Value in HGGs Patient
Prognosis Prediction

To evaluate the prognostic value of ICD genes in HGGs, 33 ICD genes were used to
construct a prognostic signature model. The prognostic signature model was constructed
by LASSO regression using TCGA HGGs dataset as a training cohort (Figure 6A,B) and was
validated using the CGGA HGGs dataset. Kaplan–Meier survival analysis showed that
patients with high ICD risk scores had poor outcomes (Figure 6C–F). Furthermore, FOXP3,
IL6 LY96, MYD88 and PDIA3 used for the ICD risk signature construction were upregulated
in ICD high-risk group. The prognostic value of the ICD risk signature was confirmed in
both TCGA and CGGA samples using univariate and multivariate cox regression analysis
(Figure 7A,B). We also performed an ROC curve to evaluate the prognostic value of the ICD
risk signature model. The AUC values of the ICD risk signature model for the TCGA HGGs
patients at one year, three years and five years were 0.664, 0.775 and 0.879, respectively
(Figure 7C). Similarly, the AUC values of the ICD risk signature model for the CGGA
HGGs patients at one year, three years and five years are 0.731, 0.773 and 0.771, respectively
(Figure 7D). The AUC value of the ICD risk score was higher than that of other clinical
prognostic characteristics, including age, gender, pathological grade, IDH mutation, 1p19q
co-deletion and MGMT methylation (Figure 7E,F). Additionally, we detected the survival
of patients with the clinical prognostic characteristics respectively in TCGA and CGGA.
As shown in Figure S2, the patients of age ≤ 65 and different gender in high risk had
poor prognoses in TCGA and CGGA. Furthermore, the patients of WHO 2-3 (recurrent
WHO 2, AA WHO), WHO 4 (GBM), IDH status, MGMT methylation status and 1p19q
non-co-deletion in high-risk had poor prognosis in CGGA simultaneously.
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Figure 4. Comparison of somatic mutations, immune landscape and correlation in ICD genotyping
of high-grade glioma. The top 20 most frequently mutated genes were oncoprint visualized in C1
(A) and C2 group (B). ESTMATES score (C), ImmuneScore (D), StromalScore (E), TumorPurity (F) in
different ICD genotyping. (G) The immune cell composition of each glioma sample. (H) Correlation
analysis of different immune cells in glioma samples (*** p < 0.001 vs. indicated group).
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Figure 5. Comparison of TIME in ICD genotyping and revelation of the seven ICD genes with
potential prognostic value. (A) Violin plot of immune cells in C1 and C2 group. Box plots of immune
checkpoints (B) and HLA genes (C). (D) Univariate cox analysis for the prognostic value of the seven
ICD genes according to OS. (* p < 0.05, ** p < 0.01 and *** p < 0.001 vs. indicated group, dots mean
discrete value).
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The independent prognostic value of ICD risk signature by univariate and multivariate Cox analysis
in TCGA (A) and CGGA (B) database. One-, three- and five-year ROC curves of prognostic value in
TCGA (C) and CGGA (D) database. ROC curves of ICD prognostic risk score, age and grade in TCGA
(E), and ICD prognostic risk score, age, grade pathological grade, IDH mutation, 1p19q co-deletion
and MGMT methylation in CGGA (F) database.
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3.5. High ICD Gene Signature Is Associated with Reduced ICB Immunotherapy Response

We then determine whether the ICD gene signature could predict the therapeutic
efficacy of ICB treatment. We found that the high ICD score was associated with a re-
duced proportion of eosinophils and an increased number of regulatory T cells (Tregs)
(Figure 8A,B). Interestingly, HGG patients that do not respond to ICB therapy had a high
ICD gene signature (Figure 8C). HGGs patients with high ICD gene signatures are associ-
ated with high immuno-escape scores (Figure 8D). These data suggest that a high ICD gene
signature was associated with reduced ICB immunotherapy response.
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Figure 8. The prognostic value of ICD prognostic signature model and immunotherapy sensitiv-
ity. Correlation between ICD prognostic risk score with the content of eosinophils (A) and T Cells
regulators (B). (C) Risk scores for the response to ICB immunotherapy in different patients. (D) Im-
munotherapy escape in different patients of ICD prognostic risk scores. (*** p < 0.001 vs. indicated
group).

4. Discussion

WHO grade 3–4 HGGs, are the most prevalent malignant neuroepithelial tumors,
comprising astrocytoma, IDH-mutant, grade 3–4; oligodendroma, IDH-mutant and 1p/19q
co-deletion, grade 3; GBM, IDH-wild type, grade 4. Astrocytoma, IDH-mutant, grade
3–4 may be developed from a low-grade malignant form [30]. The prognosis of HGGs is
poor after maximal surgical resection followed by radiotherapy plus chemotherapy [31].
Immunotherapeutic approaches focusing on enhancing autonomous immunity or passively
introducing exogenous anti-tumor immune cells are under intensive investigation and
show promising outcomes in preclinical assays and in several clinical trials [32]. Most
HGGs belong to “cold tumors” that lack tumor-infiltrating lymphocytes (TILs). How to
make these “cold tumors” hot serve as a bottleneck and as a potentiating factor for the
development of immunotherapy strategies [33].

ICD is induced by chronic exposure to damage-associated molecular patterns (DAMPs)
and may attribute to a dysfunctional anti-tumor immune system [6,9,10]. It might be bene-
ficial to identify ICD-related biomarkers for HGG patients. In this study, we demonstrate a
genotyping of ICD which is closely associated with the prognosis in HGGs. The results
showed that patients with high expression of ICD genes (C1) had worse survival. Further-
more, we found several genes, such as IL31RA, PAEP and LINC00973, were up-expressed in
the C1 group. Whereas the ICD signature represents a prognostic indicator of better patient
outcomes in many kinds of cancer [11,12], in HGGs, a high ICD signature is associated with
worse patient outcomes.

Possible reasons for the results above could be the restriction to a few ICD genes and
the cellular heterogeneity related to cancer types. HGGs, exhibit significant inter-tumoral
and intra-tumoral heterogeneity, making the development of effective therapeutic strategies
complicated [34]. We found that ICD genotyping correlates with immune response function
and signaling, abundant immune cell infiltration, high-levels of immune checkpoint and
HLA-related genes, which is inconsistent with previous studies [18,35]. We also developed
a prognostic gene signature model containing FOXP3, IL6 LY96, MYD88 and PDIA3 using
the TCGA and CGGA datasets.
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Forkhead box P3 (FOXP3)+ tumor-infiltrating lymphocytes (TILs) were associated
with tumor angiogenesis and tumor progression in glioma patients [36]. GBM patients with
a higher density of FOXP3+ TILs showed a relatively poor prognosis [37]. Interleukin 6
(IL6) signaling contributes to glioma aggressiveness [38]. IL6 expression has been reported
to be increased upon hypericin-mediated photodynamic therapy and may enhance the ICD
process [39]. The role of IL6 in regulating ICD in HGGs may be therapy-related and rely on
cell-extrinsic niche factors. Lymphocyte antigen 96 (LY96 or MD2), which is from the toll-
like receptor 4 (TLR4) signaling pathway, promotes the development of immunotherapy
and targeted therapy of malignancies in tumor occurrence and progression [40]. How-
ever, other studies have pointed out that LY96 inhibition would prevent TLR4-mediated
inflammatory responses and metastatic cancer growth [41,42]. The potential role of LY96 of
ICD in HGGs is still needed to determine in further studies. Curcumin may exert its anti-
tumor effects in glioma cells by inhibiting the TLR-4/MYD88 pathway and inducing tumor
cell apoptosis [43]. Myeloid differentiation primary response 88 (MYD88) has predictive
prognostic value by influencing tumor-infiltrating immune cell dysregulation, especially
the M2-type macrophages in glioma patients [44]. Similar to FOXP3, MYD88 may play
a potential role in the occurrence and development of HGGs, which make the prognosis
worse for the patients. Reducing protein disulfide isomerase family A member 3 (PDIA3)
expression in GBM cells significantly limited the microglia pro-tumor polarization toward
the M2 phenotype and the production of pro-inflammatory factors [45]. PDIA3 acts as a
robust tumor biomarker in influencing protein synthesis, degradation or secretion and then
shaping the tumor microenvironment [46].

There are several limitations of this study. Only ICD gene metagene from the previous
studies was used in this study. The RNA-seq data of adjacent brain tissues of glioma in the
open-access databases are not sufficient, and we have not performed DEGs between tumor
and para-tumor tissues. The functional significance of the presumed ICD gene signature
was not investigated in this study. The detailed immune processes associated with the ICD
gene signature remain largely unknown. Further translational studies are warranted to
verify the clinical significance of ICD in HGGs.

5. Conclusions

In the present study, we establish a new classification system and identify ICD prog-
nostic indicator genes: FOXP3, IL6 LY96, MYD88 and PDIA3 that inform poor HGG patient
prognosis. This study provides new perspectives and insights and serves as a reminder for
HGG patients undergoing ICD-associated immunotherapy.
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