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Abstract: Diabetes is the leading cause of chronic kidney disease worldwide. Despite the burden, the
factors contributing to the development and progression of diabetic kidney disease (DKD) remain
to be fully elucidated. In recent years, increasing evidence suggests that mitochondrial dysfunction
is a pathological mediator in DKD as the kidney is a highly metabolic organ rich in mitochondria.
Furthermore, low grade chronic inflammation also contributes to the progression of DKD, and several
inflammatory biomarkers have been reported as prognostic markers to risk-stratify patients for
disease progression and all-cause mortality. Interestingly, the term “sterile inflammation” appears
to be used in the context of DKD describing the development of intracellular inflammation in the
absence of bacterial or viral pathogens. Therefore, a link between mitochondrial dysfunction and
inflammation in DKD exists and is a hot topic in both basic research and clinical investigations. This

review summarizes how mitochondria contribute to sterile inflammation in renal cells in DKD.
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1. Introduction

Chronic kidney disease (CKD) is a worldwide health issue with an estimated preva-
lence of 16% [1]. CKD is characterized by proteinuria, reduced glomerular filtration rate
and progressive glomerular, tubular and interstitial damage. Glomeruli play an important
role in filtering blood, and glomerular injury leads to the development of various glomeru-
lar diseases, including diabetic kidney disease (DKD) which is the most common single
cause of end stage kidney disease in the United States [2]. Currently, the pharmacological
management of DKD includes the use of angiotensin converting enzyme inhibitors or
angiotensin receptor blockers in association with sodium—glucose cotransporter 2 inhibitors
or non-steroidal mineralocorticoid receptor antagonists [3]. However, these interventions
only partially stabilize kidney function [4], and further work is needed to elucidate the
precise pathological mechanisms contributing to DKD development and progression.

Among other factors that contribute to the development and progression of glomeru-
lar diseases, inflammation, oxidative stress, and immune system activation have recently
gained more attention. Inflammation is generally initiated by the activation of pattern
recognition receptors (PRRs) that are expressed by immune and non-immune cells [5].
Besides infection-associated molecules, PRRs may be activated by endogenous molecules
called damage-associated molecular patterns (DAMPs), which include nucleic acids, ATP
and proteins. However, DAMPs contribute to the initiation of inflammatory responses in
a state of cellular stress or death when perturbations in permeability of various cellular
compartments occur. Therefore, mitochondria, as the evolutionary remnants of ances-
tral alphaproteobacteria [6], have an important role in controlling cellular inflammation.
Moreover, mitochondria are complex organelles and play a significant role in regulating
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cell death by apoptosis or necrosis [7]. All these facts indicate mitochondria are a unique
platform for the redistribution of DAMPs and the activation of PRRs.

Considering that the kidney and heart [8] are the two organs that require the highest
mitochondrial content to enable proper function, the role of mitochondria in the develop-
ment and progression of kidney diseases, including DKD, has become the focus of recent
studies [9-11]. Podocytes are terminally differentiated epithelial cells that play a key role in
the glomerular filtration and are target cells in diabetes-associated kidney injury. Podocytes
are highly dynamic and require substantial amounts of energy to maintain proper organiza-
tion of cytoskeletal and extracellular matrix proteins and for foot processes remodeling [12].
Interestingly, under normal physiological conditions, tubular cells and podocytes use dif-
ferent substrates to produce energy: tubular cells rely on fatty acid 3-oxidation, while
podocytes preferentially use glucose [13-16]. However, under disease conditions, such as
DKD, podocytes switch their energy substrate to fatty acids, in association with a reduced
expression of many glycolytic enzymes, while the expression of 3-oxidation enzymes is
up-regulated [17]. Although podocytes contain a relatively small number of mitochondria,
their contribution to podocyte injury in the state of a cellular stress becomes more obvious,
as abnormalities in mitophagy, a mechanism of mitochondrial specific autophagy, and
caspase activation can be observed. In this review, we discuss the mechanisms through
which mitochondria control the intracellular inflammatory responses in podocytes and we
will discuss potential areas that need future investigation.

2. Mitochondrial Regulation of Inflammation
2.1. cGAS-STING Signaling

Cyclic GMP-AMP (cGAS) is a nuclear and cytosolic protein that senses the presence of
double-stranded DNA in the cytosol leading to the formation of a second messenger, cyclic
GMP-AMP (cGAMP) and activation of stimulator of interferon genes (STING). STING
activation culminates in the recruitment of different kinases: TANK-binding kinase 1
(TBK1), mitogen-activated protein kinase kinase kinase 14 (MAP3K14 or NIK) and het-
erotrimeric IkB kinase (IKK), which, in turn, promote interferon regulatory factor 3 (IRF3),
non-canonical nuclear factor kappa B (NF-kB) and canonical NF-«B, respectively. As a
result, IRF3 activation results in type I interferon responses, which are usually mainly
associated with antiviral and anticancer effects [18], while NF-«B activation may lead to a
broad spectrum of effects [19-21]. A common concept suggests that STING predominantly
localizes to the outer membrane of the endoplasmic reticulum, but some studies report the
presence of STING in the mitochondrial membrane [22,23].

While the cGAS-STING pathway was originally discovered in the context of the innate
immunity response to infections and cancer [24-26], it is clear that the STING pathway
is more than just important in pathogen detection; it also plays a significant role in the
detection of self-DNA released from damaged mitochondria (Figure 1), dying cells or tumor
cells. Thus, activation of the cGAS-STING in response to the presence of mitochondrial
DNA (mtDNA) present in the cytosol of cells has been shown in mouse models of renal
fibrosis [27]. Our studies suggest that STING phosphorylation is increased in the db/db
mouse model of DKD at baseline and that pharmacological STING inhibition protects from
DKD progression [28,29]. Interestingly, induction of STING itself in wildtype mice resulted
in proteinuria and podocyte foot process effacement in studies [28,29]. Using eNOS db/db
mice and rats with type 2 diabetic nephropathy, others demonstrated increased activity of
the cGAS-STING pathway [30]. In patients with DKD, the presence of plasma and urinary
mtDNA was recently recognized as a potential marker of early DKD progression [31-34].
However, the mechanisms of mtDNA escape into the cytosol remain elusive.
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Figure 1. Mitochondrial DNA triggers pro-inflammatory signaling pathways. Mitochondrial DNA
(mtDNA) can activate three major pro-inflammatory signaling pathways that include endosomal
toll-like receptor 9 (TLR9) with activation of nuclear factor kB (NF-«B), the cyclic GMP-AMP synthase
(cGAS)/stimulator of interferon gene (STING) with activation of interferon type I (INF-I) and cytosolic
NLR family pyrin domain containing 3 (NLRP3) inflammasome activation with induction of caspase-
1-dependent apoptosis. ER—endoplasmic reticulum; cGAMP—2'3'-cyclic GMP-AMP.

mtDNA is particularly vulnerable to damage. Given the fact that mtDNA resides in
close proximity to mitochondrial reactive oxygen species (mtROS), oxidative lesions often
cause mtDNA damage via DNA strand breakage or nucleotide base oxidation. In DKD,
chronic hyperglycemia disrupts the bioenergetic balance, which results in mtROS produc-
tion and oxidative mtDNA damage as shown in studies of glomeruli from DBA /2] mice [35]
and streptozotocin (STZ)-induced DKD rats [36]. Additionally, in STZ-induced DKD mice
mitochondrial biogenesis is reduced due to decreased mRNA expression of peroxisome
proliferator-activated receptor-gamma coactivator (PGC-1c), nuclear respiratory factor 1
(NRF-1) and mitochondrial transcriptional factor A (TFAM) [37]. Interestingly, decreased
expression of TFAM has been reported in renal tissues from patients with CKD stage 4,
while TFAM knockdown in mice results in mtDNA leakage into the cytosol and activation
of the cGAS-STING pathway [27]. Release of mtDNA into the cytosol can cause activation
of the proapoptotic pore-forming proteins BCL2-associated X, apoptosis regulator (BAX)
and BCL2 antagonist/killer 1(BAK1) as discussed below. A link between lipotoxicity and
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mtDNA release into the cytosol followed by activation of the cGAS-STING pathway was
recently reported in db/db mice on a high fat diet [38].

In summary, an abundant literature shows the ability of mtDNA to activate the cGAS-
STING signaling pathway in the kidney, thereby driving an inflammatory response in DKD.

2.2. RLR Signaling

The RIG-I like receptor (RLR) signaling pathway is another inflammatory pathway
that can be stimulated by mitochondria (Figure 1). Unlike the cGAS-STING pathway, the
RLR pathway is activated by foreign, altered, or ectopic RNA [39]. It has been shown that
mitochondrial RNA (mtRNA) can be released into cytosol in a state of reduced polyribonu-
cleotide nucleotidyltransferase 1 (PNPT1) expression, leading to mtRNA degradation, and
activation of RLR melanoma differentiation-associated protein 5 (MDADJ) [40]. Interestingly,
mtDNA double-strand breaks have been shown to contribute to BAX-BAK1-mediated
mtRNA release into cytosol with further activation of RIG-I, but not MDAS5 [41]. However,
the mechanisms leading to the differential activation of RIG-I versus MDA5 by mtRNA
species remain to be discovered.

Notably, a recent study of patients with type 2 diabetes revealed a specific serum RNA
signature in patients with DKD when compared to patients with diabetes and no DKD,
where downregulation of four mitochondrial messenger RNAs (ATP6, ATP8, COX3 and
ND1) was found to correlate with serum creatinine and estimated glomerular filtration
rate [42]. A genome-wide association study analysis of patients with type 1 diabetes
(n =19,406) also revealed the association of RIG-I/MDAS5 and interferon alpha beta gene
set [43].

2.3. Inflammasome Signaling

The inflammasome comprises a class of signalosomes in innate immunity that pro-
mote inflammation and induce an inflammatory form of programmed cell death, called
pyroptosis. Early studies have shown that cytosolic mtDNA can also drive the activation of
inflammasomes [44], specifically of the inflammasome that contains nucleotide-binding
domain-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) as a sensing com-
ponent (Figure 1). NLRP3 assembles the inflammasome through oligomerization with
apoptosis-associated speck-like protein (ASC) to elicit robust caspase 1 (CASP1) activa-
tion and production of interleukins 13 (IL-1$3) and 18 (IL-18). Oxidized mtDNA release
into the cytosol upon mitochondrial dysfunction has been shown to activate the NLRP3
inflammasome [45], and a feedforward loop was identified in which inflammasome activa-
tion facilitates mtDNA release via mtROS production [46]. Besides the mtROS-associated
NLRP3-ASC-driven mtDNA escape into the cytosol, a physical interaction between NLRP3
and thioredoxin-interacting protein (TXNIP), a nuclear protein that controls the cellular
redox state, may induce mitochondrial damage and mtDNA leakage [47]. However, ROS
inhibitors seem to disrupt inflammasome priming, i.e., the synthesis of inflammasome
components, but not its activation [48]. In line with this notion, recent studies showed
that NLRP3 inflammasome activation depends on the mitochondrial electron transport
chain [49], and that cytosolic oxidized mtDNA serves as the ultimate NLRP3 ligand [50]. Of
note, mitochondrial damage per se does not trigger NLRP3 signaling if priming is omitted
(reviewed in [51]). Moreover, NLRP3 inflammasome activation fails under conditions of
TFAM deficiency [50]. However, mtDNA has been shown to also activate inflammasomes
that use the absence of melanoma 2 (AIM2) as a sensing component [52]. Interestingly,
while oxidized DNA seems to activate NLRP3 inflammasomes [45], AIM2-containing
counterparts are suggested to recognize non-oxidized DNA [50].



Cells 2022, 11, 3635

50f18

Persistent and aberrant NLRP3 signaling underlies many chronic diseases, including
type 1 and type 2 diabetes, while NLRP3 deficiency has been shown to protect against injury,
irrespective of the renal cell type [53,54]. mtDNA seems to be one of the main triggers of
NLRP3 activation in streptozotocin-induced diabetic [55,56] and in high fat diet mice [57].
Using primary renal tubular epithelial cells and unilateral ureteral obstruction (UUO)
mice, a recent study demonstrated that peroxisomal proliferator-y coactivator-1a (PGC-1cx)
ameliorates NLRP3 inflammasome-associated renal fibrosis via the modulation of mito-
chondrial dynamics [58]. NLRP3 activation also contributes to DKD progression as shown
in a study demonstrating that podocyte-specific Nlrp3 or caspase-1 deficiency resulted in
protection from DKD [59]. In contrast, another group reported that using an NLRP3-specific
inhibitor, MCC950, did not confer renoprotective effects using streptozotocin-induced di-
abetic mice as it did not reduce renal inflammation (glomerular accumulation of CD68
positive cells), mesangial expansion and glomerulosclerosis [60]. However, an earlier study
reported that MCC950 lowered fibrosis, renal inflammation and provided protection from
kidney failure in a model of oxalate nephropathy [61]. Less is known about the role of
AIM2 inflammasomes in diabetes and DKD development. It has been shown that AIM2 in-
flammasomes directly interact with apoptosis-associated speck-like protein and contribute
to the development of many human diseases, including type 2 diabetes, where cell-free
mtDNA has been shown to activate AIM2 inflammasomes [62].

In summary, mtDNA is a major DAMP for inflammasome activation that contributes
to chronic kidney disease development and progression. Moreover, NLRP3 and AIM2
may represent a potential therapeutic target to ameliorate DKD-associated podocyte and
tubular injury.

2.4. TLR Signaling

Toll-like receptor (TLR) signaling plays a key role in the innate immune system by
recognizing pathogen-associated molecular patterns (PAMPs) leading to the activation
of NF-«B and interferon production. The TLR family comprises 10 members in humans
(TLR1-TLR10) and 12 members in mice (TLR1-TLR12). TLRs are located on the cell plasma
membrane, except for TLR3, TLR7, TLR8 and TRL9, which are found in intracellular
vesicles where they sense the nucleic acids inside a cell. Early studies showed that naked as
well as protein-bound mtDNA has been shown to activate TLR9 (Figure 1) and advanced
glycosylation end product-specific receptor (RAGE) [63,64]. Other studies demonstrated
that treatment in vitro or in vivo with mtDNA results in increased levels of TLR9, NF-«xB
and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IxB-
o) in different tissues [65—67]. De novo TLRY expression has been shown in podocytes of
some patients with glomerular diseases [68-71], suggesting that endogenous mtDNA serves
as a ligand and may facilitate podocyte apoptosis [72]. In a model of acute kidney injury,
absence of TLRY reduced mtDNA-mediated kidney injury [73]. In DKD, the expression
of TLR2, TLR4, TLR5, TLR7, TLR8 and TLR9 has been described, but TLR2 and TLR4 are
the two most extensively studied receptors (reviewed in [74]). Sparse studies on TLR3 and
TLR9 in DKD suggest that in the ApoE-/- streptozotocin-induced mouse model of DKD,
TLR3 and TLR9 are activated in the kidney [75]. Similarly, enhanced expression of TLR3
was reported in tubules from patients with DKD [76]. Nevertheless, no data are available
that would connect activation of TLR3 and TLR9 in DKD with the release of mtDNA into
the cytosol, which may be the subject of future studies.
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2.5. NF-xB Signaling

Nuclear factor-kB (NF-«B) represents a family of transcription factors which consists
of five structurally related members (NF-kB1, NF-kB2, RelA, RelB and c-Rel) and regu-
lates a large array of genes involved in the regulation of the immune and inflammatory
responses. The activation of the NF-«B involves two major signaling pathways: (1) in
the canonical pathway, NF-kB responds to diverse stimuli, including cytokine receptors,
PRRs, TNF receptors, T-cell and B-cell receptors [77]; (2) in the noncanonical (alternative)
pathway, NF-«B selectively responds to specific ligands such as lymphotoxin beta receptor
(LTBR), tumor necrosis factor receptor superfamily member 13C (TNFRSF13C or BAFFR),
CD40, or RANK [78]. Functionally, the canonical NF-«B pathway is involved in almost all
aspects of the immune response, while the noncanonical NF-«B appears to be involved
in the regulation of specific functions of the adaptive immune system. Interestingly, the
suppression of inhibitor of apoptosis (IAP) proteins by the cytosolic mitochondrial protein
SMAC shifts NF-kB signaling from the canonical to the noncanonical pathway upon stabi-
lization of mitogen-activated protein kinase kinase kinase 14 (MAP3K14), and this process
is orchestrated by BAK1-BAX oligomers [79].

A recent study addressing the role of NF-«B in DKD showed an activation of the NF-
kB pathway in diabetic rats that progress to DKD, whereby inflammation was restricted to
the glomerular compartment with intense glomerular macrophage infiltration [80]. Earlier
studies also confirmed modest activation of the glomerular NF-«B signaling pathway in
streptozotocin treated rats as early as one month after the induction of diabetes [81], while
in patients with type 2 diabetes, NF-kB activation was mainly detected in cortical tubular
epithelial cells and, to a lesser extent, in some glomeruli [82]. Similarly, in patients with
type 1 diabetes and DKD, p65 positive glomeruli and inflammation in the area of the renal
interstitium were found [80]. High glucose has also been shown to induce NF-«B activation
and upregulation of proinflammatory cytokines in human proximal tubular epithelial
cells [83] and in podocytes [84]. Interestingly, long-term (12 months) NF-kB inhibition in
diabetic rats using pyrrolidine dithiocarbamate resulted in reduced IL-6 production and
prevented the development of glomerulosclerosis and loss of podocyte integrity in one
study [80]. Therefore, the canonical pathway seems to be the prevalent NF-«B activation
pathway in DKD (Figure 2). However, the exact mechanisms leading to NF-«kB activation
in DKD remain unclear and require further investigation.

To make the picture even more complicated, NF-«B subunits (IkBx, p65) and NF-
kB pathway proteins (IKKe, IKKf and IKKy) are present in the inner mitochondria
matrix [85-88]. Collectively, these studies suggest that NF-«B can non-specifically bind
mtDNA sequences and regulate mRINA expression of a variety of target genes. Recent
studies also demonstrated that NF-«B is involved in mitochondrial fission [89], regulation
of BAX mediated cytochrome c release to control apoptosis [90], organization of the energy
metabolism network by controlling the balance between glycolytic utilization and mitochon-
drial respiration [42,91], and in controlling respiratory chain gene expression including the
expression of COXI, COXIII and CytB [86,92,93]. Moreover, NF-kB p62 induction restricts
NLRP3 inflammasome activation via the elimination of damaged mitochondria [94].
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Figure 2. Mitochondprial contribution to DKD associated kidney damage. Generation of mitochon-
drial reactive oxygen species (mtROS), escape of mitochondrial RNA (mtRNA) and mitochondrial
DNA (mtDNA) into cytosol, production of oxidized mitochondrial DNA (oxmtDNA) and abnor-
malities in mitophagy lead to activation of major pro-inflammatory signaling pathways, pyroptotic,
apoptotic and ferroptotic cell death. Abbreviations: APAFl—apoptotic pepdidase activating fac-
tor 1; BAK—BcI2 homologous antagonist/killer; BAX—Bcl2-associated X protein; BCL2—B-cell
lymphoma 2; BID—BH3 interacting-domain death agonist; CASP1—caspase 1; CASP3—caspase
3; CASP9—caspase 9; cGAS—cyclic GMP-AMP synthase; ¢cGAMP—2'3'-cyclic GMP-AMP;
Cyt C—cytochrome ¢; ER—endoplasmic reticulum; IL-1—interleukin 1; IL-18—interleukin 18;
IMM—inner mitochondrial membrane; INF-I—interferon type I, IRE3—interferon regulatory factor
3; LC3—microtubule-associated protein 1A /1B-light chain 3; MDA5—melanoma differentiation-
associated protein 5; NF-kB—activation of nuclear factor kB; NLRP3—NLR family pyrin do-
main containing 3; NRF1—nuclear respiratory factor 1, OMM—outer mitochondrial membrane;

PGC-la—peroxisome proliferator-activated receptor-y coactivator-1«1; PINK1—PTEN induced ki-
nase 1; PUMA—p53 upregulated modulator of apoptosis; RIG-I—retinoic acid-inducible gene I,
STING—stimulator of interferon gene; TBK1—TANK binding kinase 1; TFAM—mitochondrial tran-

scription factor A; TLR9—toll-like receptor 9; Ub—ubiquitin.
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3. Mitochondrial Regulation of Cell Death
3.1. BAX-BAK1 Signaling

One of the mechanisms of mtDNA release in the course of mitochondrial outer mem-
brane permeabilization involves the proapoptotic pore-forming proteins BCL2-associated
X, apoptosis regulator (BAX) and BCL2 antagonist/killer 1 (BAK1). Under physiological
conditions, mitochondrial outer membrane permeabilization is actively prevented by anti-
apoptotic molecules BCL2, BCL2-like protein 1 (BCL2-L1, best known as BCL-XL) and
MCL1. In the presence of an apoptotic stimulus such as BH3-interacting domain death
agonist (BID) or BCL2-binding component 3 (BBC3, best known as PUMA), displacement
of BAX and BAK1 from inhibitory interactions with BCL2, BCL-XL or MCL1 occurs. This,
in turn, results in the translocation of cytochrome c from the mitochondrial intermembrane
space into cytosol, assembly of an apoptotic peptidase-activating factor 1 (APAF1) and
caspase 9 (CASP9)-containing molecular complex (known as apoptosome) and activa-
tion of CASP3 as one of the final steps in the apoptotic cascade. Intriguingly, BAX- and
BAK1-independent mtDNA release have recently been described. Thus, proteolytically
activated BID has been shown to form pores in mitochondria, independently of BAX and
BAKT1 in human cells [95]. In another study, mild mitochondrial stress did not result in
mitochondrial outer membrane permeabilization and mtDNA release was associated with
a voltage-dependent anion channel (VDAC)-dependent mechanism [96,97]. Even more
interesting, different isoforms of VDAC have been shown to be associated with mitochon-
drial permeability transition (mPT) (reviewed in [98]), a regulated process of mitochondrial
matrix swelling leading to abrupt loss of the impermeability of the inner mitochondrial
membrane. This transition is mediated by the mitochondrial permeability transition pore
(mPTP), a mitochondrial protein complex, by changing conformation and forming an IMM
pore in response to some stimuli. The specific protein components and exact mechanisms
of pore formation are poorly understood, but inhibition of mPTP opening by TRAP1 has
been shown to protect against diabetic renal injury in STZ treated rats [99]. While VDAC
isoforms are no longer considered to form part of the mPTP complex itself, its influence on
mPT suggests a possible role as an mtDNA pore during mitochondrial swelling.

In the kidney, BAK1 knockout in a human podocyte cell line has been shown to di-
minish apolipoprotein L1 (APOL1) expression [100], a protein associated with CKD in
populations with recent African ancestry. In another study, double knockout of BAX and
BAK1 in proximal tubules resulted in decreased apoptosis in renal tubular cells and sup-
pressed renal interstitial fibrosis in a model of unilateral urethral obstruction (UUO) [101].
Using a mouse model of acute kidney injury, BAX and BAK1 knockout was shown to
attenuate renal tubular cell apoptosis and decrease cytochrome c release [102]. In support,
high glucose-associated activation of BAX results in increased apoptosis of 3-cells in mice
on a high fat diet, while ablation of the Bax gene in islets improves diabetes [103]. Treat-
ment of podocytes with high glucose (30 mM) also activates BAK1, BAX and cytochrome
¢, resulting in increased apoptosis [104]. Further, studies in podocytes isolated from a
streptozotocin-induced mouse models of DKD and in the mouse podocyte clone 5 (MCP5)
cell line revealed the anti-apoptotic protein BCL-2 as an important hub in the regulation of
autophagy and apoptosis levels in the presence of high glucose [105]. In the same study
decreased levels of BCL-2 were described in patients with diabetic nephropathy.

In summary, increasing studies support the idea that suppression of anti-apoptotic
BCL-2 and activation of pro-apoptotic BAK1 and BAX are at the core of a complex intrinsic
apoptotic pathway that contributes to DKD progression.

3.2. Cardiolipin

The mitochondrial unique phospholipid cardiolipin (CL), which is predominantly
found in the inner mitochondrial membrane (IMM) [106], is crucial for biophysical proper-
ties of mitochondrial membranes, where it modulates energy production and participates
in inflammation, mitophagy and apoptosis [107-111]. Intriguingly, the structural disrup-
tions that accompany late stage regulated cell death generate mitochondrial fragments
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containing CL in the extracellular microenvironment, where CL promotes increased ex-
pression of MHC class I-like molecule CD1d on antigen presenting cells and results in
the activation of a cardiolipin-specific population of T cells [112]. Thus, cardiolipin can
promote inflammatory responses. In yeast cells, a 30% increase in the CL content results in
physical modification of mitochondrial membranes affecting mtDNA stability via physical
interaction between CL and mtDNA [113]. In liver, CL-mediated membrane remodeling
also results in mtDNA aggregation and release [114].

In DKD, we reported increased CL peroxidation in db/db and ob/ob mice in as-
sociation with mitochondrial dysfunction, while the inhibition of CL peroxidation with
Elamipretide, which stabilizes CL at the inner mitochondrial membrane and inhibits cy-
tochrome ¢ mediated CL peroxidation, protected from DKD in vivo [9]. In another study
using db/db mice, it was demonstrated that accumulation of total renal lysocardiolipin is
associated with DKD, while the use of Elamipretide had renoprotective effects [115]. Inter-
estingly, a role of innate immune complement component C5a in the cardiolipin remodeling
and reduction of mitochondrial fatty acids metabolism in DKD has been demonstrated
using mouse models of type 1 (Ins2-Akita mice, streptozotocin-induced diabetic mice and
rats) and type 2 diabetes (db/db mice) [116]. While CL seems to be a significant player in
DKD development and progression, it remains unclear if CL contributes to mtDNA escape
into cytosol in renal cells.

3.3. Mitophagy

Mitophagy is a selective form of autophagy, where damaged or dysfunctional mito-
chondria undergo degradation and recycling. The PTEN-induced putative kinase protein
1 (PINK1)/E3 ubiquitin—protein ligase (Parkin) pathway is the most studied mechanism
of mitophagy. Loss of mitochondrial membrane potential results in PINK1 accumulation
at the outer mitochondrial membrane (OMM), phosphorylation (on Ser65) of pre-existing
ubiquitin molecules and Parkin recruitment. In turn, PINK1-dependent phosphorylation of
the ubiquitin-like domain of Parkin leads to the release of catalytic RING2 domain, which
stabilizes Parkin in its functionally active state, followed by ubiquitination of other OMM
proteins including voltage-dependent anion-selective channel (VDAC), mitochondrial
Rho GTPase proteins (MIRO), mitofusin 1 (MFN1) and 2 (MFN2) [117]. Parkin promotes
ubiquitination of LC3 on the lysine 63 (K63) and lysine 48 (K48) residues, whereby K48
ubiquitination initiates passive mitochondrial degradation, while K63 ubiquitination leads
to the recruitment of the autophagy adaptors LC3/GABARAP (Figure 2). The underlying
mechanisms, however, are not fully understood and remain to be further elucidated.

Other mechanisms of mitophagy have been also described. For example, the FUN14
domain containing 1 (FUNDC1) protein has a conserved LC3-interacting region. Under
hypoxia or loss of mitochondrial membrane potential, dephosphorylation of Tyrl8 and
Ser13, mediated by the mitochondrial phosphatase PGAM family member 5 (PGAMS5), and
concomitant phosphorylation of Ser17 by ULK1 enhances FUNDC1 and LC3 interaction to
promote mitophagy. Activity of PGAMS is thereby controlled by BCL2-like 1 (better known
as BCL-XL) [118]. FUNDC1 was found to interact with both the mitochondrial fission key
factor dynamin 1 like (DRP1) and the inner membrane fusion regulator OPA1 to coordinate
mitochondrial dynamics and mitophagy [119].

BCL2 interacting protein 3 (BNIP3) and NIX are proteins localized at the outer mi-
tochondrial membrane and are also involved in stress sensing and hypoxia-induced mi-
tophagy [120]. An increase in BNIP3 protein levels leads to the liberation of Beclin 1 from
BCL2 apoptosis regulator and BCL-XL sequestration to initiate mitophagy and prevent
mtROS production and cell death. Both BNIP3 and NIX interact with LC3 to further
enhance autophagosomal recruitment to mitochondria [121].

Impaired mitophagy is recognized as a hallmark of human DKD and of rodent models
of DKD. In patients with DKD and in rats with streptozotocin-induced DKD, activation
of thioredoxin interacting protein (TXNIP) under hyperglycemic conditions was shown
to cause accumulation of autophagosomes and reduced autophagic clearance in tubular
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cells [122]. Renal tubular epithelial cells treated with high glucose and biopsies from DKD
patients have shown reduced levels of mitophagy [123]. Diabetic db/db mice were found
to have decreased expression levels of mitochondrial PINK1, Parkin, LC3-II, Beclin-1 and
Atgb, all the markers of impaired mitophagy [124]. Progression of DKD is associated with
gradual decrease of Parkin expression in renal tubular epithelial cells of patients with DKD
(n = 149), and overexpression of Parkin reduces inflammation and improves renal function
in streptozotocin-induced diabetic mice [125]. Similar, reduced PINK1/Parkin mitophagy
was reported under high glucose conditions in HK-2 cells and in the streptozotocin-induced
mouse model of DKD [10,126,127], in proximal tubular cells [122] and in podocytes and
db/db mouse model of DKD [128] and in rats on a high fat diet [129]. In contrast, some
studies report an abnormal activation of PINK1/Parkin mediated mitophagy in db/db
mice [130,131]. As no differences in the genetic background of the animals used in these
studies have been noticed, more detailed investigations are needed to explain the opposite
results observed in the activation pattern of the PINK1/Parkin mediated autophagy.
Interestingly, involvement of the PI3K/AKT/mTOR signaling pathway, a major in-
tracellular network that regulates cell proliferation and life cycle and in the regulation of
autophagy in glomerular mesangial cells have been shown in several studies [129,132-136],
suggesting an important role of autophagy in renoprotection. As in other kidney cell
types, decreased levels of LC3-II, PINK1 and Parkin have been reported in glomerular
endothelial cells under high glucose treatment [128]. The use of different compounds to
regulate mitophagy in DKD has been widely reported and is summarized in Table 1.

Table 1. Mitophagy modulators in experimental models of DKD.

Compound Target Model Phenotype Ref.
HFD mice J mtROS production
Metformin AMPK STZ mice 1 PINK1 and Parkin protein levels [137]
HK-2 cells 1 LC3-I and Atgb levels
. mtROS HG-treated 4 mtROS production
Mitotempo mouse primary RTECs 1 pl6, p21, SAHF, SA-3-Gal, DcR2 [123]
J oxidative stress
MitoQ Nrf2/PINK1 db/db mice J caspase-3 expression [138]
1T Abm
HK-2 cells Restored mitochondrial morphology
D-glucarate MIOX STZ mice J mtROS production [10]
1 BAX mediated apoptosis
HG-treated
CoQI0 Nrf2 mGECs T mitophagy via PINK1 and Parkin [128]
s 1 autophagy and LC3-II levels
Triptolide PTEN/AKT/mTOR HFD rats 1 p62 [129]
1 mitophagy and LC3 levels
Palmitic acid PINK1 /Parkin HFD rats 1 mtROS production [139]
T apoptosis
Progranulin HFD rats [127]
& CAMKK-AMPK STZ mice 1 autophagy and LC3 levels
APE HG-treated RMCs [136]
mTOR/PINK1/Parkin STZ mice T mitophagy via PINK1 and Parkin
Learii STZ rats 1 superoxide anion [133]
cartn Nrf2/GPER HG-treated hGMCs T antioxidant enzymes activity
. . 1 LC3 levels
Ursolic acid . [135]
PI3K/AKT/mTOR HG-treated rGMCs T PTEN mRNA and protein

expression




Cells 2022, 11, 3635

110f18

Table 1. Cont.

Compound Target Model Phenotype Ref.

. | mitophagy via PINK1 and Parkin
Astragaloside IV Not specified db/db mice | renal DRP1, FIS1, MFF expression [130]
HDD Not specified db/db mice | mitophagy via PINK1 and Parkin [131]

Abbreviations: AKT—protein kinase B; AMPK—AMP-activated protein kinase; APF—Astragalus mongholi-
cus Bunge and Panax notogiseng F.H. Chen formula; CAMKK—calcium/calmodulin-dependent protein ki-
nase; DRP1—dynamin-related protein 1; FIS1—mitochondrial fission 1 protein; hGMCs—human glomeru-
lar mesangial cells; rGMCs—rat glomerular mesangial cells; mGEC—murine glomerular endothelial cells;
GPER—G protein-coupled estrogen receptor; HDD—Huangqi-Danshen decoction; HFD—high fat diet; HG—high
glucose; HK-2—human kidney 2 cells; MFF—mitochondrial fission factor; MIOX—Myo-inositol oxygenase;
mTOR—mammalian target of rapamycin; PT—proximal tubular cells; PTEN—phosphatase and tensin homolog;
RMCs—renal mesangial cells; RTECs—renal tubular epithelial cells; STZ—streptozotocin; Ajpm—mitochondrial
membrane voltage potential.

3.4. Pyroptosis and Ferroptosis

Pyroptosis is a caspase-1-dependent form of cell death that is triggered by proin-
flammatory signals from microbial infections and non-infectious stimuli. While caspase-
1-dependent cell death is mediated by caspases, it was initially not distinguished from
apoptosis. However, it has become clear that the mechanism, characteristics and out-
come of caspase-1-dependent cell death are distinct from apoptosis [140]. Pyroptosis can
also be initiated by non-canonical inflammasome pathway via activation of caspase-11
in mice and caspase-4 in humans and the cleavage of gasdermin D (GSDMD) [141]. No-
tably, TLRs, RLRs and NLRs have been shown to mediate pyroptosis, whereby NLRP3
is the most connected molecule to pyroptosis as reviewed elsewhere [142,143]. Caspase-
4/11 and GSDMD-dependent pyroptosis contribute to podocyte loss and DKD progres-
sion [144]. In high glucose treated podocytes and streptozotocin-induced DKD mice,
NLRP3-mediated upregulation of GSDMD and mtROS/NLRP3 dependent pyroptosis
have been described [145]. Interestingly, in membranous nephropathy, another type of
glomerular disease, complement-induced pyroptosis was shown to contribute to podocytes
injury [146]. Intriguingly, cleavage of the amino-terminal sequence of GSDMD induces
mitochondrial outer membrane permeabilization [147-149], but the mechanism needs to be
further elucidated.

Ferroptosis is a novel form of programmed cell death derived by the iron-dependent
peroxidation of lipids through the cysteine/glutamate antiporter Xc- (xCT) and glutathione
peroxidase 4 (GPX4)-dependent mechanisms. In the state of high fructose, significant
upregulation of mitochondrial single-strand DNA-binding protein 1 (SSBP1) has been
shown to contribute to podocyte injury via activation of the transcriptional factor p53 and
ferroptosis [150]. In the mouse glomerular podocyte MPCS5 cell line, high glucose was
found to induce ferroptosis via suppression of peroxiredoxin 6 (Prdx6), an antioxidant that
reduces oxidative stress, and specificity-protein 1 (Sp1), zinc finger family transcription
factor, regulating cell survival and proliferation in many ways [151]. Interestingly, a
significant role of VDAC, the mitochondrial transmembrane channel that transports ions
and metabolites, plays an important regulatory role in ferroptosis via ROS- and nitric oxide-
dependent signaling pathways [152]. Moreover, lipid metabolism, which is dysregulated
in DKD, is closely associated with ferroptosis, and phosphatidylethanolamine is the key
phospholipid that induces ferroptosis in cells. Lipid induced ROS accumulation is another
mechanism leading to ferroptosis, and mitochondria have been shown to contribute to
lipid induced ROS accumulation in mouse embryonic fibroblasts [153], suggesting a crucial
role of mitochondpria in ferroptosis. A correlation between iron, lipid peroxidation and
ferroptosis associated marker acyl-CoA synthetase long-chain family member 4 (ACSL4)
was established in renal tubular cells of db/db and streptozotocin-induced DKD mice [154].
Ferroptosis may also contribute to DKD development via suppression of nuclear factor-
erythroid factor 2-related factor 2 (NRF2) [155], a critical transcriptional factor involved in
the regulation of many cellular processes. Transforming growth factor 3 (TGFf3)-stimulated
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tubular cells also exhibit increased levels of ferroptosis, which were shown to be reduced
by ferrostatin-1, the ferroptosis inhibitor [156].

Thus, there remains no doubt that pyroptosis and ferroptosis contribute to podocyte
death in mouse models of DKD, but the exact mechanistic pathways have not yet been
identified. Moreover, whether ferroptosis contributes to the progression of DKD in patients
with diabetes remains to determined.

4. Conclusions

Although mitochondria are master regulators of inflammation and cell death in the
diabetic kidney (Figure 2), additional research is needed to address many questions. Thus,
well-established mechanistic links between inflammatory responses directed by mitochon-
dria and DKD development and progression are often missing and remain to be uncovered.
Moreover, additional work is needed to characterize the roles of autophagy and apoptotic
caspases in the regulation of inflammation driven by mitochondrial damage associated
molecular pattern, with special attention to the roles of other cellular processes associated
with mitophagy in different kidney cells in DKD. Additionally, the key molecular details,
such as the interaction of mtDNA with inflammasomes or of mtDNA depletion and altered
cellular biogenesis and oxidative balance remain to be clarified. Surprisingly, little progress
has been made over the past 10 years in uncovering the specific roles of the important
transcriptional factor NF-«B in mitochondrial function and data revealing the presence of
NF-«B in mitochondria from renal cells are missing. Therefore, the discovery of a role for
NF-«B signaling in mitochondria in DKD may open new therapeutic perspectives. Addi-
tionally, the levels of ROS have not been carefully measured in podocytes, and applying a
single-cell RNA sequence approach should be used to eliminate this issue. Lastly, it remains
necessary to continue the investigation of mitochondrial function under physiological and
pathological conditions which will ultimately lead to the discovery of novel therapeutics to
prevent, reverse and treat DKD and, possibly, other diabetic complications.
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