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Abstract: Tumor-infiltrating immune cells (TIICs) form a critical part of the ecosystem surrounding
a cancerous tumor. Recent advances in radiobiology have shown that, in addition to damaging
cancerous cells, radiotherapy drives the upregulation of immunosuppressive and immunostimulatory
TIICs, which in turn impacts treatment response. Quantifying TIICs in tumor samples could form an
important predictive biomarker guiding patient stratification and the design of radiotherapy regimens
and combined immune-radiation treatments. As a result of several limitations associated with
experimental methods for quantifying TIICs and the availability of extensive gene sequencing data,
deconvolution-based computational methods have appeared as a suitable alternative for quantifying
TIICs. Accordingly, we introduce and discuss a nonlinear regression approach (remarkably different
from the traditional linear modeling approach of current deconvolution-based methods) and a
machine learning algorithm for approximating the solution of the resulting constrained optimization
problem. This way, the deconvolution problem is treated naturally, given that the gene expression
levels of pure and heterogenous samples do not have a strictly linear relationship. When applied
across transcriptomics datasets, our approach, which also allows the coupling of different loss
functions, yields results that closely match ground-truth values from experimental methods and
exhibits superior performance over popular deconvolution-based methods.

Keywords: predictive biomarkers; bulk RNA-seq; nonlinear regression; inverse problem; digital
cytometry; bioinformatics; immune contexture; nonlinear functional analysis; constrained optimization;
error analysis

1. Introduction

In recent times, the continuous rise in the global cancer burden has emphasized
the need for increased efforts in cancer treatment strategies. In 2020 alone, there were
19.3 million new cases and almost 10 million cancer deaths worldwide, with the number of
new cases projected to climb to 28.4 million by 2040 [1]. This projection is not far-fetched,
given the 36.9% increase in the number of new cases from 2012 to 2020 [2]. With up to half
of all these cancer cases receiving radiotherapy during their treatment, radiotherapy is still
a vital cancer treatment strategy [3–5].

In simple terms, radiotherapy involves using ionizing radiation, usually high-energy
X-rays, to kill cancer cells or, at least, limit their proliferation by damaging their genetic code
of life, known as deoxyribonucleic acid (DNA). In doing this, the goal is to achieve tumor
control without introducing severe damage to surrounding normal tissues, enhancing
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treatment outcomes and minimizing adverse effects. Precision radiotherapy aims to reach
this goal by stratifying and precisely treating “each individual cancer patient, using state-
of-the-art new radiotherapy technology and biomarkers” [6].

Biomarkers are objectively evaluated and measured characteristics indicative of nor-
mal (or abnormal) biological processes, pathogenesis, or therapeutic response [7]. Their
roles could be prognostic, diagnostic, treatment response monitoring, or predictive [8].
In their predictive role, biomarkers indicate the likelihood of a therapeutic benefit from
a specific treatment for a given patient. Thus, in the case of precision radiotherapy, the
complementary role of biomarkers for predictive purposes evolved from recent findings,
showing that the effects of radiotherapy on the tumor microenvironment (TME) may be
a significant determinant of the efficacy of a radiotherapy regimen [8–10]. For instance,
in addition to damaging the malignant part of the TME, radiotherapy has been found
to trigger immunomodulatory effects and alterations to critical components of the TME,
such as tumor-infiltrating immune cells (TIICs) [9,11–13]. The latter is of particular interest
because, as radiotherapy drives the upregulation of immunostimulatory TIICs such as
cytotoxic CD8+ T cells, and immunosuppressive TIICs such as regulatory T cells (Treg), its
impact is felt on differing cell subsets [13]. Consequently, quantifying TIICs in pretreatment
and treatment of tumor samples is crucial in identifying predictive biomarkers guiding
patient stratification and designing suitable radiotherapy regimens, including combined
immune-radiation treatments [14].

Traditionally, experimental methods such as immunohistochemistry (IHC), cytometry,
and recently, single-cell RNA sequencing (scRNA-seq) have been the gold standard for
quantifying TIICs in samples. Although these methods precisely quantify TIICs in samples,
there are limitations in terms of the technicality and range of applicability associated with
each method. On the one hand, scRNA-seq is not just expensive and laborious for routine
use but also highly prone to bias due to variations in the dissociation efficiencies of single
cells [15]. On the other hand, IHC and cytometry rely on a small number of phenotypic
markers, exhibit low to medium throughput, have little or no public datasets available, and
are difficult to apply in large tumor series [16]. This situation necessitates the search for
suitable alternatives to quantify TIICs in tumor samples.

Recently, the sharp reduction in the cost of next-generation sequencing (NGS) technolo-
gies has encouraged its routine application in clinical settings, resulting in the availability of
large amounts of transcriptomics datasets from patients’ tumor samples, such as The Cancer
Genome Atlas (TCGA) [17]. Although these datasets represent the bulk tumor sample,
they provide a suitable alternative for quantifying the sample TIICs using computational
techniques [18]. Computational techniques serving this purpose are broadly categorized
into two. The first broad category is marker gene-based methods [14,19]. Methods under
this category utilize a list of genes characteristic of a cell type (called marker genes), to
quantify every cell type independently from the expression levels of the marker genes in
the heterogenous tumor sample. As a result, marker gene-based methods can only generate
“a semi-quantitative score describing the enrichment of a cell type in a sample” [14], thus
effectively making the comparison between cell types impractical.

The second broad category, deconvolution-based methods, considers the gene expres-
sion profile of the heterogeneous tumor sample as a convolution of the gene expression
levels of the different cell components [20]; as a result, they can quantitatively estimate
the fractions of cell types of interest (in this case TIICs). This consideration allows the
problem to be formulated mathematically as a function of the gene expression profiles of
the cell-type admixture. Thus, given the bulk gene expression of a tumor sample and a
known cell-type specific expression profile, solving an inverse problem can estimate the
cell-type fractions in the heterogeneous tumor sample.

To date, most deconvolution-based methods, including those specific to quantifying
TIICs, such as CIBERSORT [21], CIBERSORTx [22], EPIC [23], ECIS [24], quanTIseq [25],
and TIMER [26], assume that function to be linear. However, they yield different results for
different cell types and use cases despite utilizing the gradient algorithm or its variants to
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approximate solutions to the inverse problem. Interestingly, this is because each method is
conceptually different according to the choice of loss function (or objective functions) and
the setting of the optimization problem (constrained or unconstrained). It is against this
backdrop that packages such as Immunedeconv [27], TIMER2.0 [28], and TumorDecon [29]
have sought to provide a unified platform that allows each of the different methods to be
applied on the same dataset to compare or complement results. Accordingly, the strengths
of each method can be harnessed to gain more robust and comprehensive estimates. Never-
theless, this approach is still susceptible to the potential issues associated with traditional
linear modeling [30], given that “the relationship between the expression levels of pure and
heterogeneous samples is not strictly linear” [14]. Moreover, dealing with large transcrip-
tomics datasets calls for computationally efficient methods with fast rates of convergence
and runtime [30].

Therefore, the main aim of this paper is to introduce and discuss a mathematical
formulation that permits the TIIC deconvolution inverse problem to be handled in its
natural state alongside an accelerated machine learning algorithm for approximating its
solution. Through rigorous mathematical analysis, we show that the algorithm converges
to an optimal solution of the inverse problem for various loss functions. More specifically,
a globally optimal solution is guaranteed for convex loss functions. Furthermore, we use
numerical experiments to show that the algorithm exhibits faster convergence rates and
runtime than other traditionally used algorithms. When applied across transcriptomics
datasets, our results closely match values from experimental methods and show superior
performance over popular TIIC deconvolution-based methods. We end with a note on the
detailed science behind these observations and an explanation of how this framework can
be applied across similar inverse problems in biology, medical physics, and oncology.

2. Materials and Methods
2.1. Formulation and Discussion of the Deconvolution Problem

Let N denote the number of different cell types forming a mixture sample, and M be the
number of genes whose expressions are measured in the sample. Let B = (b1, b2 . . . , bM) ∈ RM

be the measurements of gene expression in the sample. Let S ∈ RM×N be the corre-
sponding reference expressions matrix of the M genes from the N constituent cell types,
and P = (p1, p2 . . . , pN) ∈ RN be the unknown proportions of mix of the different cell
types. An operator r can model the relationship of B, S, and P as

B = r(S, P). (1)

The deconvolution problem is concerned with the inverse problem of estimating P,
given B and S. This inverse problem can be formulated mathematically as the following
equivalent constrained optimization problem:

min
P∈C
L(B, r(S, P)), (2)

where L is a loss function measuring model fitness, and C is the set of constraints on P
arising naturally from its definition as proportions, i.e.,

C =

{
P ∈ RN : pi ≥ 0 ∀ i = 1, . . . , N,

N

∑
i=1

pi = 1

}
.

Many of the existing deconvolution methods (see, for example, [21–23,31–35] and
references therein) consider B, S, and P to be linearly related in the form

B = SP + e, (3)

where e is a random error. Several issues with the linear framework have been identi-
fied [30]. More recently, the authors of [36] showed problems associated with different
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scales of gene expression within the linear framework and then proposed the following
hybrid model:

log(bi) = d + log

(
N

∑
j=1

Sij pj

)
+ ei, (4)

where d accounts for systemic technical variation. Equivalently,

B ≈ exp(d)SP. (5)

We note that exp(d) in Equation (5) is a constant factor adjustment across all genes.
However, more than this constant factor adjustment may be required, because such systemic
technical variations affect genes differently [37]. Thus, one may consider a more general
model of the form

B ≈ DSP, (6)

where D is a diagonal matrix with diagonal entries as gene-specific factor adjustment
generated from some known distribution. Accordingly, Equations (3) and (5) become
special cases of Equation (6). Nevertheless, such a linear transformation may not efficiently
describe nonlinear patterns.

Consequently, we formulate a generic nonlinear framework for the deconvolution
problem by considering the operator r in Equation (1) as a nonlinear transformation
involving S and P. This is because generalized nonlinear regression methods have been
shown to yield better prediction accuracy for complex nonlinear patterns, where traditional
linear regression models may fail [38]. Specifically, our nonlinear operator r is given as

ri =

(
δ +

N

∑
j=1

Sij pj

)θ

, δ, θ > 0. (7)

The nonlinearity of Equation (7) depends on the value of θ. Note that Equation (7)
reduces to the linear framework for θ = 1. Therefore, for an arbitrary sequencing dataset,
it is worthwhile to determine what values of θ (different from one) closely describe the not
strictly linear relationship of the gene expression profiles of pure and heterogeneous samples.

Rigorous data assimilation techniques are useful in making such determinations
from arbitrary datasets. However, we refrain from such nontrivial rigorous analytical
examinations as they are beyond the aims of this work. As a result, we choose our θ values
using an empirical approach for the purpose of demonstrating the proof of principle which
is the subject of this work. The empirical approach is based on our hypothesis that, for
some θ ∈ (0, 1) ∪ (1, 2), we may be able to get suitable values satisfying the description of
the relationship between the gene expression profiles of pure and heterogeneous samples.
More specifically, we hypothesize that such a value might be slightly less than one or
slightly greater than one on the order of a few decimal places. This hypothesis is guided by
our preferred interpretation of the expression “not strictly linear”.

2.2. Review of Some Commonly Used Loss Functions

Several research surveys of cell-type deconvolution methods (see, for example, [14,19,39])
have identified the quadratic/squared error loss and the ε-insensitive loss, as the most
commonly used loss functions for reference-based cell-type deconvolution within the linear
framework. On the one hand, the squared error loss (SEL) is formulated on the basis of
squared deviations as follows:

L(B, r(S, P)) =
M

∑
i=1

(bi − SiP)
2 = B− SP2

2 , (8)

where Si denotes the i-th row of S. In fact, it is the most common choice of loss function
due to its simplicity. Notably, the SEL is highly susceptible to outliers. This feature can
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be especially beneficial when the outliers originate naturally from variations within the
process and, as such, contain useful systemic information. Conversely, it can be a drawback
when the outliers arise from noise (errors).

On the other hand, the ε-insensitive loss (also referred to as the support vector method) [40]
and other robust techniques, such as the Huber and Laplacian losses, are employed to reduce
the drawback of the SEL. A unified version of these robust techniques was introduced in [41]
as a soft insensitive loss function (SILF), expressed mathematically as

L(B, r(S, P)) =
M

∑
i=1
li(bi − SiP), (9)

where

li(a) =



−a− ε, i f a ∈ (−∞,−(1 + ρ)ε)
(a+(1−ρ)ε)2

4ρε , i f a ∈ [−(1 + ρ)ε,−(1− ρ)ε]

0, i f a ∈ (−(1− ρ)ε, (1− ρ)ε)
(a−(1−ρ)ε)2

4ρε , i f a ∈ [(1− ρ)ε, (1 + ρ)ε]

a− ε, i f a ∈ ((1 + ρ)ε,+∞)

,

with 0 < ρ ≤ 1 and ε > 0. In [41], the authors remarked that this function (Equation (9))
is smooth and inherits most of the desirable characteristics of several robust techniques,
including insensitivity to outliers. They further demonstrated in great detail the computa-
tional efficiency and competitiveness of SILF compared to other well-respected techniques.
Remarkably, these loss functions have been a dominating paradigm in the deconvolution
problem, mainly due to their convexity.

Nevertheless, it has been shown in recent times that nonconvex loss functions improve
the generic applicability and robustness of learning, especially in situations where the data
and noise distributions are unknown [42]. One such loss function is given in Equation (10)
as a Cauchy kernel risk-sensitive loss (CKRSL), derived using a Gaussian kernel-adapted
operator and following methods similar to those in [43,44].

L(B, r(S, P)) =
1
M

M

∑
i=1

βlog

1 + 2


1− exp

(
−
(

∑N
j=1 Sij pj−bi

2σ

)2
)

β


, σ > 0. (10)

We remark that the abstract formulation presented in Section 2.1 has the advantage of
accommodating several loss functions including those reviewed in this subsection.

2.3. Specification of the Loss Function for this Study

For the present study, we use a weighted squared error loss (WSEL) on the relationship
operator r defined by Equation (7), expressed as

L(B, r(S, P)) =
1
M

M

∑
i=1

(δ +
N

∑
j=1

Sij pj

)θ

− bi

2

. (11)

2.4. Accelerated Machine Learning Algorithm (AMLA)

An optimal solution to the constrained optimization problem of Equation (2) can be
approximated by the following accelerated machine learning algorithm (AMLA):

v0, v1 ∈ C
wj = vj + αj

(
vj−1 − vj

)
vj+1 = ℘C

(
wj − λAvj

) , (12)
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for some predefined values of the adaptive momentum parameter αj and step size (or
learning rate) λ. A denotes the gradient of the desired loss function L, and ℘C is the
projection operator on C. The projection operator ℘C locates a point in C having the least
distance to a given point, while v0, v1 are initialization points.

AMLA converges to a solution of the deconvolution problem (Equation (2)) for various
loss functions, including those reviewed in Section 2.2. A detailed mathematical analysis
establishing this convergence is presented in Appendix A, starting with the preliminary
mathematical tools, as well as the lemmas, theorems, and their proofs.

For our choice of loss function (Equation (11)), the gradient A is the vector defined by

Aj =
2θ

M

M

∑
i=1

Sij

(δ +
N

∑
k=1

Sik pk

)θ

− bi

(δ +
N

∑
k=1

Sik pk

)θ−1

. (13)

Furthermore, the control parameters αj and λ are determined by a Lipschitz constant
(K) of A (See Theorem 12 in Appendix A). For A defined by Equation (13), a suitable K can
be given by

K =



N

[
2θ2s2

max
δ2(1−θ) +

2θ|θ−1|s2
max

[
(Nsmax+δ)θ+bmax

]
δ2−θ

]
, forθ ≤ 1

N

[
2θ2s2

max(Nsmax + δ)2(θ−1) +
2θ|θ−1|s2

max

[
(Nsmax+δ)θ+bmax

]
δ2−θ

]
for1 < θ ≤ 2

N
[
2θ2s2

max(Nsmax + δ)2(θ−1) + 2θ|θ − 1|s2
max

[
(Nsmax + δ)θ + bmax

]
(Nsmax + δ)θ−2

]
, forθ > 2

, (14)

where smax = max
1 ≤ i ≤ M
1 ≤ j ≤ N

∣∣Sij
∣∣, bmax = max

1≤i≤M
bi.

Lastly, the projection operator on C denoted by ℘C is computed using the alternating
projections method [45].

2.5. Validation Datasets

Our validation datasets, which come from published findings in [22,23], consisted of
experimentally measured immune cell-type proportions from tumor samples, bulk RNA
sequencing data of tumor samples, and a gene expression reference profile. The gene
expression reference profile was a signature matrix of eight Melanoma subsets derived
from scRNA-seq (SMART-Seq2) (see Supplementary Table S2e in [22]). These melanoma
subsets are listed across 3121 genes. They include five TIICs (B cells, CD8 T cells, CD4
T cells, NK cells, and macrophages) and other cell subsets, including endothelial cells,
malignant cells, and cancer-associated fibroblasts (CAFs).

Experimentally measured immune cell-type proportions from tumor samples and
bulk RNA sequencing data of tumor samples were obtained from [23]. In [23], the authors
divided the single-cell suspensions collected from the lymph nodes of four patients with
metastatic melanoma into two portions. For one portion, flow cytometry was used to
measure the percentages of live cells, including four TIICs (B cells, CD4 T cells, CD8 T
cells, and NK cells), malignant cells, and other cells made up of primarily stromal and
endothelial cells (see Supplementary Table S3A in [23]). The fractions of each of these cell
types for each patient are presented in Table 1 below. We refer to these cell-type fractions as
the ground-truth values from the experiment (GTVEs).

The other portion of the single-cell suspensions was used for bulk RNA sequencing (RNA-
seq). We downloaded this RNA-seq data for the four Melanoma patients from the “example
data from EPIC” link on the EPIC web application (http://epic.gfellerlab.org) accessed on
28 September 2022. It can also be accessed from the Gene Expression Omnibus (GEO) reposi-
tory [46] through the accession number GSE93722. This RNA-seq data consists of 49,902 genes
quantified in transcripts per million (TPM) for each of the four melanoma samples.

http://epic.gfellerlab.org
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Table 1. Fractions of cell types measured using flow cytometry for the lymph nodes of metastatic
melanoma patients (modified from Supplementary Table S3A of [23]).

Patient ID B Cells CD4 T Cells CD8 T Cells NK Cells Malignant Cells Other Cells 1

LAU125 0.1812 0.0082 0.0035 0.0050 0.6803 0.1218
LAU355 0.3248 0.2315 0.0582 0.0017 0.0006 0.3832

LAU1255 0.0579 0.0276 0.0376 0.0017 0.3756 0.4997
LAU1314 0.4667 0.1815 0.0454 0.0025 0.0007 0.3031

1 These consist mostly of stromal (for example, cancer-associated fibroblasts (CAFs)) and endothelial cells.

2.6. Deconvolution Workflow

Our deconvolution workflow consists of partly sequential steps necessary to achieve
efficient and accurate estimation of TIICs from bulk RNA-seq data. As illustrated in
Figure 1, the input data comprise a tab-delimited text file of bulk RNA-seq samples and
gene reference profiles. These inputs are first processed using a simple data filter algorithm,
which identifies the genes common to both inputs and passes values of these genes in each
input data across the filter. These values are then fed into the respective variables of our
nonlinear framework. After that, the cell fractions per sample are computed using AMLA.
We remark that suitable values of the parameters θ and δ can be estimated using a rigorous
non-trivial pattern analysis of the bulk RNA-Seq data, as indicated in Figure 1, although no
attempt was made in this direction in the present work.
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2.7. Software Used

We implement the deconvolution workflow described in Figure 1 as a Python package.
The package was developed using the IDE (Integrated Development Environment) Py-
Charm Community Edition 2021.2.1 version 212.5080.64 created by JetBrains s.r.o, Prague,
Czech Republic, running Python 3.9.7 (64 bit) version 3.9.7150.0. The package contains
three custom-made modules: the filtering algorithm, our nonlinear framework, and AMLA.
The Pandas library was used to manipulate the import of sequencing data and reference
profiles and export of estimated fractions for visualization.

To compare our method with two popular cell-type deconvolution methods, we
also generated results from CIBERSORTx [22] and EPIC [23] using the web applica-
tion versions of their software available at https://cibersortx.stanford.edu/ accessed on
30 September 2022 and http://epic.gfellerlab.org accessed on 28 September 2022, respec-
tively. We performed all these software activities on an Intel® Core™ i5-6300U CPU @at
2.40GHz with 8 GB RAM on a 64 bit Windows 10 Pro operating system.

3. Results
3.1. Estimating Cell-Type Fractions in Four Melanoma Samples Using Our Nonlinear Framework,
EPIC, and CIBERSORTx

We considered the bulk RNA-Seq dataset of four melanoma patients and the gene
reference profile containing eight cell subsets, as described in Section 2.5. By inputting tab-
delimited text files of these two datasets into the filtering algorithm, we obtained 2928 genes
common to both datasets. The values for these specific genes in the respective datasets
were passed across the filtering algorithm into the nonlinear framework. We estimated
eight cell-type fractions present in each of the four melanoma samples using four different
versions of our nonlinear framework. These versions, named according to the value of the
hyperparameter θ in Equation (11) and the procedure for applying AMLA, include those
described below.

1. Equivalent linear model (ELM), expressed for θ = 1, such that Equation (11) becomes

L(B, r(S, P)) =
1
M

M

∑
i=1

((
δ +

N

∑
j=1

Sij pj

)
− bi

)2

. (15)

AMLA is then applied to approximate the solution.

2. Linearized nonlinear model (LNM), expressed for θ = 0.92, such that Equation (11) becomes

L(B, r(S, P)) =
1
M

M

∑
i=1

(δ +
N

∑
j=1

Sij pj

)0.92

− bi

2

. (16)

However, we do not apply AMLA directly to Equation (16). Rather, we linearize it to
obtain the form

L(B, r(S, P)) =
1
M

M

∑
i=1

((
δ +

N

∑
j=1

Sij pj

)
− (bi)

1
0.92

)2

, (17)

and thereafter apply AMLA to approximate the solution.

3. Nonlinear model one (NM1), expressed for θ = 0.92, such that we obtain Equation
(16) above, and then apply AMLA to approximate the solution.

4. Nonlinear model two (NM2), expressed for θ = 1.08, such that Equation (11) becomes

L(B, r(S, P)) =
1
M

M

∑
i=1

(δ +
N

∑
j=1

Sij pj

)1.08

− bi

2

. (18)

https://cibersortx.stanford.edu/
http://epic.gfellerlab.org
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AMLA is then applied to approximate the solution.
For all four versions enumerated above, we set the variable δ, such that δ = 1.

Moreover, we initialized AMLA with distinct set values of v0 and v1, creating a cartesian
product for the patient series. Table 2 summarizes the hyperparameter values δ and θ
chosen for the named versions of our nonlinear framework.

Table 2. Hyperparameter values for named versions of our nonlinear framework (Equation (11)).

Version θ δ

ELM 1.00 1.00
LNM 0.92 1.00
NM1 0.92 1.00
NM2 1.08 1.00

We have already emphasized that the nonlinearity of our model (Equation (11)) strictly
depends on the value of θ, which must be different from one. Furthermore, we remarked
that the selection and tuning procedure for this parameter can be achieved analytically on
the basis of the input gene sequencing datasets using rigorous data assimilation techniques.
However, our primary goal in this work was to demonstrate that a nonlinear regression
approach for the TIIC deconvolution problem could yield significantly more accurate
estimates of the fractions of cell types, including TIICs from the bulk gene expression data
of tumor samples. Thus, we favored an empirical approach for selecting the hyperparameter
θ, in line with this goal.

Our empirical approach relies on the observation that the relationship between the
gene expression profiles of pure and heterogeneous samples is not strictly linear. Guided
by this, we interpret the expression “not strictly linear” as slightly different from one, and
this difference can be either side of one, i.e., greater than or less than one. Because θ is
strictly positive, we looked at θ ∈ (0, 1) ∪ (1,+∞). Guided by our hypothesis presented in
Section 2.1, we randomly selected 0.92 from the interval (0, 1). We also selected 1.08 from
the interval (1,+∞) by considering the symmetric distance of the previous selection from
one. The hyperparameter δ is a smoothing parameter. The literature is filled with several
rigorous techniques for smoothing parameter estimation. Again, for the same reasons as in
θ, we chose to assume a default value of one.

We present two results when estimating the cell-type fractions in the four melanoma
samples using EPIC. The first result which we denote as “EPIC1” was obtained from
the default setting of the EPIC web application (http://epic.gfellerlab.org) accessed on
30 September 2022. The default setting comprises tab-delimited inputs of bulk RNA-seq
dataset as described in Section 2.5. Furthermore, it includes a reference profile of seven cell
subsets (B cells, CAFs, CD4 T cells, CD8 T cells, endothelial, macrophages, and NK cells),
built from tumor-infiltrating cells from TPM normalized scRNA-seq (see Supplementary
Table S2A in [23]). This reference profile contains 23,684 genes. The second result, which
we denote as “EPIC2”, was obtained using the datasets as described in Section 2.5.

Furthermore, we estimated the cell-type fractions in the four melanoma samples
using the CIBERSORTx web application (https://cibersortx.stanford.edu/) accessed on
30 September 2022. The gene expression reference profile used was as described in Sec-
tion 2.5. Here, we present two results for our cell-type fractions estimation using CIBER-
SORTx. The first result, which we denote as “CIBERSORTx1”, was obtained by checking
the batch correction box, selecting B-mode, and then running CIBERSORTx, after the tab-
delimited bulk RNA-seq and reference profile files were uploaded. The second result,
which we denote as “CIBERSORTx2”, was obtained following the same procedure as in
the first result, with the only exception being to uncheck the batch correction box. In both
estimations using CIBERSORTx, quantile normalization was disabled, and the permutation
for significance analysis was set at 100. We present these results in Table 3.

http://epic.gfellerlab.org
https://cibersortx.stanford.edu/
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Table 3. Fractions of cell types estimated using deconvolution methods for the lymph nodes of
metastatic melanoma patients.

Patient ID Deconvolution
Method B Cells CD8 T Cells CD4 T Cells NK Cells Macrophages Endothelial Cells CAF Malignant

Cells

LAU125

ELM 0.0139 0.0450 0.0714 0.0376 0.0389 0.0628 0.1175 0.6129
LNM 0.0009 0.0170 0.0283 0.0120 0.0872 0.0468 0.1165 0.6834
NM1 0.1884 0.0063 0.0000 0.0158 0.0684 0.0000 0.0616 0.6594
NM2 0.1884 0.0063 0.0000 0.0158 0.0684 0.0000 0.0616 0.6594

EPIC1 * 0.0101 0.0095 0.0303 0.0000 0.0120 0.0253 0.0003 -
EPIC2 ** 0.0000 0.0000 0.0000 0.0000 0.0258 0.0161 0.1087 0.2987

CIBERSORTx1 0.0015 0.0000 0.0250 0.0000 0.0175 0.0002 0.0063 0.9494
CIBERSORTx2 0.0000 0.0000 0.0107 0.0000 0.0120 0.0000 0.0135 0.9638

LAU355

ELM 0.1596 0.1154 0.3119 0.0264 0.0865 0.1008 0.0970 0.1023
LNM 0.2558 0.1085 0.2828 0.0049 0.2287 0.0680 0.0331 0.0182
NM1 0.3221 0.0836 0.2299 0.0084 0.0821 0.2122 0.0616 0.0000
NM2 0.3220 0.0837 0.2300 0.0084 0.0821 0.2122 0.0616 0.0000

EPIC1 * 0.4540 0.0182 0.2672 0.0000 0.0086 0.0000 0.0001 -
EPIC2 ** 0.1834 0.0000 0.4528 0.0000 0.1058 0.0034 0.0000 0.0000

CIBERSORTx1 0.5550 0.0000 0.3536 0.0104 0.0794 0.0000 0.0000 0.0017
CIBERSORTx2 0.5896 0.0000 0.3297 0.0065 0.0741 0.0000 0.0000 0.0000

LAU1255

ELM 0.0383 0.1102 0.1270 0.0390 0.0510 0.0981 0.1070 0.4292
LNM 0.0346 0.0981 0.0985 0.0108 0.1111 0.0429 0.0610 0.5431
NM1 0.0589 0.0521 0.0342 0.0068 0.1042 0.2974 0.1089 0.3373
NM2 0.0589 0.0521 0.0342 0.0069 0.1042 0.2974 0.1089 0.3374

EPIC1* 0.0411 0.1299 0.0583 0.0000 0.0197 0.0000 0.0001 -
EPIC2** 0.0148 0.0563 0.1094 0.0000 0.0487 0.0138 0.0216 0.4628

CIBERSORTx1 0.0493 0.0987 0.1059 0.0000 0.1360 0.0003 0.0035 0.6062
CIBERSORTx2 0.0329 0.0993 0.0707 0.0000 0.1490 0.0002 0.0018 0.6462

LAU1314

ELM 0.1773 0.1040 0.2823 0.0343 0.0898 0.0890 0.0978 0.1257
LNM 0.2872 0.1026 0.2519 0.0089 0.2433 0.0515 0.0284 0.0261
NM1 0.4436 0.0452 0.1695 0.0032 0.0095 0.2506 0.0658 0.0126
NM2 0.4436 0.0453 0.1695 0.0032 0.0094 0.2506 0.0658 0.0126

EPIC1 * 0.6760 0.0181 0.0790 0.0042 0.0015 0.0000 0.0000 -
EPIC2 ** 0.2040 0.0001 0.4244 0.0000 0.1057 0.0045 0.0000 0.0000

CIBERSORTx1 0.6183 0.0000 0.3229 0.0062 0.0207 0.0000 0.0000 0.0318
CIBERSORTx2 0.6593 0.0000 0.3082 0.0099 0.0109 0.0000 0.0000 0.0115

* The reference profile does not contain malignant cells. A column labeled as “other cells” is included in the
results with the values 0.9127, 0.2519, 0.7510, and 0.2212 recorded for LAU125, LAU355, LAU1255, and LAU1314,
respectively. ** The results also include a column for “other cells” with values 0.5507, 0.2546, 0.2726, and
0.2613 recorded for LAU125, LAU355, LAU1255, and LAU1314, respectively.

It is easy to notice that many values for the deconvolution methods NM1 and NM2
were identical across Table 3. Although NM1 and NM2 had different θ values of 0.92
and 1.08, respectively, both θ values had a symmetric distance of 0.08 about 1.00. This
observation directly suggests that the scalar θ (for θ 6= 1) in our nonlinear framework
exhibits some symmetry about one, such that we can expect identical results for two choices
of θ with the same symmetrical distance about 1.00.

3.2. Estimated vs. Experimentally Measured Cell-Type Fractions in the Four Melanoma Samples

We directly compare the estimated cell-type fractions in the four Melanoma samples
presented in Table 3 with the ground-truth values from experiment (GTVE) presented
in Table 1. To be able to do this, we ignored the EPIC1 results (due to the absence of
malignant fractions) and NM2 results (as they are almost identical to NM1 results). Then,
we aggregated the fractions—macrophages, endothelial cells, and CAFs—together as other
cells since they satisfied the definition of other cells, as in Table 1. For EPIC2, we also added
the values of “other cells” specified in the footnote below Table 3. The comparison is readily
visualized in Figure 2.

It is clear from Figure 2 that estimates from NM1 most closely matched the GTVE
across all four samples, as indicated by the close resemblance of NM1 and GTVE stacks in
all four samples. Even so, stacks from other versions of our nonlinear framework (ELM
and LNM) appeared to more closely resemble the GTVE stacks in all four samples than the
stacks from EPIC and CIBERSORTx.

However, to quantitatively describe the extent of these resemblances, we considered
a general-purpose error metric known as the root-mean-squared error (RMSE). RMSE is
excellent for comparing the prediction error of different models for a specific variable. As
a result, it is an incredibly good measure of model accuracy. The most accurate model
would have an RMSE of zero, which is far from possible. Therefore, the model accuracy is
determined by how close the RMSE is to zero, although this determination is made relative
to the values of the observations or predictions.
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Figure 2. Stacked cell-type fractions per melanoma sample comparing results from different decon-
volution methods with ground-truth experimental values.

Here, we calculated the RMSE for NM1, LNM, ELM, CIBERSORTx1, CIBERSORTx2,
and EPIC2 for all cell types of the four melanoma samples and then for TIICs only. In
the latter, we also included the RMSE calculation for EPIC2. We present these results in
Figure 3. We calculated the RMSE values using the formula

RMSE =

√
∑N

i=1(xi − x̂i)
2

N
, (19)

where N is the total number of analyzed cell-type subsets, xi is the GTVE of the analyzed
cell-type subset, and x̂i is the estimated value of the analyzed cell-type subset from a
deconvolution method. Values from Tables 1 and 3 were utilized in these calculations.

NM1 can be seen to have the lowest RMSE in both charts of Figure 3. Remarkably,
its RMSE value was significantly lower than that of all the other deconvolution methods
compared and was extremely close to zero, being in the range of 0–0.02. This indicates that
NM1 outperformed the other deconvolution methods and gave more accurate estimates
that closely matched GTVE. The accuracy of NM1 can be directly attributed to the nonlinear
framework used and the choice of the value of θ. Thus, we validated our hypothesis
that a selection of θ slightly greater than or less than one on the order of a few decimal
places accurately captures the not strictly linear sense of the relationship between the
bulk gene expression and the reference profile. By using the same reference profile in the
direct comparison of the deconvolution methods, we successful limited any chance that
the results are a direct consequence of a factor other than the setting or framework of the
deconvolution problem.
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Figure 3. Comparison of the RMSE values of versions of the nonlinear framework, EPIC, and
CIBERSORTx for (a) 24 observations including six cell subsets of the four melanoma samples, and
(b) 16 observations including only the four TIICs of the four melanoma samples.

4. Discussion

The linear framework has been the dominating paradigm in the computational decon-
volution of TIICs and other tumor cell subsets from bulk gene expression data of tumor
samples. Efforts toward improving the accuracy of cell fraction estimates from the compu-
tational deconvolution of bulk gene expression data have been centered on modifications
still built around the basic linear framework. For instance, in both charts of Figure 3, CIBER-
SORTx1 had a slightly lower RMSE value when compared to CIBERSORTx2, indicating
improved accuracy. Similar to the conclusion in [47], we attribute this improved accuracy to
the batch correction effect in CIBERSORTx1, which aims to reduce data variability resulting
from technical differences between samples. In another instance, in Figure 3b, EPIC1 had a
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lower RMSE value when compared to EPIC2, CIBERSORTx1, CIBERSORTx2, and ELM,
possibly because of the use of a specific TIIC reference profile. On the other hand, in
Figure 3a, ELM, a linear version of our nonlinear framework, had a lower RMSE value
(more accuracy) when compared to EPIC2, CIBERSORTx1, and CIBERSORTx2. A likely
reason is that the computational algorithm AMLA used in ELM projects directly onto the
natural constraint set, which is much different from the computation in CIBERSORTx and
EPIC, applied on some broadly defined constraints set, followed by a renormalization of
the obtained values.

It is clear from Figure 3 that these modifications would only yield minor improvements
in accuracy since they are all based on the linear framework. Notably, the RMSE values
from these linear framework-based models revolved around a narrow range of 0.11–0.18
and 0.08–0.11 in Figure 3a,3b, respectively. We may not expect any result different from
these ranges if we were to analyze these datasets using other deconvolution methods, for
example [24–26,31–33], because they are all based on the linear model with variations being
in the choice of loss function or other technical modifications.

As shown in Figure 3, the RMSE of NM1 is significantly low, and there is a remark-
able difference between its RMSE range and that of the linear models. This observation
demonstrates the enormous positive gains in terms of accuracy associated with modeling
the deconvolution problem within a nonlinear framework, as it truly represents the natural
state of the problem. We also emphasize through LNM results that any attempts to linearize
the nonlinear framework before applying the solution algorithm (in this case, AMLA)
would vastly diminish these positive gains. However, the outcome may still be slightly
better than those from the traditional linear modeling. As evident from Figure 3, LNM
RMSE values range from 0.07 to 0.10, which is significantly distant from the NM1 RMSE
range (0–0.02) but much closer to the linear models’ RMSE ranges. For this reason, AMLA
was especially designed to approximate solutions directly from the nonlinear framework
without the need to linearize first.

Furthermore, AMLA’s design allows it to exhibit faster rates of convergence and
runtime in comparison to other traditionally used algorithms in machine learning, which is
highly advantageous in the event of enormous amounts of bulk gene expression data of
many tumor series. Verifying these with simple numerical experiments on R (set of real
numbers) using known loss functions employed in regression analysis is straightforward.
We consider the log-hyperbolic loss, squared error loss, Cauchy loss, and ε-insensitive loss
given, for example, by Equations (20)–(23), respectively.

q(x) = log(cosh(6x− 2)). (20)

q(x) = (5x− 4)2. (21)

q(x) = 5 log

[
1 +

(3x− 2)2

5

]
. (22)

q(x) =



−x− ε, i f x ∈ (−∞,−(1 + ρ)ε)
(x+(1−ρ)ε)2

4ρε , i f x ∈ [−(1 + ρ)ε,−(1− ρ)ε]

0, i f x ∈ (−(1− ρ)ε, (1− ρ)ε)
(x−(1−ρ)ε)2

4ρε , i f x ∈ [(1− ρ)ε, (1 + ρ)ε]

x− ε, i f x ∈ ((1 + ρ)ε,+∞)

. (23)

For each of the Equations (20)–(23), we approximated their solutions using AMLA,
the well-known classical gradient descent algorithm (CGDA), and Nesterov’s accelerated
gradient (NAG) widely used in machine learning. Since the optimal solutions of the
equations are known, we measured the convergence to the solutions from AMLA, CGDA,
and NAG using variations of (xn − x)n∈N, where xn is the labeling obtained at the n-th
iteration, and x is the optimal solution. We plot this measure of convergence against the
number of iterations in Figure 4.
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From Figure 4, we can observe that AMLA converged in a significantly fewer number
of iterations than CGDA and NAG, for all four loss functions considered. The implication of
this observation is that AMLA has a higher order of convergence and, consequently, a faster
rate of convergence since the “order of convergence defines the rate of convergence” [48].
Furthermore, Figure 4 affirms the robustness of AMLA. A robust algorithm is one that is
theoretically guaranteed to converge, “starting from any initial design estimate” [49], “such
that their correctness is not destroyed by round-off errors” [50]. We show in Appendix A,
using rigorous mathematical analysis, that AMLA is guaranteed to converge to a solution
of the constrained optimization problem (Equation (2)) for a variety of loss functions
satisfying the stated conditions. The four loss functions presented in Figure 4 satisfy
the stated conditions, thus leading to their convergence in Figure 4, even when CGDA
and NAG did not converge (see Figure 4a,c). Moreover, as shown in Figure 4a–d, once
AMLA converged, it maintained the flat zero line, which highlights its gross insensitivity
to round-off errors, thus affirming its high robustness.

A very noteworthy affirmation of the high robustness of AMLA can be seen in
Figure 4d. The ε-insensitive loss introduces extra parameters of ρ and ε whose selection
can critically affect the convergence and robustness of any machine learning algorithm. As
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shown in Figure 4d, when we randomly selected ρ = 0.5 and ε = 0.2, AMLA converged
in fewer than 20 iterations while CGDA was yet to converge beyond 20 iterations. Fur-
thermore, when we randomly selected ρ = 0.8 and ε = 0.4, AMLA converged in about
seven iterations, while CGDA converged in about nine iterations. These observations
from Figure 4d clearly indicate that the values of the parameters ρ and ε are significant
determinants of the rate of convergence of AMLA. In fact, from Figure 4d, we can see that
the selection of ρ and ε can either increase or decrease the rate of convergence of AMLA.
However, it does not affect the robustness of AMLA, as AMLA is guaranteed to converge
regardless of the values of ρ and ε. It is important to point out that, as seen in Figure 4d,
AMLA still outperformed CGDA for the chosen values of ρ and ε.

Overall, this proof of principle demonstrates that fully accurate and efficient computa-
tional deconvolution of tumor bulk gene expression data for estimation of the proportions
of cell-type fractions, including TIICs, is best achievable using a nonlinear optimization
framework, whose solution can be approximated by an accelerated machine learning al-
gorithm (AMLA). This nonlinear optimization framework truly captures the natural state
of the deconvolution problem. Consequently, in the future, we will implement the entire
deconvolution workflow, described in Figure 1, as a cloud-based tool with a user-friendly
graphical interface, which we shall call NECSTGEP (Naturally Estimating Cell-type Subsets
from Tumor Gene Expression Profiles). NECSTGEP will be equipped with an additional
rigorous machine learning algorithm that will be able to automatically fix the model pa-
rameters and the initialization values for AMLA, using pattern analysis of the input bulk
gene expression profiles, as well as the reference profile. This is very essential as this proof
of principle has shown a crucial role in yielding highly accurate estimation results. Similar
problems in biology, oncology, and medical physics, such as the optimal scheduling of
combined cancer therapies and reconstruction of gene regulatory networks, parade similar
levels of complexity. Thus, they can benefit from an application of the technique described
thus far, to yield highly accurate results.

5. Conclusions

We introduced and discussed a nonlinear constrained optimization framework for the
computational deconvolution of TIICs and other tumor cell-type subsets from tumor bulk
gene expression profiles, in addition to an accelerated machine learning algorithm (AMLA)
for directly approximating its solution. Our analysis using real tumor transcriptomics datasets
concluded that this nonlinear approach yields values closely matching ground-truth values
from experiment, because it treats the problem in its natural state. Models NM1 and NM2
produced the “best” values for the estimated cell-type fractions in this study and were
significantly different from those obtained using the traditional linear modeling approach.
However, one main limitation of the study is the empirical choice of model hyperparameters,
which will be addressed in future studies. This study, therefore, heralds a paradigm shift
away from the traditional linear modeling of the TIIC deconvolution problem.

Author Contributions: Conceptualization, L.C.O. and E.A.O.; methodology, L.C.O., A.U.B. and
E.A.O.; software, L.C.O. and E.A.O.; validation, L.C.O. and A.U.B.; formal analysis, L.C.O. and A.U.B.;
investigation, L.C.O., A.U.B. and E.A.O.; resources, L.C.O. and A.U.B.; data curation, L.C.O. and
E.A.O.; writing—original draft preparation, L.C.O. and E.A.O.; writing—review and editing, L.C.O.,
A.U.B. and E.A.O.; visualization, L.C.O. and E.A.O.; supervision, A.U.B.; project administration,
L.C.O. and A.U.B.; funding acquisition, L.C.O. and A.U.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the UK government through the Commonwealth Scholarship,
grant number NGCN-2020-263. L.C.O. acknowledges financial endowment from Foundation L’Oreal
and UNESCO through the 2021 L’Oreal–UNESCO For Women in Science Young Talent Award
Sub-Saharan Africa.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Cells 2022, 11, 3604 16 of 24

Data Availability Statement: Publicly available datasets were analyzed in this study. The data can be
found at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93722. The data presented in
this study are openly available from https://doi.org/10.7554/eLife.26476.023,
https://doi.org/10.7554/eLife.26476.024, https://doi.org/10.1038/s41587-019-0114-2.

Acknowledgement: The authors are grateful for the comments of the two anonymous reviewers
which helped to improve this work.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A

Let C be a nonempty, closed, and convex subset of a Hilbert space H.

Definition 1. A vector v := ℘C(u) ∈ C is called the projection of u ∈ H onto C if and only if
v = inf

z∈C
‖u− z‖2. Equivalently, if and only if 〈v− u, v− z〉 ≤ 0 ∀ z ∈ C.

Definition 2. A mapping Γ (a) is said to be monotone on C if and only if 〈Γu− Γv, u− v〉 ≥
0 ∀ (u, v) ∈ C× C. Furthermore, if there exists ξ > 0 such that 〈Γu− Γv, u− v〉 ≥ ξ‖u - v‖2,
∀ (u, v) ∈ C× C, then Γ is called ξ-strongly monotone. (b) is said to be Lipschitz on C, if there
exists a scalar K > 0 such that ‖Γu− Γv‖ ≤ K‖u− v‖, ∀ (u, v) ∈ C× C. A monotone operator
is said to be maximal monotone if it has no proper monotone extension.

Definition 3. A subset S of H is said to be bounded if and only if there exists a scalar µ > 0 such
that ‖u‖ ≤ µ ∀ u ∈ S.

Definition 4. Let g be a differentiable mapping on C. A vector u∗ ∈ C is called a stationary
(critical) point of g if

〈
∇g(u∗), u− u∗

〉
≥ 0 ∀ u ∈ C.

Definition 5. Let g : Rn → R∪ {+∞} be a proper lower semicontinuous mapping and ∂g
denote the subdifferential of g . g is said to have the Kurdyka–Lojasiewicz (KL) property at
u∗ ∈ dom∂g = {u ∈ Rn : ∂g(u) 6= φ}, if there exists η ∈ (0,+∞], a neighborhood V of u∗, and a
continuous concave map ϕ : [0, η)→ R+ with ϕ(0) = 0, ϕ is {1 on (0, η), ϕ′(s) > 0 ∀ s ∈ (0, η)
and ϕ′(g(u)− g(u∗)) dist(0, ∂g(u)) ≥ 1 ∀ u ∈ V ∩ {v ∈ Rn : g(u∗) < g(v) < g(u∗) + η},
where dist(z,S) = inf

s′∈ S
‖z− s′‖2. Any g satisfying the KL property at each point of dom∂g, is

called the KL function. The set of KL functions is rich, including as subsets, real and sub-analytic
functions, real semi-algebraic functions, semi-convex functions, uniformly convex functions, and
convex functions satisfying a growth condition (see [51–53] and references contained therein).

Lemma 6. Let g be a differentiable mapping on C with K-Lipschitz gradient ∇g; then,∣∣g(u)− g(v)−
〈
u− v,∇g(v)

〉∣∣ ≤ K
2 ‖u− v‖2 ∀ u, v ∈ C.

Proof. Let g0 be a real valued map on R defined by g0(t) = g(v + t(u− v)); then, it follows
that g0(0) = g(v), g0(1) = g(u) and

g(u)− g(v) = g0(1)− g0(0) =
∫ 1

0
g0′(t)dt.

Now, g0′(t) =
〈
u− v, ∇g(v + t(u− v))

〉
; thus,

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93722
https://doi.org/10.7554/eLife.26476.023
https://doi.org/10.1038/s41587-019-0114-2
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| g(u)− g(v) −
〈
u− v,∇g(v)

〉
|

=

∣∣∣∣∫ 1

0

〈
u− v,∇g(v + t(u− v))

〉
dt−

〈
u− v,∇g(v)

〉∣∣∣∣
≤
∫ 1

0

∣∣〈u− v,∇g(v + t(u− v))−∇g(v)
〉∣∣dt

≤
∫ 1

0
‖ ∇g(v + t(u− v))−∇g(v) ‖‖ u− v ‖dt

≤
∫ 1

0
Kt ‖ u− v ‖2dt =

K
2
‖ u− v ‖2.�

Lemma 7. [54] Let {un}n≥0 ⊆ H be a bounded sequence in H. Then, there exists a subsequence{
unj

}
j≥0
⊆ {un}n≥0 that converges weakly (denoted as unj ⇀ u∗ (say)) in H. Note that, for

H = RN , strong and weak convergence coincide.

Lemma 8. Let {un}n≥0 and {zn}n≥0 be real sequences such that un ≥ 0 ∀ n ≥ 0, lim
n→∞

n
∑

i=0
zi ∈ R

and un+1 ≤ un + zn ∀ n ≥ 0. Then lim
n→∞

un exists in R.

Proof. We follow a method of proof in [55]. Let, lim
n→∞

n
∑

i=0
zi = z∗.

Define yn =
n−1
∑

i=0
zi ∀ n ≥ 1; then, lim

n→∞
yn = z0.

Now, un+1 + yn ≤ un + zn + yn = un + yn+1 ∀ n ≥ 1.
Thus, un+1 − yn+1 ≤ un − yn ∀ n ≥ 1. Therefore, the sequence {un − yn}n≥1 is

monotone nonincreasing. Hence, only the following two cases are possible:
Case 1: lim

n→∞
(un − yn) = −∞,

Case 2: lim
n→∞

(un − yn) ∈ R.

It is impossible for case 1 to be true because of the following contradiction:
Assuming case 1 holds and using the hypothesis that un ≥ 0 ∀ n ≥ 1 ,

0 ≤ lim
n→∞

un = lim
n→∞

((un − yn) + yn) = −∞.

Hence, case 2 must be true. Consequently, we have that

lim
n→∞

un = lim
n→∞

((un − yn) + yn) = lim
n→∞

(un − yn) + lim
n→∞

yn ∈ R. �

Lemma 9. [56] Let Γ be a single valued monotone operator on H such that C ⊆
domΓ = {u ∈ H : Γ(u) 6= φ} and Γ is hemicontinuous on C. Let TC be the normality
operator for C, i.e., TC(u) = {y ∈ H : 〈u− v, y〉 ≥ 0, ∀ v ∈ C}. Then, Γ + TC is a maximal
monotone operator.

Lemma 10. [57] Let {un}n≥0 be a sequence in H that converges weakly to u0 ∈ H. Then, for any
u 6= u0, lim

n→0
inf‖un − u0‖ < lim

n→0
inf‖un − u‖.

Lemma 11. [58] Let g : R2N → R∪ {+∞} (sic) be a proper lower semicontinuous mapping and
zn = (un, un−1)n≥1 be a sequence satisfying the following:

(H1) for each n ≥ 1, g(zn+1) + a‖un − un−1‖2 ≤ g(zn) for some fixed positive constant a;
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(H2) foreachn ≥ 1, thereexists yn+1 ∈ ∂g(zn+1) suchthat‖yn+1‖ ≤ b
2 (‖un − un−1‖+ ‖un+1 − un‖)

for some fixed positive constant b;

(H3) there exists a subsequence
(
znk

)
k≥1 such that znk → ẑ and g

(
znk

)
→ g(ẑ) as k→ ∞ .

Moreover, let g have the KL property at the cluster point ẑ specified in (H3). Then the sequence

{un}n≥0 has finite length (that is
∞
∑

n=1
‖un − un−1‖ < +∞) and converges to û as n→ ∞ , where

(û, û) is a critical point of g.

Theorem 12. Let g be a real valued mapping on C, bounded below, and whose Frechet derivative
denoted by A is K-Lipschitz. Let

{
vj
}

j≥0 be the sequence generated iteratively by AMLA (see
Equation (12)), where the control parameters αj and λ are chosen in R such that

0 ≤ αj <
2−λK

3 , lim
j→∞

αj = 0, αj+1 ≤ αj ∀ j ≥ 0 and 0 < λ < 1
K . Then,

(a) there exists µ, α > 0 such that for the sequence
{

f
(
vj
)}

j≥0 =
{

g
(
vj
)
+ µ‖vj − vj−1‖2}

j≥0,

f
(
vj+1

)
+ α‖vj+1 − vj‖2 ≤ f

(
vj
)
∀ j ≥ 0;

(b)
∞
∑

j=0
‖vj+1 − vj‖2 < +∞;

(c) lim
j→∞

g
(
vj
)
∈ R.

Proof. According to Lemma 6, we have that g
(
vj+1

)
− g
(
vj
)
≤ vj+1− vj, Avj +

K
2 vj+1− vj

2.
This implies that

λ
(

g
(
vj+1

)
− g
(
vj
))
≤
〈
vj+1 − vj, λAvj

〉
+ λK

2 ‖ vj+1 − vj ‖2

=
〈
vj+1 − vj, wj −

(
wj − λAvj

)〉
+ λK

2 ‖ vj+1 − vj ‖2

=
〈
vj+1 − vj, vj+1 −

(
wj − λAvj

)〉
+
〈
vj+1 − vj, wj − vj+1

〉
+ λK

2 ‖ vj+1 − vj ‖2

≤ −
(

1− λK
2

)
‖ vj+1 − vj ‖2 + αj

〈
vj+1 − vj, vj−1 − vj

〉
≤ −

(
1− λK

2

)
‖ vj+1 − vj ‖2 + αj

〈
vj+1 − vj, vj−1 − vj

〉
+

αj
2 ‖ vj+1 − vj−1 ‖2

= −
(

1− λK
2

)
‖ vj+1 − vj ‖2 +

αj
2 ‖ vj+1 − vj ‖2 +

αj
2 ‖ vj − vj−1 ‖2

= −
(

1− λK+αj
2

)
‖ vj+1 − vj ‖2 +

αj
2 ‖ vj − vj−1 ‖2

≤ −
(

2−λK
3

)
‖ vj+1 − vj ‖2 +

(
2−λK

6

)
‖ vj − vj−1 ‖2

Thus, we have that

λ
(

g
(
vj+1

)
− g
(
vj
))

+
(

2−λK
6

)(
‖ vj+1 − vj ‖2 − ‖ vj − vj−1 ‖2

)
≤ −

(
2−λK

6

)
‖ vj+1 − vj ‖2.

Define the sequence
{

f
(
vj+1

)}
j≥1 as

f
(
vj
)
= g

(
vj
)
+

(
2− λK

6λ

)
‖vj − vj−1‖2.

Then,
{

f
(
vj+1

)}
j≥1 is bounded below, and it follows that

f
(
vj+1

)
+ α‖vj+1 − vj‖2 ≤ f

(
vj
)
∀ j ≥ 1 where α =

2− λK
6λ

.



Cells 2022, 11, 3604 19 of 24

Thus, the sequence is monotone nonincreasing and bounded below. Hence, lim
j→∞

f
(
vj
)

exists. Moreover, we have that

∞

∑
j=0

(
2− λK

6λ

)
‖vj+1 − vj‖2 < +∞.

Therefore,

∞

∑
j=0
‖vj+1 − vj‖2 < +∞, lim

j→∞
‖vj+1 − vj‖2 = 0 and lim

j→∞
g
(
vj
)

exists. �

Theorem 13. Let the assumptions of Theorem 12 hold. Suppose further that A is monotone; denote
by SCg the set of critical points of g. Let v∗ ∈ SCg and

{
vj
}

j≥0 be the sequence generated by
AMLA. Then, the following applies:

•
{

vj
}

j≥0 is bounded;

• lim
j→∞
‖vj+1 − wj‖2 = 0;

• lim
j→∞
‖vj − v∗‖2 exists;

• the sequence
{

vj
}

j≥0 converges waekly to a critical point v̂ of g ; moreover, if g is convex, then
v̂ is a minimizer of g

Proof. Let uj := wj − λAvj and τj := 2λ
(

g
(
vj
)
− g
(
vj+1

))
+ λK‖vj+1 − vj‖2. Now, using

the definition of vj and wj, Definition 1, the fact that v∗ ∈ SCg, and the monotonicity of A,
we get the following estimation:

‖ vj+1 − v∗ ‖2 ≤ ‖ uj − v∗ ‖2 − ‖ vj+1 − uj ‖2

= ‖ wj − λAvj − v∗ ‖2 − ‖ vj+1 −
(

wj − λAvj

)
‖

2

= ‖ wj − v∗ ‖2 − 2λ
〈

wj − v∗, Avj

〉
+ ‖ λAvj ‖2

−
(
‖ vj+1 − wj ‖2 + 2λ

〈
vj+1 − wj, Avj

〉
+ ‖ λAvj ‖2

)
= ‖ wj − v∗ ‖2 − 2λ

〈
vj+1 − v∗, Avj

〉
− ‖ vj+1 − wj ‖2

≤ ‖ wj − v∗ ‖2 − 2λ
〈

vj+1 − vj, Avj

〉
− ‖ vj+1 − wj ‖2

≤
(

1− αj

)
‖ vj − v∗ ‖2 + αj‖ vj−1 − v∗ ‖2 − 2λ

〈
vj+1 − vj, Avj

〉
.

(A1)

Next, according to Lemma 6,

− 2λ
〈
vj+1 − vj, Avj

〉
≤ 2λ

(
g
(
vj
)
− g
(
vj+1

))
+ λK‖vj+1 − vj‖2.

Thus,

‖ vj+1 − v∗ ‖2 ≤ ‖ vj − v∗ ‖2 − αj

(
‖ vj − v∗ ‖2 − ‖ vj−1 − v∗ ‖2

)
+2λ

(
g
(

vj

)
− g
(

vj+1

))
+ λK‖ vj+1 − vj ‖2

≤ ‖ vj−1 − v∗ ‖2 − αj−1

(
‖ vj−1 − v∗ ‖2 − ‖ vj−2 − v∗ ‖2

)
+ τj−1

−αj

(
‖ vj − v∗ ‖2 − ‖ vj−1 − v∗ ‖2

)
+ τj

...

≤ ‖ v1 − v∗ ‖2 +
j

∑
i=1
−αi

(
‖ vi − v∗ ‖2 − ‖ vi−1 − v∗ ‖2

)
+

j
∑

i=1
τi

≤ ‖ v1 − v∗ ‖2 + α1‖ v0 − v∗ ‖2 − αj‖ vj − v∗ ‖2 +
j

∑
i=1

τi

≤ ‖ v1 − v∗ ‖2 + α1‖ v0 − v∗ ‖2 + M, ∀j ≥ 1.
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Therefore,
{

vj
}

j≥0 is bounded.

Next, ‖vj+1 − v∗‖2 ≤ ‖vj − v∗‖2 − αj
(
‖vj − v∗‖2 − ‖vj−1 − v∗‖2)+ τj, such that,

‖vj+1 − v∗‖2 + αj‖vj − v∗‖2 ≤ ‖vj − v∗‖2 + αj−1‖vj−1 − v∗‖2 + τj. (A2)

According to Lemma 8, we have that lim
j→∞

(
‖vj − v∗‖2 + αj−1‖vj−1 − v∗‖2) exists.

Moreover, combining Equations (A1) and (A2) and Theorem 12(b) yields
lim
j→∞
‖vj+1 − wj‖2 = 0 and lim

j→∞
‖vj − wj‖ = 0.

Since lim
j→∞

αj = 0 and
{
‖vj − v∗‖2}

j≥0 is bounded, then lim
j→∞

αj−1‖vj−1 − v∗‖2 = 0.

Hence, lim
j→∞
‖vj − v∗‖2 exists.

Now, we show that every weak sequential limit of
{

vj
}

j≥0 is in SCg. Let Ws
(
vj
)

denote

the set of weak sequential limits of
{

vj
}

j≥0. Then, the boundedness of
{

vj
}

j≥0 guarantees

that Ws
(
vj
)

is nonempty (see Lemma 7). Let v̂ ∈ Ws
(
vj
)
; given Definition 4, it suffices to

show that 〈v− v̂, Av̂〉 ≥ 0 ∀ v ∈ C. By definition of Ws
(
vj
)
, there exists a subsequence{

vjk
}

k≥0 ⊆
{

vj
}

j≥0 such that vjk ⇀ v̂ . ‖vj − wj‖ −→ 0 =⇒ wjk ⇀ v̂ .

Define G(v) =
{

Av + TC(v), i f v ∈ C
φ, i f v /∈ C

, where TC is the normality operator. According

to Lemma 9, G is maximal monotone and 0 ∈ G(v) if and only if
(
v ∈ SCg

)
. Thus, it suffices

to show that (v̂, 0) ∈ graph(G) = {(v, u) ∈ H×H : v ∈ dom (G), u ∈ G(v)}.
We recall that, for any maximal monotone operator Γ, if 〈Γx− z, x− y〉 ≥ 0 ∀ x ∈ dom Γ

and z ∈ H, then z ∈ Γ(y).
Thus, let (v, u∗) ∈ graph(G) be arbitrary, 〈u∗, v− v̂〉 ≥ 0 =⇒ 0 ∈ G(v̂) . Hence, we

only need to verify that 〈u∗, v− v̂〉 ≥ 0.
Now, (v, u∗) ∈ graph(G) =⇒ u∗ − Av ∈ TC(v) =⇒ 〈u∗ − Av, v− u〉 ≥ 0 ∀ u ∈ C .
However, by definition, vj+1 = ℘C

(
wj − λAvj

)
, thus,〈

vj+1 − v, wj − λAvj − vj+1
〉
≥ 0 =⇒

〈
v− vj+1,

vj+1−wj
λ + Avj

〉
≥ 0.

Since vj ∈ C ∀ j ≥ 0, we have that

〈
v− vjk , u∗

〉
≥
〈
v− vjk , Av

〉
≥
〈
v− vjk , Av

〉
−
〈

v− vjk
vjk
−wjk−1

λ + Avjk−1

〉
=
〈
v− vjk , Av− Avjk

〉
+
〈
v− vjk , Avjk − Avjk−1

〉
+ 1

λ

〈
v− vjk , wjk−1 − vjk

〉
.

Taking limit as k→ ∞ , we get 〈u∗, v− v̂〉 ≥ 0. Therefore, v̂ ∈ SCg and Ws
(
vj
)
⊆ SCg.

Finally, we show that vj ⇀ v′ ∈ SCg . To verify this, it is enough to show that Ws
(
vj
)

is a singleton. We proceed by contradiction. Suppose there exist v′, v′′ ∈ Ws
(
vj
)

with
v′ 6= v′′, then there are subsequences

{
vjk
}

k≥0,
{

vji
}

i≥0 of
{

vj
}

j≥0 such that vjk ⇀ v′ and
vji ⇀ v′′ . Therefore, according to Lemma 10, we have that

lim
j→∞
‖ vj − v′ ‖ = lim inf

k→∞
‖ vjk − v′ ‖ < lim inf

k→∞
‖ vjk − v′′ ‖ = lim

j→∞
‖ vj − v′′ ‖

= lim inf
i→∞

‖ vji − v′′ ‖ < limin f
i→∞

‖ vji − v′ ‖ = lim
j→∞
‖ vj − v′ ‖.

This is a contradiction since lim
j→∞
‖vj − v′‖ is never less than itself.

Hence, the sequence
{

vj
}

j≥0 converges weakly to a critical point of g. Furthermore,

if g is convex, then, from 0 ≤ g(v)− g(v̂)− 〈v− v̂, Av̂〉 and 〈v− v̂, Av̂〉 ≥ 0 ∀ v ∈ C, we
obtain g(v̂) ≤ g(v) ∀ v ∈ C. Thus, v̂ is a minimizer of g. �
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Theorem 14. Let the assumptions of Theorem 12 hold for H = Rn. In addition, assume further that
C is bounded and g possesses the KL property. Then, the sequence

{
vj
}

j≥0 generated by AMLA
converges to an element of SCg.

Proof. By definition, vj ∈ C ∀ j ≥ 0. Hence, the sequence
{

vj
}

j≥0 is bounded, and

Ws
(
vj
)
6= φ. We now show that Ws

(
vj
)
⊆ SCg. Let v̂ ∈Ws

(
vj
)

be arbitrary; then, there is a
subsequence

{
vjk
}

k≥0 of
{

vj
}

j≥0 such that vjk → v̂ as k→ ∞ . Using Theorem 12(b) and

the definition of wj, we get lim
j→∞
‖vj+1 − vj‖ = lim

j→∞
‖vj+1 − wj‖ = lim

j→∞
‖vj − wj‖ = 0.

Therefore, lim
k→∞

vjk − wjk = lim
k→∞
‖vjk+1 − wjk‖ = lim

k→∞
‖vjk+1 − vjk‖ = 0.

This implies that wjk → v̂ and vjk+1 → v̂ as k→ ∞ . Furthermore, the continuity of A
guarantees that Avjk → Av̂ as k→ ∞ .

Now, let v ∈ C be arbitrary; then, by definition of vjk+1,
〈
vjk+1 − v, wjk − λAvjk − vjk+1

〉
≥ 0

=⇒
〈
v− vjk+1, λAvjk

〉
+
〈
v− vjk+1, vjk+1 − wjk

〉
≥ 0.

Taking the limit as k→ ∞ , we have that 〈 v− v̂, λAv̂〉 ≥ 0 =⇒ 〈v− v̂, Av̂〉 ≥ 0 ∀ ∈ C .
Hence, Ws

(
vj
)
⊆ SCg.

Next, we make use of Lemma 11 to prove that vj → v̂ . For this, we define the map
h : Rn ×Rn → R∪ {+∞}as follows:

h(x, y) = g(x) + ω‖x− y‖2 + IC(x) := F(x, y) + IC(x),

where IC(x) =
{

0 , i f x ∈ C
+∞ , otherwise

; then, h has the KL property on dom(h).

Set
(

xj
)

j≥1 =
(
vj, vj−1

)
j≥1; then, Theorem 12(a) gives that H1 of Lemma 11 holds.

Moreover, the boundedness of
{

vj
}

j≥0 and continuity of h on C imply that there exists a

subsequence
(

xjk

)
k≥1

of
(
xj
)

j≥1 such that xjk → x̂ = (v̂, v̂) and h
(

xjk

)
→ h(x̂) , as k→ ∞ ,

thus verifying H3 of Lemma 11.
Next, we show that H2 of Lemma 11 also holds. First, we recall that

(
u1

m, u2
m
)
= um ∈ ∂h(xm) = (∇g(vm) + 2ω(vm − vm−1) + TCvm, 2ω(vm−1 − vm))

⇐⇒ u1
m ∈ ∇g(vm) + 2ω(vm − vm−1) + TCvm·and·u2

m = 2ω(vm−1 − vm)

⇐⇒ u1
m −∇g(vm)− 2ω(vm − vm−1) ∈ TCvm·and·u2

m = 2ω(vm−1 − vm)

⇐⇒ u1
m − Avm − 2ω(vm − vm−1) ∈ TCvm·and·u2

m = 2ω(vm−1 − vm)

⇐⇒
〈
vm − y, u1

m − Avm − 2ω(vm − vm−1)
〉
≥ 0∀y ∈ Cand·u2

m = 2ω(vm−1 − vm).

Now, by definition of vm+1, we have 〈vm+1 − y, wm − λAvm − vm+1〉 ≥ 0 ∀ y ∈ C. Thus,〈
vm+1 − y, wm−vm+1

λ − Avm

〉
≥ 0∀y ∈ C

⇔
〈

vm+1 − y, wm−vm+1
λ + Avm+1 − Avm − Avm+1

〉
≥ 0∀y ∈ C

⇔
〈

vm+1 − y, wm−vm+1
λ + Avm+1 − Avm + 2ω(vm+1 − vm)− Avm+1 − 2ω(vm+1 − vm)

〉
≥ 0∀y ∈ C

⇒ um =
(

wm−vm+1
λ + Avm+1 − Avm + 2ω(vm+1 − vm), 2ω(vm − vm+1)

)
∈ ∂h(xm+1).

An estimation using the definition of wm and Lipschitz continuity of A gives

‖ um ‖ ≤ ‖ wm−vm+1
λ + Avm+1 − Avm + 2ω(vm+1 − vm) ‖+ ‖ 2ω(vm − vm+1) ‖
≤
(

4ω + K + 1
λ

)
(‖ vm+1 − vm ‖+ ‖ vm − vm−1 ‖).
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Therefore, Lemma 11 guarantees that xj −→ x̂ = (v̂, v̂) . Since xj =
(
vj, vj−1

)
, we have

that vj −→ v̂ ∈Ws
(
vj
)
⊆ SCg. �
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