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Abstract: Macrophages are important players in the immune system that sense various tissue chal-
lenges and trigger inflammation. Tissue injuries are followed by inflammation, which is tightly
coordinated with tissue repair processes. Dysregulation of these processes leads to chronic inflam-
mation or tissue fibrosis. Wnt ligands are present both in homeostatic and pathological conditions.
However, their roles and mechanisms regulating inflammation and tissue repair are being investi-
gated. Here we aim to provide an overview of overarching themes regarding Wnt and macrophages
by reviewing the previous literature. We aim to gain future insights into how tissue inflammation,
repair, regeneration, and fibrosis events are regulated by macrophages.
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1. Introduction
1.1. Macrophages in the Immune System

Macrophages, one of the body’s most abundant populations of leukocytes, are mainly
derived from the yolk sac during embryogenesis and are found in almost every tissue that
plays an essential role during mammalian development [1,2]. They are specialized phago-
cytes, large vacuolated cells with abundant cytoplasm containing lysosomal granules [3].
Thus, they can be sentinels of the innate immune responses that serve to protect from
the inflammatory process. In addition, they have important roles in tissue development,
homeostasis, and remodeling [4–6]. Macrophages exhibit crucial homeostatic activity in
nearly all body organs by producing growth factors and other mediators that provide
trophic support to the tissues in which they reside.

Tissue-resident macrophages and monocytes recruited from the bone marrow are
essential drivers of inflammatory and tissue regenerative responses that develop in re-
sponse to tissue injury induced by infection, autoimmune disorders, mechanical or toxic
injuries, and various other causes. These residents and recruited macrophage populations
proliferate and undergo marked phenotypic and functional changes in response to growth
factors and cytokines released in the local tissue microenvironment [6–8]. Recent studies
have demonstrated these changes by identifying specialized and critically timed roles
for different monocyte and macrophage activation states in tissue repair, regeneration,
and fibrosis.

Typically, by simplified classification, these macrophages are primarily divided into
two major groups, namely, classically activated macrophages (M1 macrophages) and
alternatively activated macrophages (M2 macrophages) based on functions and expression
patterns of genes and proteins [9–11]. The phenotype of M1 macrophages is activated by
infection and pro-inflammatory Th1 cytokines, including bacterial lipopolysaccharide (LPS),
interferon-gamma (IFN-γ), and tumor necrosis factor-α (TNF-α) [7,12]. M1 macrophages
improve bactericidal capacity and increase pro-inflammatory cytokines such as IFN-γ,
TNF-α, interleukin (IL)-1, IL-6, IL-12, and IL-23 [7,9,13]. In contrast, the M2 phenotype is
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induced by anti-inflammatory Th2 cytokine IL-4 and IL-13 and other factors [7,12]. M2
macrophages secrete anti-inflammatory cytokines, including IL-10, transforming growth
factor-beta (TGF-β), and the cytosolic enzyme arginase-1 [7,9,13].

1.2. Wnt System

Wnt signaling is a conserved pathway across species. It is involved in various essen-
tial tasks by regulating cell differentiation, proliferation, stem cell development, immune
cell functions, and tissue repair [14–16]. Evidence for the Wnt system’s pivotal role is
that aberrant alterations of this molecular pathway are involved in multiple human dis-
orders and pathologies, such as congenital abnormalities, autoimmune diseases, and
cancer [17–20]. The Wnt pathways are initiated by the binding of a Wnt ligand to a receptor
Frizzled (FZD) and a co-receptor such as low-density lipoprotein receptor-related protein
5/6 (LRP5/6) [21,22]. Wnt ligands and their receptors have multiple protein members;
there are 19 different Wnt ligands, 10 FZD receptors, and diverse co-receptors such as
LRP5/6 [20,21]. This molecular interaction between Wnt ligands and their receptors trig-
gers the signaling cascade activation that activates or suppresses the expression of different
genes, such as cyclin D1, Axin2, and Myc proto-oncogene [20]. Depending on the nature
of the ligands and downstream events, Wnt signaling is broadly classified into canonical
and non-canonical pathways: (1) the canonical signaling is activated via β-catenin, known
as cadherin-associated protein-β, and members of the T cell factor (TCF)/lymphocyte
enhancer-binding factor (LEF) family; and (2) the non-canonical pathway is independent of
β-catenin and involves other components instead of TCF/LEF [23,24].

The binding of a Wnt1 class ligand (Wnt1, Wnt2, Wnt3, Wnt3a, Wnt8a, Wnt10a,
Wnt10b, or Wnt16) generally induces the cascade of the Wnt signaling pathway (also called
the Wnt/β-catenin pathway) via its binding to FZD receptor and low-density co-receptor
LRP5/6 [24,25]. This signaling forms a transcriptional activation complex composed of
β-catenin and TCF/LEF. The complex induces canonical Wnt target gene expression as-
sociated with cell proliferation, differentiation, and maturation [26,27]. In another Wnt
pathway (previously known as the non-canonical Wnt pathway), a Wnt5a class ligand
(Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt7a, Wnt7b, or Wnt11) binds to its FZD receptor and
another co-receptor including receptor-like tyrosine kinase (RYK), the receptor tyrosine
kinase-like orphan receptor 2 (ROR2), tyrosine-protein kinase-like receptor 7 (PTK7), or
the neurotrophin receptor homolog 1 (NRH1) [24,25]. Two pathways were addressed
most so far: the Wnt/planar cell polarity (Wnt/PCP) and Wnt/calcium (Wnt/Ca2+) path-
way [24,28]. The Wnt/PCP pathway begins when the Wnt ligand is recognized by the FZD
receptor and the RYK/ROR2 complex. Wnt/PCP signaling activates Rho-associated kinase
(ROCK) and c-Jun N-terminal kinase (JNK) to induce gene expression related to cell polarity,
migration, and cytoskeletal arrangement changes. The Wnt/Ca2+ pathway begins with
the FZD receptor being involved in the activation of calcium-dependent processes. The
summary of the canonical and non-canonical Wnt signaling pathways is shown in Figure 1.

Notably, the categorization of Wnt pathways above is undergoing revisions with new
findings. For example, Wnt2, which is typically elucidated as the canonical Wnt, can also
activate the non-canonical Wnt pathway depending on the type of cells or tissues. There are
results showing that Wnt2 plays an important role in cardiac formation and differentiation
from embryonic stem (ES) cells via non-canonical Wnt signaling [29]. It is known that Wnt4,
which was thought to trigger the non-canonical Wnt pathway, activates the canonical Wnt
signaling pathway during myogenic differentiation [30]. Therefore, more investigations are
warranted in the future to address signaling pathways with a given Wnt ligand with its
receptors, co-receptors, and recipient cell or tissue types.

In addition, there were more investigations concerning soluble Wnt inhibitors, includ-
ing Dickkopf (DKK) family members, sFRPs, and WIF1 [23,27,31].

In recent years, many researchers have focused on identifying and characterizing
the different populations of macrophages that control the different stages of tissue repair,
regeneration, and development in most organ systems [32]. Recent studies have suggested
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that various monocyte and macrophage populations play distinct and essential roles in
chronic inflammation, tissue repair, regeneration, cancer, and fibrosis, as shown in Figure 2.
Here, we discuss recent findings that have improved our understanding of the relationship
and role of Wnt signaling and macrophages in tissue injury, repair, and regeneration. In
particular, we highlight insights into Wnt and macrophages in the most immunologically
active lung, liver, intestine, kidney, heart, and skin.
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Figure 1. The canonical and non-canonical Wnt signaling pathways. In the canonical Wnt pathway,
the Wnt signaling is activated upon binding Wnt ligands such as Wnt3a to Frizzled (FZD) and
co-receptor LRP5/6. Then, the Disheveled (Dvl) recruits axis inhibition protein (Axin), the casein
kinase 1 (CK1), and glycogen synthase kinase 3 β (GSK3β) to the plasma membrane, inactivating
the β-catenin destruction complex and weakening phosphorylation and degradation of β-catenin.
This results in the accumulation of the stabilized β-catenin in the cytoplasm and the translocation
of it into the nucleus. β-catenin in the nucleus forms an active transcriptional complex with T-cell
factor (TCF) and lymphoid enhancer factor (LEF), leading to canonical Wnt target gene expression.
Upon the non-canonical Wnt ligands such as Wnt5a binding to the RYK/ROR2-FZD complex, Dvl
is recruited, and Wnt/PCP or Wnt/Ca2+ signaling pathway is activated. In the Wnt/PCP pathway,
the scaffold protein Dvl stimulates the activation of the small GTPase Rho and RAC to induce Rho-
associated kinase (ROCK) and c-Jun N-terminal kinase (JNK), respectively. ROCK and JNK trigger
gene expression associated with cell polarization and cytoskeletal rearrangement. In the Wnt/Ca2+

pathway, Dvl activates phospholipase C (PLC), stimulating 1,2-diacylglycerol (DAG) and inositol
1,4,5-triphosphate (IP3). The activated IP3 promotes the release of Ca2+ within the cytoplasm, and
protein kinase C (PKC), CAMKII, and calcineurin are subsequently induced. The nuclear factor of
activated T-cells (NFAT), a transcriptional factor, is then activated through dephosphorylation to
induce calcium-dependent cytoskeletal and transcriptional responses.
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Figure 2. Macrophage development and functions in different organs. Tissue-resident macrophages
are originated from the yolk sac/fetal liver and hematopoietic progenitors/circulating monocytes.
Monocytes are further differentiated into M1-like and M2-like macrophages based on their expression
markers upon a variety of stimuli. M2-like macrophages are known to be important for wound
repair and also share similar features with TAMs. M1-like macrophages constitute the first line of
defense against intracellular pathogens. Macrophages are sources of Wnt ligands and mediate Wnt
ligand-mediated signaling for various immune responses for tissue inflammation and repair. This
was created with Biorender.com.

2. Macrophages and Wnt Signaling in Lung Injury and Repair

At least two types of macrophage populations are located in the lung. Alveolar
macrophages (AMs) are located at the interface between the lung mucosa and the external
environment. [33–35]. They play the role of primary defense by directly sensing immuno-
logical stimuli such as inhaled particulate elements and bacteria [36]. Other macrophages,
called interstitial macrophages (IMs), inhabit the lung interstitium between the alveoli and
the capillaries [34,35]. They come in direct contact with the matrix and other pulmonary
connective tissue components and can phagocytose particles and bacteria [37]. In other
words, IMs can serve as a secondary defense against the invasion of particles and bacteria
evading phagocytic activity by AMs. Furthermore, IMs, which have unique transcriptional
features, can be distinguished from AMs by their distinct surface phenotype [37,38].

Once lung injury occurs, mechanisms for regeneration are initiated to restore the lung
epithelium. Wnt signaling is known to be essential for lung regeneration [39]. β-catenin,
the main component of the canonical Wnt signaling, mediates pulmonary regeneration,
acting as a transcription factor that stimulates the gene expression associated with epithelial
regeneration and controlling the tight junctions of the epithelial cells in the lung. However,
the investigation of the role of macrophage-derived Wnt ligands in the regeneration of
lungs is in its infancy, and further studies are needed.

Lung macrophages are associated with interstitial lung diseases, such as idiopathic
pulmonary fibrosis (IPF), which causes lung scarring for unknown reasons [40]. Hou and
colleagues showed that Wnt/β-catenin signaling in M2 macrophages with significantly
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increased Wnt7a protein was activated, promoting differentiation of myofibroblasts by
lung resident mesenchymal stem cells and exacerbating pulmonary fibrosis in mice [41]. In
particular, they found that macrophages recruited into the fibrotic lungs of mice treated
with bleomycin were mainly M2 macrophages. Wnt/β-catenin signaling activation in
lung macrophages promoted fibrosis after bleomycin treatment [41–43]. Sennello et al.
showed that lack of LRP5, the Wnt co-receptor, resulted in many fewer Siglec Flow AMs,
a macrophage cell type that caused pulmonary fibrosis [43]. Given that Wnt/β-catenin
signaling affects lung macrophages contributing to the development and persistence of
pulmonary fibrosis, targeting macrophages with activated Wnt/β-catenin signaling could
lead to new strategies to slow lung fibrosis.

The importance of the Wnt pathway in lung macrophages was observed in infec-
tion and inflammatory processes. For example, it was confirmed that Wnt1, Wnt6, and
Wnt10a were induced in an inflammatory environment such as the lung of Mycobacterium
tuberculosis-infected mice, and especially, Wnt6 was a novel factor inducing macrophage
polarization with an M2-like phenotype [44]. In addition, Zhou and colleagues [45] investi-
gated the effect of the Wnt signaling regulator Rspondin3 on resolving inflammatory injury.
They found that lung endothelial cells release Rspondin3 in response to inflammatory dam-
age, activating Wnt/β-catenin signaling in the lung IMs. The specific deletion of Rspondin3
in endothelial cells prevented the production of anti-inflammatory IMs in endotoxemic
mice and caused a severe inflammatory injury. In a study about cigarette smoke extract
(CSE)-stimulated lung, non-canonical and pro-inflammatory Wnt5a was up-regulated by
cigarette smoking, which induces parallel up-regulation of pro-inflammatory cytokines
in mouse and human models [46]. In this study, it was confirmed that Wnt5a is a pro-
inflammatory Wnt ligand and influences the polarization of the M1/M2 macrophage. When
macrophages are activated following the activation of the Wnt5a pathway, they contribute
to the inflammatory response of the lung. Zhu et al. [47] have shown that inflammation
can be alleviated by inhibiting Wnt5a/JNK1-induced macrophage activation, which may
be a target for treating chronic obstructive pulmonary disease (COPD). In patients with
COPD, Wnt/β-catenin signaling was activated, resulting in increased alveolar epithelial
cell marker expression, altered macrophage activity, and elastin remodeling [48]. Devi and
Moharana [49] identified that infiltration and polarization of macrophage populations in the
alveolar space of the COPD rodent model exposed to CSE trigger the neoplastic change and
tumor growth via IL-6 mediated through activation of Wnt3a/β-catenin signaling cascade.

In various cancers, the Wnt signaling pathway plays an important role in the activity
of tumor cells, promoting cancer metastasis and progression [50]. An abnormally increased
activation of either the canonical or non-canonical Wnt signaling pathway was detected
in lung cancer. In addition, circulating monocytes are changed into tumor-associated
macrophages (TAMs) when recruited into the tumor microenvironments. Recently, it was
reported that TAMs induce immune suppression, affecting lung tumorigenesis and devel-
opment. Sarode and colleagues [51] provided strong evidence that β-catenin-mediated
transcription plays the main role in the transition from tumor-inhibiting M1-like TAMs
to tumor-promoting M2-like TAMs. Thus, targeting β-catenin in TAMs can furnish novel
immunotherapy that reactivates antitumor immunity in the lung microenvironment.

3. Macrophages and Wnt Signaling in Liver Injury and Repair

Kupffer cells, also known as Kupffer–Borowicz cells, are the primary macrophages of
the liver [52]. Kupffer cells are located in the liver sinusoid and are highly specialized for
their phagocytic activity. They can sense danger-associated-molecular patterns (DAMPs)
and pattern-associated-molecular patterns (PAMPs) via various receptors such as TLRs
and Nod-like receptors (NLRs) [53].

Macrophages in the liver are one of the first responders to liver injury and are in-
volved in modulating the fibrogenic response through several mechanisms. In addition,
macrophages are closely related to the activated hepatic progenitor cells (HPCs) that oc-
cur parallel to fibrosis. Irvine and colleagues [54] investigated the role of Wnts derived
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from macrophages in chronic liver diseases (CLDs), especially concerning the HPC niche.
Their results highlight that macrophage-derived Wnts have anti-fibrotic potential in CLDs
and may be targeted for medical treatment. Carpino et al. [55] identified that the ac-
tivated macrophages in pediatric nonalcoholic fatty liver disease (NAFLD) are closely
associated with the HPC response through Wnt3a signaling. The study has shown that
pro-inflammatory macrophages are the predominant subset of pediatric NAFLD and the
important role of macrophage polarization in the progression of pediatric NAFLD.

In response to liver injury, quiescent hepatic stellate cells (HSCs) undergo a distinc-
tive morphological transformation into proliferative, contractile, and extracellular matrix
protein-producing myofibroblasts, leading to liver fibrosis. Akcora and colleagues [56]
investigated the association between canonical Wnt signaling in HSCs and liver fibrogene-
sis using β-catenin/CBP inhibitor ICG-001. Interestingly, ICG-001 remarkably decreased
collagen accumulation and HSC activation and significantly inhibited macrophage in-
filtration, intrahepatic inflammation, and angiogenesis. Therefore, it is suggested that
inhibiting the canonical Wnt pathway can ameliorate liver fibrosis in vivo. To clarify
the role of macrophage-derived Wnt ligands in regulating hepatobiliary injury and re-
pair, Jiang and colleagues [57] investigated the effect of macrophage-specific deletion of
Wntless, a cargo protein critical for cellular Wnt secretion. This study showed that a
shortage of Wnt secretion in macrophages caused more hepatic injury induced by 3,5-
diethoxycarbonyl-1,4-dihydrocollidine because of damaged hepatocyte proliferation and
increased M1 macrophages, which accelerate immune-mediated cell injury.

The correlation between the Wnt signaling and liver macrophages was also observed
in infection and inflammatory processes. For example, the overexpression of liver kinase
B1 mediated mycobacterial infection in macrophages via FOXO1/Wnt5a signaling was
identified [58]. Furthermore, it was suggested that the expression of LRP1 in macrophages
promoted hepatic inflammation by controlling Wnt signaling [59].

TAMs are a major element of the tumor microenvironment and play a central role in the
progression of hepatocellular carcinoma. A study has also shown that cancer-cell-derived
Wnt proteins stimulate M2-like polarization of TAMs through the canonical Wnt/β-catenin
pathway, resulting in growth, migration, metastasis, and immune suppression of cancer
in hepatocellular carcinoma [60]. Obesity can stimulate the risk of tumor formation, and
steatosis in the liver often leads to carcinogenesis. To determine the mechanism by which
steatosis promotes cancer formation, Debebe and colleagues [61] used various liver cancer
models in order to investigate the role of obesity in cancer. They showed that a high-fat diet
lipid accumulation could activate Wnt/β-catenin signals, and pharmacological inhibition or
loss of these signals suppress the growth of tumor-initiating cells (TICs) in vitro and reduce
the accumulation of TICs in vivo. Their data also confirmed that Wnt/β-catenin, caused by
steatosis-induced macrophage infiltration, promotes tumor progenitor cell growth.

4. Macrophages and Wnt Signaling in Intestine Injury and Repair

Macrophages in the intestine have roles in tissue homeostasis and inflammation,
especially in the resolution of inflammation [34,62,63]. In recent years, Wnt signaling has
played an essential role in intestinal epithelial proliferation and differentiation, and the
expression of Wnt ligands by macrophages has been studied [39].

Saha and colleagues [64] analyzed the role of macrophage-derived Wnts in intestinal
repair and regeneration after radiation injury in mice. Using macrophage-specific dele-
tion of the Porcupine gene to inhibit Wnt ligand release in mice (Csf1r.iCre-Porcflox/flox),
they showed that macrophage-derived Wnts contained in extracellular vesicles (EV) are
important to mediate radiation-induced gastrointestinal syndrome (RIGS). Treatment of
Wnt-containing EVs by ultracentrifugation of cell-free supernatant from bone marrow
macrophages or using a total exosome isolation kit on irradiated mice facilitated the recov-
ery of the irradiated mice. Cosín-Roger and colleagues [65] investigated the macrophage
phenotype that determines Wnt ligands, the effect of macrophage phenotype on epithelial
activation of Wnt signaling, and its relevance to the Wnt signaling pathway in ulcerative
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colitis (UC). They showed that M2 macrophages, not M1, activated Wnt signaling via Wnt1,
which reduces the differentiation of enterocytes. In addition, the number of CD206-positive-
M2 macrophages in the mucosa of UC patients significantly increased and acted as a source
of Wnt1, showing that excessive Wnt signaling in the intestinal epithelium was involved in
the development of colorectal adenocarcinoma. Other researchers [66] found that signal
transducer and activator of transcription 6 (STAT6) mediates M2 polarization and induces
the expression of Wnt2b, Wnt7b, and Wnt10a in the mucosa of 2,4,6-trinitrobenzene sulfonic
acid-treated mice. Furthermore, they suggested that the STAT6-dependent macrophage
phenotype activates the Wnt signaling pathway, promoting mucosal repair.

In another study [67], the number of CD206-positive cells, anti-inflammatory M2
macrophages, was significantly higher in colorectal cancer, whereas pro-inflammatory M1
macrophages were remarkably lower. In particular, the authors of this study investigated
whether gastrins synthesized by colon tumor cells affect a pattern of macrophage infiltration
in colon cancer. Interestingly, these results suggested that the expression of Wnt ligands
was decreased in macrophages differentiated in the presence of progestin; it inhibited the
acquisition of the M2 polarization in human macrophages.

5. Macrophages and Wnt Signaling in Kidney Injury and Repair

Macrophages are well known to increase in the diseased kidney and play a central role
in kidney damage, inflammation, and fibrosis [68,69]. They exhibit a distinct phenotype
with functional properties in response to various stimuli of the local microenvironment
during injury, inflammation, fibrosis, and repair [70,71].

Lin and colleagues [72] investigated whether the canonical Wnt signaling pathway
was activated during injury and played an essential role in repair in the kidney using
mice subjected to kidney-ischemia-reperfusion injury. Their data showed that the Wnt7b
produced by macrophages stimulated kidney repair and regeneration. Thus, it was sug-
gested that renal macrophages could establish a beneficial kidney repair and regeneration
system. Although several studies have demonstrated that kidney mononuclear phagocytes
(MPs) are required for post-injury healing, they were not designed to identify a subpopula-
tion of kidney MPs defined by phenotype. In addition, it has yet to be revealed whether
kidney-resident macrophage (KRM) could potentially play a therapeutic role after acute
kidney injury (AKI). In 2019, Lever and colleagues [73] found evidence that KRMs generate
and respond to Wnt ligands and activate canonical Wnt signaling. They concluded that
the regenerative source of KRMs after AKI is primarily in situ renewal as opposed to
the infiltration of macrophage precursors in the blood and that KRM triggers the MHCII
phenotypic transformation during development and after injury. After kidney injury, KRM
was also rich in the Wnt signaling pathway, demonstrating that the pathways essential
for mouse and human kidney development are activated. Their data showed that the
mechanisms involved in kidney development in KRM might function after injury.

In recent years, many studies have investigated the role of Wnt/β-catenin in regu-
lating macrophage activation and its contribution to renal fibrosis. Aberrant activation of
the Wnt/β-catenin pathway is associated with renal fibrosis. Feng and colleagues demon-
strated that Wnt3a enhanced M2 macrophage polarization induced by IL-4 or TGFβ1
caused STAT3 phosphorylation and nuclear translocation in vitro [74]. They also showed
that β-catenin deletion of macrophages in the mice model attenuated fibrosis, macrophage
accumulation, and M2 polarization observed in the kidney [75]. Thus, these results show
that activation of Wnt/β-catenin signaling is essential to stimulate macrophage M2 polar-
ization and promote macrophage proliferation during renal fibrosis. In another study, Feng
et al. investigated how impaired regulation of the Wnt5a signaling in macrophages leads to
renal fibrosis. In a mice model of kidney fibrosis, short hairpin RNA-mediated knockdown
of Wnt5a expression reduced renal fibrosis and macrophage M2 polarization [76]. Their
results showed that Wnt5a stimulates macrophage M2 polarization to promote renal fibro-
sis. Therefore, targeting Wnt signaling in macrophages may describe a new therapeutic
strategy for protecting against renal fibrosis in patients with chronic kidney disease.
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6. Macrophages and Wnt Signaling in Heart Injury and Repair

Macrophages and Wnt ligands are independently associated with cardiac develop-
ment, reaction to cardiac injury, and repair [77]. Furthermore, Wnt signaling functions
diversely in cardiovascular development and disease processes [78]. Monocytes and
monocyte-derived macrophages are known to play important roles in the development
of atherosclerosis and coronary heart disease, as well as in the immune response against
cardiac ischemia [79,80].

After the heart is damaged, Wnt signaling is reactivated. There is increasing evidence
that reactivation of the canonical Wnt signaling negatively affects infarct healing associated
with cardiomyocyte death and cardiac fibrosis [79]. However, the effect of regulating the
non-canonical Wnt signaling pathway in myocardial healing was not studied extensively.

Palevski and colleagues [81] investigated the role of macrophage-derived Wnt in the
repair of myocardial infarction (MI). Their findings showed that the Wnt signaling pathway
was activated after MI in mice and that macrophages expressed distinct components of
the Wnt pathway and were a source of non-canonical Wnt after MI. In addition, they
revealed that inhibition of macrophage Wnt5a secretion could block the inflammatory
autocrine loop and convert macrophages to the M2-like phenotype. These M2 macrophages
reduced excessive inflammation and enhanced infarct repair. Meyer and colleagues [82]
studied microenvironment-dependent changes in inflammatory monocytes after MI for
activation of monocytes, which play an essential role in healing after MI. They found more
components of the non-canonical Wnt pathway and more inhibitors of the intracellular
canonical Wnt pathway in the monocytes isolated from the heart than in the bone marrow.
It was also revealed that cardiomyocytes constitute a significant source of Wnt inhibitory
factor 1 (WIF1) after MI. In this study, WIF1 interferes with the non-canonical Wnt signaling
pathway of monocytes and reduces their pro-inflammatory signaling activation. Overall,
Wnt signaling of macrophages is related to cardiac remodeling after MI, and macrophage-
derived Wnt may be a new therapeutic target to improve infarct healing and recovery.

7. Macrophages and Wnt Signaling in Skin Injury and Repair

Macrophages are well known to play essential roles and coordinate in all stages of the
skin wound healing process [83–85].

A skin injury can provide an ideal model for studying the role of the innate immune
system between regeneration and fibrotic healing. Recently, the wound-induced hair
neogenesis (WIHN) model, which can induce fibrotic scarring, was used to investigate
the potential role of macrophages in determining healing fate by Gay and colleagues [86].
Their results showed that late wound macrophages phagocytosed the dermal Wnt inhibitor
SFRP4 to establish sustained Wnt activity, leading to fibrosis. In addition, the phagocytosis
of SFRP4 by macrophages in the human hidradenitis suppurativa was related to the
recovery of fibrotic skin. These results revealed that macrophages could change the fate of
skin wound healing by regulating major signaling pathways via phagocytosis.

Macrophages are known to regulate developmental vascularization through non-
canonical Wnt signaling and are associated with wound angiogenesis. Stefater III and
colleagues [87] showed that wound macrophages use the Wnt-Flt1 signaling pathway
via Flt1, a receptor for vascular endothelial growth factor A. Calcineurin is an important
mediator in regulating wound response. Thus, they found that macrophages use Wnt-
Calcineurin-Flt1 signaling to inhibit angiogenesis and slow repair.

To investigate the effect of perifollicular macrophage-derived Wnt on the activation
of hair follicle stem cells (HF-SCs) and the induction of anagen (the active growth phase
of hair follicles) in the hair cycle in mice, Castellana and colleagues [88] used and injected
subcutaneously into mice a liposome containing IWP-2, a specific hydrophobic small
molecule inhibitor of Wnt. Taken together, their results suggest that the apoptosis-related
secretion of Wnt by skin-resident macrophages contributes to the activation of HF-SCs,
allowing HF to enter the anagen growth phase of the hair growth cycle. Based on this,
the function of macrophages in human skin was recently studied. As a result, similar to
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murine perifollicular macrophages, human macrophages expressed many Wnt10a and
Wnt7b proteins during anagen. The proteins significantly decreased during catagen (a short
transitional phase in the hair growth cycle) [89]. Therefore, it is found that perifollicular
macrophages are worthy of attention as a therapeutic target for skin repair, inflammatory
skin disease, and cancer.

8. Future Perspective and Important Questions to Ask

Wnt ligands were studied extensively in developmental and cancer biology due to
their important roles in cell differentiation and proliferation. However, it is still unclear
how Wnt ligands regulate immune cells, including macrophages, in various inflammatory
diseases. We summarized the previous findings in Table 1.

Over the years, it has become increasingly clear that tissue injury, repair, and remodel-
ing are fundamental biological processes to maintain homeostasis. The recent development
of the genomics approach, including single-cell RNA (scRNA) sequencing, enables us to
ask important questions.

First, what are the mechanisms of Wnt ligands to regulate macrophages in various
human diseases? Our current understanding of the topic needs to be revised to provide
a comprehensive picture of how Wnt ligands regulate tissue injury and repair processes.
The dynamics of Wnt ligands’ expression and secretion is an important study point. As
covered in this review, macrophages are regulated by Wnt ligands but are also sources of
Wnt ligands. Cellular and molecular mechanisms and their implications in different tissues
and organs need to be delineated in the future.

Second, how does a subset of macrophages “sense” Wnt ligands? Since macrophages
are heterogenous populations with various origins, dissecting diverse macrophage popula-
tions and identifying subsets of macrophages regulated by Wnt ligands will be important
for understanding tissue injury and repair. The source of Wnt ligands and macrophages as
their target cells will provide valuable insights regarding cellular crosstalk for tissue injury
and repair.

Table 1. Summary of study results related to macrophages and Wnts in tissue injury and repair.

Organ/Tissues Tissue-Resident
Macrophages/Cells Injuries/Diseases Macrophages and Wnts References

Lung Alveolar macrophages

Pulmonary fibrosis

Activation of Wnt/β-catenin signaling in
alveolar macrophages leading to

disruption of repair and promotion of
fibrosis in lung

[41–43]

Mycobacterial infection Wnt6 causing macrophage polarization
with M2-like phenotypes [44]

Inflammatory injury

Exacerbation of inflammatory injury due
to inhibition of anti-inflammatory

interstitial macrophage, Influence of a
pro-inflammatory Wnt5a ligand on
M1/M2 macrophage polarization

[45,46]

Chronic obstructive
pulmonary disease

Increased contribution of macrophages on
inflammatory response due to activation

of Wnt5a/JNK1 pathway, Change in
macrophage activity via activation of

Wnt/β-catenin signaling

[47–49]

Lung cancer

Transition to tumor-promoting M2-like
tumor-associated macrophage due to

Wnt/β-catenin-mediated
transcriptional activation

[51]
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Table 1. Cont.

Organ/Tissues Tissue-Resident
Macrophages/Cells Injuries/Diseases Macrophages and Wnts References

Liver Kupffer cells

Chronic liver disease
(e.g., liver fibrosis)

The anti-fibrotic potential of Wnt derived
from macrophages, Reduction in collagen
accumulation and macrophage infiltration

in inhibition of canonical Wnt pathway

[54,56]

Pediatric nonalcoholic
fatty liver disease

(NAFLD)

Correlation of pro-inflammatory
macrophage activation and hepatic

progenitor cell response through Wnt3a
pathway in NAFLD

[55]

Partial hepatectomy Wnt secretion from Kuffer cells for
β-catenin activation for liver regeneration [57]

Mycobacterial infection Control of mycobacterial infection in
macrophage via FOXO1/Wnt5a signaling [58]

Hepatic inflammation
Promoted liver inflammation caused by
modulation of Wnt signaling via LRP1

expression in macrophages
[59]

Liver cancer

Stimulation of M2-like macrophage
polarization through the canonical Wnt

signaling of cancer cell-derived
Wnt ligands,

Promotion of tumor cell growth by
Wnt/β-catenin signal induced by high-fat

diet lipid accumulation and
steatosis-induced macrophage infiltration

[60,61]

Intestine Intestinal macrophages

Radiation injury Macrophage-derived Wnts, an essential
element for intestine regeneration [64]

Inflammatory bowel
disease (IBD)

(e.g., ulcerative colitis)

Activated Wnt signaling in epithelial cells
caused by M2 macrophage through Wnt1,
which impaired enterocyte differentiation,

Promoting mucosal repair via the Wnt
signaling pathway of STAT6-dependent

macrophage

[65,66]

Colorectal
adenocarcinoma

Increased CD206-positive M2
macrophages and exaggerated Wnt

signaling in colorectal cancer
[65,67]

Kidney Renal macrophages

Kidney-ischemia-
reperfusion

injury

Stimulation of renal repair and
regeneration of macrophage-derived

Wnt7b
[72]

Acute kidney injury
Wnt ligand generation and canonical Wnt

signaling activity in macrophages after
kidney injury

[73]

Renal fibrosis
Stimulation of M2 macrophage

polarization causing renal fibrosis due to
increased Wnt signaling

[74–76]

Heart Cardiac macrophages Myocardial infarction
(MI)

Macrophage as a source of non-canonical
Wnt after MI

Reduction in dramatic inflammation and
improvement in the repair by

M2 macrophage

[81,82]

Skin Langerhans cells

Wound-induced hair
neogenesis,

Human hidradenitis
suppurativa

Phagocytosis of macrophages on dermal
Wnt inhibitor SFRP4 [86]

Wound angiogenesis
Inhibition of angiogenesis and repair

using Wnt-Calcineurin-Flt1 signaling in
macrophages

[87]

Hair growth Increase in macrophage-derived Wnts in
the hair growth cycle [88,89]
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