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Abstract: Although cardiac tumor formation is rare, accumulating evidence suggests that the two
leading causes of deaths, cancers, and cardiovascular diseases are similar in terms of pathogenesis,
including angiogenesis, immune responses, and fibrosis. These similarities have led to the creation of
new exciting field of study called cardio-oncology. Here, we review the similarities between cancer
and cardiovascular disease from the perspective of microRNAs (miRNAs). As miRNAs are well-
known regulators of translation by binding to the 3′-untranslated regions (UTRs) of messenger RNAs
(mRNAs), we carefully dissect how a specific set of miRNAs are both oncomiRs (miRNAs in cancer)
and myomiRs (muscle-related miRNAs). Furthermore, from the standpoint of similar pathogenesis,
miRNAs categories related to the similar pathogenesis are discussed; namely, angiomiRs, Immune-
miRs, and fibromiRs.
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1. Introduction

Cancer and cardiovascular disease are the leading causes of death across the globe
accounting for one in six deaths [1] and 32% of all deaths worldwide [2], respectively,
according to World Health Organization (WHO). Both cancer and cardiovascular disease are
the umbrella terms commonly used to describe several disease etiologies. Each etiology of
cancer and cardiovascular disease (e.g., lung cancer and ischemic heart disease, respectively)
has its own distinct cause and progression pattern. However, recent research suggests that
many aspects of cancer and cardiovascular disease are similar in terms of pathogenesis [3–5],
leading to the development of specific field of study called cardio-oncology [6,7]. For
example, both diseases involve dysregulated functionalities in vasculature, where abnormal
vasculature (called, tumor vasculature [8]) occurs in cancer, while coronary artery disease is
a type of cardiovascular disease caused by the narrowing or blockage of coronary arteries [9].
Another example is the involvement of immune responses, where prolonged or chronic
inflammation is a hallmark of cancer [10–12] as well as cardiovascular disease [13–15]. The
activation of immune responses often leads to the deposition of excessive extracellular
matrices [16,17], which are another hallmark of cancer [17] and cardiac fibrosis as the
end-stage of heart failure [18].

MicroRNAs (miRNAs) are evolutionary-conserved, regulatory short [~22 nucleotides
(nt)] non-protein-coding RNAs that function as translational inhibitors by binding to the
3′-untranslated regions (3′-UTRs) of messenger RNAs (mRNAs) [19,20]. As one miRNA is
predicted to bind hundreds of mRNAs due to its very short seed sequence (~6 nt) [21–23],
it is speculated and experimentally shown for some miRNAs to regulate cascades of sig-
naling pathways and their downstream targets. Due to their versatilities, dysregulation
in miRNAs is linked to a variety of diseases, including cancer [24,25] and cardiovascular
disease [26–28]. As the regulatory importance of miRNAs is experimentally proven, the
therapeutic silencing of miRNAs is being explored [29–34]. However, due to their biodis-
tributions (e.g., including their presence in the circulation [35–37]) and the presence of
many target mRNAs for one miRNA, the precise mechanistic elucidation of each miRNA
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is urgently needed to advance into clinics. Since a specific miRNA is highly dependent
on which target mRNAs are present in a specific biological context, it must be taken into
consideration that the same miRNA can yield different biological outcomes depending on
the specific cell or tissue [38]. This is especially important when considering miRNAs as
potential therapeutic targets.

As cancer and cardiovascular disease share several aspects of disease causes and
progressions, it is no surprise that many miRNAs are shown to be involved in pathogeneses
of both cancer and cardiovascular disease. Because the heart is the least likely organ to
harbor tumor growth [39], the communication between researchers working in miRNAs
for either cancer or cardiovascular biology is scarce, although many miRNAs are found
to be dysregulated in both diseases. To fill this gap in knowledge, here, we summarize
the current status of miRNA research from the perspective of shared disease progression
mechanisms in cancer and cardiovascular disease.

2. OncomiRs vs. MyomiRs

According to the latest annotation provided by the GENCODE consortium (Release
41; https://www.gencodegenes.org/human/stats_41.html; accessed on 3 October 2022),
there are 1879 human miRNAs. Due to the intensive miRNA research in the last three
decades [40], many (but not all) miRNAs have been studied functionally and some mecha-
nistically. To date, miRNAs have been categorized based on their functionalities. These
categories include oncomiRs and (cardiac) myomiRs to describe cancer- and striated muscle-
related miRNAs, respectively. Although the heart consists of cell types other than cardiac
muscle (cardiomyocytes), for simplicity, here, we will compare oncomiRs and myomiRs to
understand the possible overlaps of the functional miRNAs in both cancer and cardiovas-
cular disease.

As there are many different types of cancer, the list of oncomiRs is growing rapidly
due to the availability of next generation sequencing (i.e., small RNA sequencing) to
identify miRNAs overexpressed in tumor samples. As such, there are several dedicated
databases for oncomiRs available, including miRCancer [41], OncomiR [42–44], and the
OncoMir Cancer Database (OMCD) [45]. Compared to oncomiRs, the list of myomiRs is
small, including miR-1, miR-133a/b, miR-206, miR-208a/b, miR-302, miR-367, miR-486, and
miR-499 [46,47]. Not surprisingly, all myomiRs are involved in tumorigenesis.

One of the most abundant miRNAs in the heart [48], miR-133, is a regulator of cardiac
hypertrophy [49] and its down-regulation was observed in patients with myocardial infarc-
tion [50] (Figure 1). In gastric cancer, miR-133 is down-regulated in gastric cancer patients
and negatively associated with tumor size, invasion depth, and peripheral organ metasta-
sis [51]. Mechanistically, miR-133 targets 3′-UTR of the cell division cycle 42 (CDC42) gene
to regulate the downstream effectors of CDC42, P21-activated kinases (PAKs). Similarly, an
overexpression of miR-133a in the lung cancer cell lines, A549 and NCI-H1299, results in the
suppression of cell proliferation, migration, and invasion by targeting matrix metallopepti-
dase 14 (MMP14) [52]. Another study shows that the overexpression of miR-133b in the
lung cancer cell line, A549, re-sensitized the radioresistant A549 cells by targeting pyruvate
kinase M1/2 (PKM, also known as PKM2) to regulate glycolysis [53]. Besides gastric and
lung cancers, functions of miR-133 are also reported in glioblastoma [54], oral cancer [55],
and prostate cancer [56]. All other miRNAs are also shown to be functionally important for
tumorigenesis, suggesting the importance of examining miRNAs in onco-cardiology.

https://www.gencodegenes.org/human/stats_41.html
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Figure 1. OncomiRs and myomiRs. MyomiRs have a dual function and are involved in 
tumorigenesis. miR-133 regulates the cardiac hypertrophy and improves the myocardial function 
after infarction, while it is associated with multiple tumors. miR-133 targets 3′-UTR of CDC42 and 
regulates PAKs, thus preventing the growth and metastasis of gastric cancer. Similarly, miR-133 
prevents the proliferation, migration, and invasion of lung cancer by targeting MMP14 and PKM2. 
Furthermore, miR-133 is involved also in the pathogenesis of glioblastoma and oral and prostate 
cancer. Figure created with BioRender.com, accessed on 24 October 2022. 

3. Angiogenesis: AngiomiRs 
Angiogenesis is the process of new blood vessel formation through the migration, 

growth, and differentiation of endothelial cells [57,58]. In cancer, angiogenesis allows for 
a tumor to grow as new vessels provide nutrients and oxygen to malignant cells [59,60]. 
In cardiovascular disease, therapeutic angiogenesis aims to provide the blood flow to the 
ischemic heart tissue [61,62]. Thus, in both diseases, angiogenesis is an important 
therapeutic target, although the opposite effects are observed. During angiogenesis, 
several miRNAs are functionally involved, which has created a specific term to describe 
these angiogenesis-related miRNAs called, angiomiRs (Figure 2). AngiomiRs include miR-
15/16, miR-17~92 cluster, miR-18a, miR-19, miR-21, miR-23b, miR-27a/b, miR-29b, miR-30, 
miR-34a, miR-57, miR-125b, miR-126, miR-128, miR-143, miR-145, miR-155, miR-192, miR-
194, miR-199a, miR-200 family, miR-204, miR-210, miR-217, miR-296, miR-378, miR-484, 
miR-494, miR-497, miR-542-3p, miR-573, miR-642, and let-7b [63,64], which some are 
discussed below. 

The miR-17~92 cluster was first reported in tumorigenesis [65] and is one of the most 
well-studied miRNA clusters [66,67]. By crossing miR-17~92 floxed mice with an inducible 
vascular endothelial cell specific Cre driver (Cdh5-cre/ERT2), Chamorro-Jorganes et al. 
demonstrated that retinal angiogenesis was reduced during the development of these 
mice [68]. Furthermore, the vascular endothelial growth factor (VEGF)-induced ear and 
tumor angiogenesis were reduced, suggesting that VEGF regulates miR-17~92 cluster 
expression leading to the regulation of angiogenesis. The involvement of the miR-17~92 
cluster is well documented in various diseases, including cardiovascular disease [69,70]. 
Since the miR-17~92 cluster consists of miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and 
miR-92a-1, each miRNA in this cluster is also shown to be important for angiogenesis, 
including tumorigenesis and cardiovascular disease. For example, miR-92a is 
dysregulated in many forms of cancer, suggesting it is a potential diagnostic biomarker as 
well as a therapeutic target [71]. In the cardiovascular system, Bonauer et al. demonstrated 
that overexpression of miR-92a in endothelial cells inhibited angiogenesis in murine 

Figure 1. OncomiRs and myomiRs. MyomiRs have a dual function and are involved in tumorigenesis.
miR-133 regulates the cardiac hypertrophy and improves the myocardial function after infarction,
while it is associated with multiple tumors. miR-133 targets 3′-UTR of CDC42 and regulates PAKs, thus
preventing the growth and metastasis of gastric cancer. Similarly, miR-133 prevents the proliferation,
migration, and invasion of lung cancer by targeting MMP14 and PKM2. Furthermore, miR-133 is
involved also in the pathogenesis of glioblastoma and oral and prostate cancer. Figure created with
BioRender.com, accessed on 24 October 2022.

3. Angiogenesis: AngiomiRs

Angiogenesis is the process of new blood vessel formation through the migration,
growth, and differentiation of endothelial cells [57,58]. In cancer, angiogenesis allows for
a tumor to grow as new vessels provide nutrients and oxygen to malignant cells [59,60].
In cardiovascular disease, therapeutic angiogenesis aims to provide the blood flow to
the ischemic heart tissue [61,62]. Thus, in both diseases, angiogenesis is an important
therapeutic target, although the opposite effects are observed. During angiogenesis, several
miRNAs are functionally involved, which has created a specific term to describe these
angiogenesis-related miRNAs called, angiomiRs (Figure 2). AngiomiRs include miR-15/16,
miR-17~92 cluster, miR-18a, miR-19, miR-21, miR-23b, miR-27a/b, miR-29b, miR-30, miR-
34a, miR-57, miR-125b, miR-126, miR-128, miR-143, miR-145, miR-155, miR-192, miR-194,
miR-199a, miR-200 family, miR-204, miR-210, miR-217, miR-296, miR-378, miR-484, miR-494,
miR-497, miR-542-3p, miR-573, miR-642, and let-7b [63,64], which some are discussed below.

The miR-17~92 cluster was first reported in tumorigenesis [65] and is one of the most
well-studied miRNA clusters [66,67]. By crossing miR-17~92 floxed mice with an inducible
vascular endothelial cell specific Cre driver (Cdh5-cre/ERT2), Chamorro-Jorganes et al.
demonstrated that retinal angiogenesis was reduced during the development of these
mice [68]. Furthermore, the vascular endothelial growth factor (VEGF)-induced ear and
tumor angiogenesis were reduced, suggesting that VEGF regulates miR-17~92 cluster
expression leading to the regulation of angiogenesis. The involvement of the miR-17~92
cluster is well documented in various diseases, including cardiovascular disease [69,70].
Since the miR-17~92 cluster consists of miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and
miR-92a-1, each miRNA in this cluster is also shown to be important for angiogenesis,
including tumorigenesis and cardiovascular disease. For example, miR-92a is dysregulated
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in many forms of cancer, suggesting it is a potential diagnostic biomarker as well as a
therapeutic target [71]. In the cardiovascular system, Bonauer et al. demonstrated that
overexpression of miR-92a in endothelial cells inhibited angiogenesis in murine models
of limb ischemia and myocardial infarction, while the silencing of miR-92a via antagomiR
resulted in enhanced angiogensis and the functional recovery of the damaged tissues in
murine disease models, suggesting miR-92a as a potential therapeutic target for ischemia
diseases [72].

The miR-200 family is another well studied miRNA family that includes miR-141,
miR-200a, miR-200b, miR-200c, and miR-429 [73]. In cancer, the miR-200 family is shown to
play functional roles in cell malignant transformation and preventing tumor initiation [74].
By profiling epicardial adipose tissue from coronary artery disease (CAD) patients and
non-CAD atherosclerotic patients, Zhang et al. demonstrated that the expressions of miR-
141-3p, miR-200b, miR-200c-3p, and miR-429 are up-regulated in CAD patients compared
to non-CAD patients [75]. By performing a series of experiments in vitro, the authors
demonstrated that the overexpression of miR-200b-3p in human umbilical vein endothelial
cells (HUVECs) resulted in increased apoptosis under oxidative stress. Mechanistically, miR-
300b-3p targets histone deacetylase 4 (HDAC4) as the overexpression of HDAC4 reduced
the increased apoptosis induced by inhibiting miR-200b-3p, suggesting that miR-200b-3p is
a potential therapeutic target for atherosclerosis.
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Figure 2. The dual role of angiomiRs in cancer and cardiac pathophysiology. The miR-17~92 cluster
is involved in tumorigenesis and tumor vascularization. This cluster is also involved in retinal
angiogenesis and the progression of cardiovascular disease. The members of the miR-200 family
prevent the tumor initiation and malignant transformation, although they are upregulated in coronary
artery disease. MiR-34a is a tumor suppressor involved in the development of thyroid cancer, head
and neck squamous cell carcinoma, and cancer stem cells division. The overexpression of miR-34a
suppress the proliferation and induces senescence in cardiomyocytes, fibroblasts, smooth muscle,
and endothelial cells, by inhibiting sirtuin 1 (SIRT1). Figure created with BioRender.com, accessed on
24 October 2022.

MiR-34a is a tumor suppressor and considered as a diagnostic and prognostic biomarker
as well as a therapeutic target in various cancers, including head and neck squamous cell
carcinoma, thyroid cancer, and cancer stem cells [76,77]. Interestingly, the expression of
miR-34a is increased in senescent HUVECs and in the heart and spleen of older mice [78].
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When overexpressed, miR-34a suppressed cell cycle and proliferation by inhibiting sirtuin
1 (SIRT1). Because ageing is a hot topic to be investigated, subsequent research shows
the functional importance of miR-34a in cell types other than endothelial cells in the heart,
including in cardiomyocytes [79,80], fibroblasts [81], and smooth muscle cells [82,83]. This
is not an isolated case as many other angiomiRs (and other miRNAs) are expressed rather
ubiquitously, suggesting that examining miRNAs as a common mechanism of action for
cardio-oncology is not a big surprise.

4. Immune Responses: Immuno-miRs

Prolonged inflammation is a hallmark of cancer [10] that immune systems can have
both positive and negative effects on regarding the development of tumors and prognostics
of cancer patients [84]. Indeed, immunotherapy is a type of treatment using one’s own
immune system to fight cancer, but the success rates of immunotherapy drugs vary between
15–30% in most tumor types, while 50–80% in melanoma [85]. As the immune system
is a complex system involving many different cell types (e.g., basophils, eosinophils,
lymphocytes, macrophages, monocytes, and neutrophils) to fight against infection [86,87],
understanding the immune system is also important in cardiovascular disease [88–90]. For
example, myocardial infarction leads to the loss of cardiomyocytes, which are replaced
by non-contracting scar tissue [91,92]. The immune system is a double-edged sword in
the remodeling process of the infarcted heart as macrophages are necessary for repair in
the acute phase as their systemic depletion results in impaired scar formation and the
rupture of the left ventricle of the heart. However, the accumulation of macrophages in
non-infarcted regions of the left ventricle leads to progressive myocyte attrition, collagen
deposition, and loss of the pump function of the heart in a chronic phase of remodeling
of the infarcted heart. As miRNAs are expressed in many immune cells and finetune
the important signaling pathways, the list of immuno-miRs is growing rapidly [93,94].
As such, specialized databases for immune-miRs are available, including IRNdb [95],
RNA2Immune [96], and RNAimmuno [97]. In the following, examples of immune-miRs
are explained in cancer and cardiovascular disease.

Monocytes are a type of white blood cells (leukocytes) that can differentiate into
macrophages and dendritic cells [98]. Furthermore, monocyte-derived macrophages can
be polarized into inflammatory subtype, M1, and anti-inflammatory subtype, M2 [99].
The cascade of differentiation and polarizations are controlled by the coordinate actions
of cytokines, which can be regulated at the transcriptional and post-transcriptional lev-
els, where miRNAs can regulate the translation of transcription factors responsible for
cytokine gene expressions. These microRNAs include miR-125a-3p and miR-26a-2 in M1
macrophages, while miR-27a, miR-29b-1, miR-132, miR-193b, and miR-222 constitute the
M2 macrophages [100] (Figure 3A). For example, miR-222 targets ADAM metallopepti-
dase domain 17 (ADAM17) to modulate multidrug resistance in colorectal carcinoma [101]
(Figure 3B). In breast cancer, the overexpression of miR-222 inhibits the chemotaxis of tumor-
associated macrophages by targeting C-X-C motif chemokine ligand 12 (CXCL12) [102]. In
the serum, the level of miR-222 is independently associated with atrial fibrillation (irregular
heart rhythm) in patients with degenerative valvular heart disease [103]. In addition, the
level of miR-222 is elevated in acute viral myocarditis caused by Coxsackievirus B3 [104].
Although the functions of miR-222 are mainly reported in cardiomyocytes [104–106] and
cardiac fibroblasts [107,108], it is clear that immune-miRs in monocytes and macrophages
are important regulators of immune responses in cancer and cardiovascular disease.
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Figure 3. Immuno-miRs. (A) MiRNAs responsible for regulation of cytokine gene expressions leading
to the differentiation of two types of monocytes-derived macrophages—inflammatory subtype M1
and anti-inflammatory subtype M2. (B) The role of miR-222 in tumorigenesis and cardiovascular
disease. MiR-222 targets ADAM17 to prevent multidrug resistant colorectal carcinoma. The inhibitory
effect on the chemotaxis of tumor associated macrophages in breast cancer is mediated by targeting
CXCL12. The overexpression of miR-222 is associated with atrial fibrillation and Coxsackie virus
caused myocarditis. (C) The overexpression of miR-155 is associated lymph node metastasis in
breast cancer and advance of esophageal, liver, and lung cancer. Mir-155 regulates angiogenesis by
controlling the expression of AGTR1 in endothelial cells and SOCS1 in monocytes/macrophages.
(D) The extracellular RNA, miR-146a-5p, is highly presented in hepatocellular carcinoma derived
exosomes and regulates the polarization of macrophages into M2 tumor-associated macrophages. On
the contrary, the cardiomyocytes-derived miR-146a-5p inhibits the M2 macrophage polarization by
targeting TRAF6 while promoting M1 macrophage polarization. Figure created with BioRender.com,
accessed on 24 October 2022.

Enriched in immune cells, miR-155 is a master regulator of immune responses [109]
(Figure 3C). In breast cancer, the increased expression of miR-155 is associated with high
tumor grade, advanced stage, and lymph node metastasis [110]. Similarly, miR-155 is over-
expressed in other forms of cancer, including esophageal cancer [111], liver cancer [112],
and lung cancer [113], which calls for miR-155 as a diagnostic and prognostic cancer
biomarker [114] as well as therapeutic target [115]. As shown in the previous section,
miR-155 is an angiomiR so its function is well known in the endothelial cells and atheroscle-
rosis [116,117]. Besides endothelial cells, miR-155 is highly expressed in monocytes and
macrophages, which Pankratz et al. used in knockout mice to elegantly demonstrate that
miR-155 regulates angiogenesis and arteriogenesis by controlling their target genes, an-
giotensin II receptor type 1 (AGTR1) and suppressor of cytokine signaling 1 (SOCS1) in
endothelial and monocyte/macrophages, respectively [118].

Extracellular RNAs (exRNAs) are a type of cell–cell communication that are produced
by a donor cell and are released into the extracellular environment (e.g., body fluid, cir-
culation) [119]. They are contained in the lipid particles, such as extracellular vehicles
(EVs), including exosomes. ExRNAs include proteins and RNAs, including miRNAs. For
example, miR-146a-5p is enriched in the hepatocellular carcinoma-derived exosomes [120]
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(Figure 3D). The transcription factor, spalt like transcription factor 4 (SALL4), binds to
the promoter of miR-146a-5p to directly control its expression in exosomes, thereby reg-
ulates the polarization of macrophages into M2 tumor-associated macrophages. In con-
trast, cardiomyocyte-derived exosomal miR-146a-5p promotes M1 macrophage polarization
while inhibiting M2 macrophage polarization by targeting TNF receptor associated factor 6
(TRAF6) [121]. This is just of many miRNAs contained in exosomes.

The studying of immunology has intensified in recent years due to the rise of coron-
avirus disease 2019 (COVID-19) [122–125]. As there is a substantial risk of heart problems
associated with COVID-19 and mRNA vaccines [126–129], it is likely that more and more
miRNAs will be identified in the heart, which may have been studied in cancer previously
to expand the list of immune-miRs in the cardio-oncology field.

5. Fibrosis: fibromiRs

Fibrosis is a process in which fibroblasts and other mesenchymal cells are activated
to become myofibroblasts to secrete an excess number of extracellular matrices (ECM;
e.g., collagens, glycosaminoglycans, and glycoproteins) [130] (Figure 4A). It is the end
stage of many diseases, including cardiovascular disease [18]. In cancer, cancer-associated
fibroblasts (CAFs) promote tumorigenic features, including ECM deposition, epithelial-
to-mesenchymal transition (EMT), and metastasis [131]. To understand fibrosis, many
screening studies have been performed to identify differentially expressed genes and
miRNAs, which are collectively called fibromiRs [132–135]. For example, miR-21 is the
most studied fibromiR [136–139] (Figure 4B). Not only is it highly expressed in many
forms of cancer and suggested as potential diagnostic biomarkers of cancer types (breast,
pancreatic, colorectal, and prostate cancer) [140], miR-21 stimulates MAP kinase signaling in
cardiac fibroblasts, thereby contributing to myocardial disease [141]. Furthermore, miR-21
targets matrix metallopeptidase 2 (Mmp2) in cardiac fibroblasts of the infarcted heart via
phosphatase and the tensin homolog (PTEN) pathway [142], suggesting the important
signaling roles of miR-21 in both cancer and cardiovascular disease.

Multiple reports show that another oncomiR, miR-22, is highly involved in tumor
progression in multiple tumors, including breast cancer [143], acute myeloid leukemia
(AML) [144], and hepatocellular carcinoma (HCC) [145,146]. The effect of miR-22 on HCC
seems to be related to the early effect of miR-22 on liver fibrosis through its regulation of
bone morphogenic protein 7 (BMP7) [147] (Figure 4C), which starts from a degenerative
process and ultimately leads to HCC developing. Interestingly, miR-22 is reported to have
the same effect on cardiac fibrosis [148] via the regulation of Sirt1 and HDAC4. As the role
of miR-22 in fibrosis is conserved in multiple diseases and tissues, this miRNA could serve
as a potential therapeutic target in liver [149] and cardiac fibrosis [150].

Although fibroblasts can be found throughout the human body, they are hetero-
geneous populations of cells without any single cell surface marker that is specific for
fibroblasts as many markers are expressed in other cell types, including epithelial and
immune cells [151,152]. In this regard, microRNAs are involved in activating fibroblasts,
which contribute to the heterogeneity of fibroblasts [153]. For example, the members of the
miR-200 family, miR-141 and miR-200a, target C-X-C motif chemokine ligand 12 (CXCL12;
also known as CXCL12β) to regulate the immunosuppressive activity of a subtype of
carcinoma-associated fibroblasts in ovarian cancer [154]. Besides the miR-200 family be-
ing angiomiRs as written in above subsection, miR-200b is negatively regulated by the
epigenetic factor, DNA methyltransferase 3 alpha (Dnmt3a), to control autophagy in rat
cardiac fibroblasts [155]. In addition, small RNA-seq experiment using rat cardiac fibrob-
lasts induced with transforming growth factor-β1 (TGF-β1) showed 3 up- (miR-325-3p,
miR-325-5p, and miR-210-5p) and 21 down-regulated miRNAs (e.g., miR-19a-3p, miR-19b-
3p, miR-144-3p, and miR-200b-3p), potentially targeting genes involved in calcium and
glutamatergic synapse signaling pathways [156]. Taken together, there are many shared
fibromiRs between CAFs and cardiac fibroblasts.
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Figure 4. FibromiRs. (A) The core mechanisms of fibrosis and carcinogenesis. Multiple cell types (e.g.,
fibroblasts, myofibroblasts, epithelial cells, and macrophages) are involved. The pathophysiological
mechanisms include inflammation, epithelial to mesenchymal transition, extracellular matrix accu-
mulation, and metastasis. (B) MiR-21 is a diagnostic biomarker for multiple cancers, including breast,
pancreatic, colorectal, and prostate. MiR-21 stimulates cardiac fibroblasts by targeting Mmp2 and the
PTEN pathway, leading to the progression of myocardial disease. (C) MiR-22 induces the liver fibrosis
through BMP7 leading to progression into hepatocellular carcinoma. In the heart, miR-22 promotes
cardiac fibrosis by targeting Sirt1 and HDAC4. Figure created with BioRender.com, accessed on 24
October 2022.

6. Conclusions

To maintain the homeostasis of the tissues and remodeling of the tissues upon damages,
angiogenesis, immune responses, and fibrosis are interconnected. As such, miRNAs
are identified to be involved in each cellular activity as angiomiRs, immuno-miRs, and
fibromiRs, respectively. Not surprisingly, some miRNAs (e.g., miR-17~92 cluster, miR-34a,
and miR-200 family) are involved in all three cellular activities, which some overlapping
miRNAs are responsible for such cellular activities and responses. This is particularly
interesting as cancer is considered as a complex adaptive ecosystem [157], in which cancer
cells and the stromal cells transform, cooperate, and even co-evolve with each other over
time and space [158]. Thus, it will be interesting to further investigate miRNAs from the
perspective of the ecosystem in cancer and possibly in cardiovascular disease.

As cancer and cardiovascular disease are two of the leading causes of death worldwide,
it will be exciting to find a common disease mechanism. As reviewed above, miRNAs are
shared between these life-threatening diseases. Given that miRNAs are investigated as
potential therapeutic targets, increased communication between researchers working with
cancer and cardiovascular disease is necessary to find a potential cure for these diseases.
To this end, the rise of the cardio-oncology field should facilitate a further understanding
of the pathogeneses of these two diseases, possibly through miRNAs.
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