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Abstract: Anion exchanger-1 (AE1) is the main erythroid Cl−/HCO3
− transporter that supports CO2

transport. Glycophorin A (GPA), a component of the AE1 complexes, facilitates AE1 expression and
anion transport, but Glycophorin B (GPB) does not. Here, we dissected the structural components of
GPA/GPB involved in glycophorin-AE1 trafficking by comparing them with three GPB variants—
GPBhead (lacking the transmembrane domain [TMD]), GPBtail (mainly the TMD), and GP.Mur
(glycophorin B-A-B hybrid). GPB-derived GP.Mur bears an O-glycopeptide that encompasses the
R18 epitope, which is present in GPA but not GPB. By flow cytometry, AE1 expression in the control
erythrocytes increased with the GPA-R18 expression; GYP.Mur+/+ erythrocytes bearing both GP.Mur
and GPA expressed more R18 epitopes and more AE1 proteins. In contrast, heterologously expressed
GPBtail and GPB were predominantly localized in the Golgi apparatus of HEK-293 cells, whereas
GBhead was diffuse throughout the cytosol, suggesting that glycophorin transmembrane encoded an
ER/Golgi retention signal. AE1 coexpression could reduce the ER/Golgi retention of GPB, but not
of GPBtail or GPBhead. Thus, there are forward-trafficking and transmembrane-driven ER/Golgi
retention signals encoded in the glycophorin sequences. How the balance between these opposite
trafficking signals could affect glycophorin sorting into AE1 complexes and influence erythroid anion
transport remains to be explored.

Keywords: red blood cells (RBCs; erythrocytes); anion exchanger-1 (AE1; band 3; SLC4A1);
glycophorin A (GPA); glycophorin B (GPB); GP.Mur (Miltenberger subtype III; Mi.III); ER/Golgi
retention; oligomerization; transmembrane domain (TMD); trafficking; membrane protein

1. Introduction

Anion exchanger-1 (AE1; band 3; SLC4A1) and Glycophorin A (GPA) are the two most
abundant membrane proteins in human red blood cells (RBCs), each with ~106 molecules
per cell [1,2]. AE1 is a large transmembrane protein (911 amino acids) with multiple
functions that correspond to its different structural domains. The transmembrane domain
of AE1 functions as a Cl−/HCO3

− transporter that could “ping-pong” or exchange one
anion for another in and out of the red cells [3,4]. Because most blood CO2 is carried in
the form of Cl−/HCO3

−, AE1-mediated Cl−/HCO3
− transport across the erythrocyte

membrane is important for physiologic CO2 respiration. Cl−/HCO3
− transport by AE1

also helps stabilize cellular pH [5]. The N-terminal cytoplasmic domain of AE1, interacts
with major submembranous proteins (i.e., ankyrin, protein 4.2, adducin, and 4.1R) and
forms physical linkages between the erythrocyte membrane and the underneath spectrin-
actin junctional complexes [6–10]. The latter function of AE1 provides mechanical support
to maintain the morphology and membrane integrity of the erythrocytes.

Cells 2022, 11, 3512. https://doi.org/10.3390/cells11213512 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11213512
https://doi.org/10.3390/cells11213512
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0003-1009-0997
https://orcid.org/0000-0001-6364-1831
https://doi.org/10.3390/cells11213512
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11213512?type=check_update&version=2


Cells 2022, 11, 3512 2 of 16

The surface expression of AE1 is greatly facilitated by GPA [11–13]. GPA, bearing
a single transmembrane span, is extensively glycosylated with one N-linked and 15 O-
linked glycans, as well as sialic acid moieties [14,15]. The sialic acid moieties of GPA
contribute to the negatively charged glycocalyx on the erythrocyte surface, which prevents
cell–cell adhesion during circulation. The knockout of glycophorin A in mice reduces
the expression of O-linked sialoglycoproteins on the erythrocyte membrane, resulting in
RBC hypersensitivity to osmotic pressure [16,17]. Glycophorin B (GPB), a homologue of
GPA with ~95% nucleotide identity, is also heavily O-glycosylated and decorated with
sialic acid moieties [18,19]; it presumably also provides mechanical support for erythrocyte
membrane stability.

Numerous studies have revealed a structural–functional association between AE1 and
GPA [20]. Early fluorescence photobleaching recovery and polarized fluorescence depletion
experiments found that AE1 and GPA in the sickle and normal RBCs aggregate and exhibit
similar mobility responses to osmotic stimulation [21]. AE1 and GPA begin to interact in the
endoplasmic reticulum (ER) where their protein expression levels are tightly coupled [22,23].
The discovery of the Wright b (Wrb) antigen on the interface between AE1 and GPA is solid
proof that the two proteins physically interact on the RBC membrane [24–26]. Their tightly
coupled expression levels have physiological and pathophysiological implications. For
example, selective knockout of erythroid AE1 results in severe spherocytosis and hemolytic
anemia as well as complete deficiency of GPA on the erythrocyte membrane [22,27,28].
Intriguingly, GYPA mRNA could still be found in the erythroid precursor cells of these AE1
knockout mice, indicating that the expression of erythroid GPA protein requires AE1 [22].
On the other hand, GYPA knockdown by shRNA in human erythroleukemic K562 cells does
not affect the surface expression of AE1 [23], indicating that AE1 is capable of trafficking
to the plasma membrane by itself. However, in the RBCs that lack both GPA and GPB
(the rare MkMk blood type), the anion transport activity of AE1 is significantly reduced,
though the protein content of AE1 is not significantly affected [29]. Thus, even though AE1
protein expression does not require GPA [22,29], GPA interaction with AE1 could support
the normal anion transport function of AE1 and optimize AE1 surface expression [11,29].
For comparison, though GPB is also abundantly expressed in the erythrocyte membrane
(200,000 or one-fifth the number of GPA molecules per erythrocyte), GPB does not enhance
AE1 surface expression or AE1-mediated Cl− flux [12,13,29–31]. Yet GPB is a component of
AE1-associated complexes on the RBC membrane [11,32].

This study aimed to dissect the glycophorin structural components in their abilities to
facilitate glycophorin-AE1 trafficking and surface expression. By comparing GPA/GPB
with three naturally occurred GYPB mRNA variants cloned from the reticulocytes of healthy
people (Figure 1A: GP.Mur, GPBhead and GPBtail), we identified an ER/Golgi retention
signal encoded in the glycophorin transmembrane domain. The forward-trafficking signals
(i.e., the R18 epitope present in both GPA and GP.Mur) could override ER/Golgi retention
by the glycophorin transmembrane domain. Heterologous coexpression of AE1 could also
counteract such ER/Golgi retention, suggesting that trafficking of AE1 and glycophorin
A/B and variants also depends on their intricate interaction, modification, and sorting into
the large AE1 complexes.
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Figure 1. Structural-functional correlates for GPA/GPB and their variants. (A) Sequence alignments 
of GPA, GPB, and variants—GP.Mur, GPBtail, and GPBhead. Most C-terminal, cytoplasmic resi-
dues of GPA (25 amino acids) were omitted. The cytoplasmic region of GPA has been reported to 
support AE1 forward trafficking [33]. The pre-TMD of GPA (residues 61–70) supports the anion 
transport activity of AE1 [12,33]. GP.Mur is distinguished from GPB by an additional O-glycopep-
tide that presents the Mur and R18 epitopes; this additional extracellular sequence supports biosyn-
thesis and surface expression of AE1 complexes [11]. This study identified an ER/Golgi retention 
signal encoded in the homologous glycophorin TM domain, which could be counteracted by the 
forward-trafficking signals encoded in cytoplasmic GPA and the R18 epitope, or by AE1 coexpres-
sion. (B) The cartoon depicts GPA/GPB and their variant GP.Mur in dimeric and tetrameric AE1 
complexes (top view on the RBC membrane). Though AE1 can form dimers and tetramers and traf-
fic to the plasma membrane without the assistance of GPA, GPA (yellow symbols) and AE1 (blue-
green balls) generally interact in a one-to-one fashion. GPB (red symbols) is also present in erythroid 
AE1-associated complexes, and has been hypothesized to interact with AE1 indirectly through GPA. 
The copy numbers of GP.Mur (orange symbols) and GPB are about one-fifth the number of GPA on 
the erythrocyte membrane. Like GPA, GP.Mur directly binds AE1 and promotes AE1 surface ex-
pression. 

2. Materials and Methods 
2.1. Red Blood Cell Samples and Cultured Cells 

The Mackay Memorial Hospital Institutional Review Board approved the collection 
of human blood from consented non-diseased donors (MMH-IRB registration: MMH-I-S-
517; 10MMHIS096). The Miltenberger subtype III (Mi.III) phenotype was serologically 
screened with anti-Mia, anti-Mur, and anti-Hil antisera. Homozygous GP.Mur (Mi.III+/+) 
RBC samples were differentiated from heterozygous ones by their lack of GPB expression 
on Western blot. HEK-293 cells were maintained in Dulbecco’s Modified Eagle’s Medium 
(DMEM) containing 10% fetal bovine serum (FBS) and penicillin-streptomycin. 

  

Figure 1. Structural-functional correlates for GPA/GPB and their variants. (A) Sequence alignments
of GPA, GPB, and variants—GP.Mur, GPBtail, and GPBhead. Most C-terminal, cytoplasmic residues
of GPA (25 amino acids) were omitted. The cytoplasmic region of GPA has been reported to support
AE1 forward trafficking [33]. The pre-TMD of GPA (residues 61–70) supports the anion transport
activity of AE1 [12,33]. GP.Mur is distinguished from GPB by an additional O-glycopeptide that
presents the Mur and R18 epitopes; this additional extracellular sequence supports biosynthesis and
surface expression of AE1 complexes [11]. This study identified an ER/Golgi retention signal encoded
in the homologous glycophorin TM domain, which could be counteracted by the forward-trafficking
signals encoded in cytoplasmic GPA and the R18 epitope, or by AE1 coexpression. (B) The cartoon
depicts GPA/GPB and their variant GP.Mur in dimeric and tetrameric AE1 complexes (top view on
the RBC membrane). Though AE1 can form dimers and tetramers and traffic to the plasma membrane
without the assistance of GPA, GPA (yellow symbols) and AE1 (blue-green balls) generally interact in
a one-to-one fashion. GPB (red symbols) is also present in erythroid AE1-associated complexes, and
has been hypothesized to interact with AE1 indirectly through GPA. The copy numbers of GP.Mur
(orange symbols) and GPB are about one-fifth the number of GPA on the erythrocyte membrane. Like
GPA, GP.Mur directly binds AE1 and promotes AE1 surface expression.

2. Materials and Methods
2.1. Red Blood Cell Samples and Cultured Cells

The Mackay Memorial Hospital Institutional Review Board approved the collection
of human blood from consented non-diseased donors (MMH-IRB registration: MMH-I-
S-517; 10MMHIS096). The Miltenberger subtype III (Mi.III) phenotype was serologically
screened with anti-Mia, anti-Mur, and anti-Hil antisera. Homozygous GP.Mur (Mi.III+/+)
RBC samples were differentiated from heterozygous ones by their lack of GPB expression
on Western blot. HEK-293 cells were maintained in Dulbecco’s Modified Eagle’s Medium
(DMEM) containing 10% fetal bovine serum (FBS) and penicillin-streptomycin.

2.2. Cloning of Glycophorin Transcripts

The total RNA was extracted from the reticulocytes of healthy donors using the
QIAamp RNA Blood Kit (Qiagen, Hilden, Germany) and then reverse transcribed into
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cDNA. Glycophorin B transcripts were PCR-amplified using the following primer pair: 5′-
AAGCTTTTTGCACTAACTTCAGGAACCAGC (GYPA19HindIII) and 5′-GGCATAAGCA-
AAGGAATAGCAGG (GYPB453r) with PfuUltra High-fidelity DNA Polymerase AD (Strata-
gene). The PCR products were cloned into TOPO vectors using a Zero Blunt TOPO PCR
Cloning Kit for Sequencing (Invitrogen). Individual GYPB clones were verified by DNA se-
quencing. An alternatively spliced variant of glycophorin B (GenBank accession EU338230)
lacks GYPB exon 5 that encodes the TMD; this glycophorin B spliced variant was thus
named “GPBhead”. Another GYPB spliced variant lacks exons II-IV of GYPB and en-
compasses only exons I, V (coding for the TMD), and VI, and was thus named “GPBtail”
(Figure 1A).

GYPB cDNA (NM002100) and its naturally occurred spliced variants—GYPBhead
(EU338230) and GYPBtail (EU338238)—were each subcloned into pcNDA3.1 (Invitrogen,
Waltham, MA, USA) to generate pcGPB, pcGPBhead, and pcGPBtail, respectively. For con-
focal imaging experiments, GYPB, GYP.Mur, GYPBhead, and GYPBtail were each subcloned
into pEGFP-N2 (Clontech, Mountain View, CA, USA) to generate the green fluorescence
fusion protein constructs—pGPBgfp, pGPMURgfp, pGPBhead-GFP, and pGPBtail-GFP.
GYPA cDNA (NM002099) was subcloned into pEYFP-N1 (Clontech) to generate a yellow
fluorescence fusion construct—pGPAyfp. The other plasmids used in this study (pcGPA,
pcGP.Mur, pcAE1, and bicistronic pCIG-AE1) were described previously [11].

2.3. Transfection

Heterologous gene expression in HEK-293 cells was introduced by transient transfec-
tion using Lipofectamine 2000 Transfection Reagent (Invitrogen) or T-Pro Non-liposome
Transfection Reagent II (T-Pro Biotechnology, New Taipei City, Taiwan). AE1 and one of the
glycophorin plasmids were either singly transfected or co-transfected at equimolar ratios
or at other molar ratios as specified into HEK-293 cells cultured in 6-well plates. For all
experimental sets, the control or vector plasmids (e.g., pcDNA3.1) were supplemented to
make the total amount of DNA for transfection constant. All imaging experiments were
conducted during 36–72 h post-transfection.

2.4. Flow Cytometry and Monoclonal Antibodies (mAb)

To assess the surface expression of AE1, human red blood cells were immunolabelled
with BRIC 71 and BRIC 6 (International Blood Group Reference Laboratory [IBGRL]), two
monoclonal antibodies that target the extracellular loops of AE1 [34,35]. BRIC 170 recog-
nizes the N-terminal cytoplasmic domain of AE1 (amino acids 368–382). R18 (IBGRL), a
monoclonal antibody that targets an extracellular region common to GPA and GP.Mur (its
epitope corresponding to residues 39–56 or residues 49–52 of GPA) [35–37], was used to
quantify the surface levels of GPA in control (non-Mi.III) RBCs (or the combined levels of
GPA and GP.Mur in Mi.III RBCs). After primary antibody labeling, the cells were stained
with Alexa Fluor 660-conjugated anti-mouse antibody (Invitrogen). In flow cytometric
measurements, surface protein expression levels were assessed using the FL4-H channel of
FACSCalibur (BD).

2.5. Confocal Microscopy

To study how the different glycophorin structural components could affect AE1-
glycophorin trafficking and surface expression, HEK-293 cells were transiently transfected
with AE1 alone or together with pcGPA/pGPAyfp, pGPBgfp, pGPMURgfp, pGPBtail-GFP,
or pGPBhead-GFP. As the spectra of YFP and GFP were quite similar (both showed green
fluorescence in our imaging system), we avoided co-transfection of GPAyfp and GPBgfp
(or other GPBgfp variants). For the triple expression of AE1, GPA, and GPBgfp, on day
2 or 3 post-transfection, the triply transfected cells were fixed and permeabilized, and
then immunostained with Alexa Fluor 568-conjugated anti-GPA BRIC163, and mouse
anti-AE1 antibodies (BRIC 6 + BRIC 71 + BRIC 170) which were then labeled with Alexa
Fluor 647-conjugated anti-mouse antibody. Confocal imaging utilized a Leica TCS SP
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equipped with an argon/Krypton laser. To determine subcellular localization, the ER-
Tracker blue-white DPX dye (Invitrogen), BODIPY TR-ceramide (Invitrogen), and PE-Cy5
mouse anti-human CD107a antibody (BD Pharmingen, San Diego, CA, USA) were used to
label the endoplasmic reticulum (ER), the Golgi apparatus, and lysosomes, respectively.

3. Results
3.1. The Expression Levels of AE1 and the Glycophorin R18 Epitope were Quantitatively Directly
Correlated on the Human Erythrocyte Membrane

From sequence alignment of GPA, GPB and the B-A-B variant GP.Mur (Figure 1), GPB
lacks an extracellular, O-glycosylated domain that is present in both GP and GP.Mur. Since
GPB does not support AE1 surface expression as GPA or GP.Mur, we examined whether this
O-glycopeptide absent from GPB might play a role in enhancing AE1 expression. We used
the R18 monoclonal antibody that targets this O-glycopeptide in residues 39–56 or residues
49–52 of GPA [35–37]. The R18 epitope is also present in GP.Mur protein, as GYP.Mur
was derived from the insertion of GYPA in the middle of GYPB [38]. We found that the
expression levels of AE1 and the R18 epitope on GPA were directly correlated in human
RBC samples (Figure 2: Pearson correlations = 0.383; significance = 0.0532), suggesting a role
of the R18 epitope in supporting erythroid AE1 expression. This correlation was not strong,
which could be due to that AE1 could traffic to the cell surface without the chaperone
activity of GPA [13,29]. Notably, the RBC samples from GYP.Mur+/+ subjects (carrying
homologous GYP.Mur alleles that completely replace the two GYPB alleles) exhibited more
R18 epitopes and AE1 on their cell membrane, compared to the non-Miltenberger samples
(Figure 2). GYP.Mur+/+ and the control (non-Miltenberger) RBCs exhibit similar levels of
GPA [11]; thus, the higher R18 levels in GYP.Mur+/+ RBCs were attributed to the R18 epitope
from GP.Mur protein. The direct quantitative correlation between expressions of the R18
epitope and AE1 (Figure 2) therefore indicated that the R18 epitope of GPA/GP.Mur could
support the forward trafficking of AE1 protein complexes to the erythrocyte surface.

3.2. Differential Subcellular Localization Patterns between AE1 and GPA/GPB/GP.Mur

Since mature RBCs lack most intracellular organelles, we next studied glycophorin-
AE1 trafficking in a heterologous expression system. The transfection efficiencies using
erythroleukemic cell lines were generally very low and inconsistent, so for the following
experiments, we used the human embryonic kidney HEK-293 cell line which could yield
stable and high-transfection efficiencies (30–60%).

To explore how GPA/GPB/GP.Mur could influence AE1 trafficking or vice versa,
we first verified the previous observation that AE1 is capable of forward trafficking to
the plasma membrane by itself (Figure 3A, left). Due to the high degree of sequence
homology among GPA, GPB, and GP.Mur (Figure 1), it was difficult to find an antibody
for immunolabeling that recognizes only GPB and not GPA or GP.Mur, or an antibody
that recognizes GP.Mur and not GPA or GPB. Therefore, we tagged GFP to the C-termini
of GPB and GP.Mur (following the TMD) as fluorescence trackers. We found that GPA
and GPMURgfp each expressed substantially on the plasma membrane as well as in the
organelle membrane, while GPBgfp primarily aggregated intracellularly (Figure 3A).

Co-transfection of equimolar AE1 (blue) and glycophorin A (red) in HEK-293 cells re-
sulted in nearly complete colocalization (purple) in the intracellular and surface membranes
(Figure 3B). For comparison, GPMURgfp (green) and AE1 (red) were also colocalized intra-
cellularly and on the plasma membranes, but they did not show as complete colocalization
as that between GPAyfp and AE1 (Figure 3B,C). Intriguingly, in contrast to the large intra-
cellular aggregates of GPBgfp expression alone (Figure 3A middle), AE1 co-transfection
reduced the sizes of GPBgfp aggregates or blobs. AE1 and GPBgfp were colocalized on
the plasma membrane but not in the intracellular organelles (Figure 3D). AE1 coexpres-
sion thus appeared to redirect the intracellular trafficking of GPB and to promote GPB
surface expression.
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The ratio of the protein copy number of GPA: GPB: AE1 in human erythrocytes is
1:0.2:1. We mimicked their erythroid gene expression heterologously in HEK-293 cells by
cotransfecting the same molar ratio of the GPA, GPBgfp, and AE1 plasmids. We found that
GPBgfp coexpression did not affect the nearly perfect colocalization between GPA and AE1
(Figure 3E). GPBgfp was partially colocalized with the GPA-AE1 complexes on the plasma
membrane, despite that its cytosolic expression remained substantial (Figure 3E).
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GYP.Mur+/+ RBCs generally expressed more AE1 and more R18 epitopes from both GPA and 

Figure 2. AE1 levels were directly proportional to the GPA-R18 levels on the erythrocyte membrane;
GYP.Mur+/+ RBCs generally expressed more AE1 and more R18 epitopes from both GPA and GP.Mur.
Fresh RBC samples were immunostained with R18 mAb or with a mix of anti-AE1 mAbs BRIC 6 and
BRIC 71 (1:500 dilution each), followed by secondary antibody labeling and flow cytometry. Here,
each dot represents the relative levels of AE1 and the R18 epitope of a RBC sample. The geometric
means for all non-Miltenberger RBC samples were averaged and set as 100%; all data were expressed
in percentage (%). The linearly fitted line showed a rough correlation between the relative levels of
AE1 and the R18 epitope on the erythrocyte surface. The data from homologous Mi.III (GYP.Mur+/+)
samples were shown in crossed symbols.

3.3. Substantial Localization of GPB in the ER and Golgi Apparatus Could Be Redirected to the
Plasma Membrane upon AE1 Coexpression

To verify the sites where GPB aggregated (Figure 3), we labeled the transfected cells
with a fluorescent ER tracker. Figure 4A showed the single expression of each glycophorin
fusion protein—GPAyfp, GPMURgfp, and GPBgfp, respectively. While GPAyfp and GP-
MURgfp were expressed on the plasma membrane, GPBgfp showed little surface expression
but substantial aggregation in the ER. The degree of GPMURgfp localization to the ER
was between that of GPBgfp and GPAyfp. AE1 coexpression did not affect much of the
subcellular localization of GPAyfp and GPMURgfp (Figure 4B,C); on the other hand, AE1
coexpression with GPBgfp dissipated some intracellular aggregates of GPBgfp (Figure 4D).

We next labeled GPBgfp-transfected cells with BODIPY TR-ceramide, a red fluorescent
marker for Golgi complexes. We found that the sites of massive GPBgfp aggregation
also included the Golgi apparatus (Figure 5). In addition, we found that most GPB-GFP
aggregates were not targeted to degradation in the lysosomes, as the merged yellow
color from colocalization of the lysosome marker anti-LAMP/AF568 and GPBgfp was
barely seen (Figure 5). For comparison, the GPMURgfp fusion protein expressed on both
intracellular and plasma membranes, and did not aggregate in the Golgi apparatus or
the ER (Figures 4C and 5A,B). Since GPMURgfp differs from GPBgfp only by an extra
31 amino acids that encompass the Mur and the R18 epitopes and GPA lacks the Mur
antigen (Figure 1), the R18 epitope thus encodes a forward-trafficking signal that could
counteract ER/Golgi retention of GPBgfp (Figures 4 and 5).
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that GPBgfp coexpression did not affect the nearly perfect colocalization between GPA 
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Figure 3. Confocal images revealed subcellular localization of (A) singly expressed AE1, GPA,
GPMURgfp, and GPBgfp; (B–D) AE1 coexpressed with GPA, GPMURgfp, or GPBgfp in equimolar
ratio; and (E) AE1 coexpressed with both GPA and GPBgfp in HEK-293 cells. GPBgfp and GPMURgfp
fusion proteins were used for tracking, as there is no GPB- or GP.Mur-specific antibody available
for immunolabeling. The transfected cells were fixed and permeabilized for immunostaining of
surface and intracellular AE1 and GPA. To visualize AE1 expression, the cells were immunostained
with a mix of mouse anti-AE1 mAbs (BRIC 6, BRIC 71, and BRIC170), followed by Alexa Fluor 568
or 647-conjugated anti-mouse antibody. To visualize GPA expression, the transfected cells were
immunostained with Alexa Fluor 568-conjugated anti-GPA mAb BRIC163 that targets cytoplasmic
GPA (absent in GPB/GP.Mur). In (E), HEK-293 cells were transfected with pcAE1, pcGPA and
pGPBgfp (their plasmid molar ratio as 1:1:0.2 to mimic the relative levels in human erythrocytes).
AE1 and GPA were immunostained as above. Their fluorescence signals were shown in pseudocolor:
blue for GPA, red for AE1, and GPBgfp emitting green fluorescence. Scale bar = 25 µm.
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Figure 4. Different from GPA and GP.Mur with substantial surface expression, singly expressed
GPB was much retained in the ER but could be driven to the cell surface upon AE1 coexpression.
(A) TOP: Expression of the fluorescent fusion GPAyfp alone (left), GPMURgfp alone (middle), and
GPBgfp alone (right). BOTTOM: Overlay of each glycophorin-fluorescent fusion protein with the
blue-fluorescent ER tracker. (B) HEK-293 cells cotransfected with equimolar pGPAyfp and pcAE1
were fixed and permeabilized on the second day post-transfection for immunofluorescence labeling
of AE1 in red (mixed BRIC 6 + BRIC 71 + BRIC 170 mAb [1:500 dilution each] followed by anti-mouse
IgG conjugated Alexa fluor 568 [1:200 dilution]). (C) HEK-293 cells were cotransfected with equimolar
pGPMURgfp and pcAE1, followed by the same staining protocol as in (B). (D) HEK-293 cells were
cotransfected with equimolar pGPBgfp and pcAE1, followed by the same staining protocol as in
(B). In (B–D), the left panel showed expression of the glycophorin-fluorescence fusion protein (in
green color) upon AE1 coexpression; the middle panel showed expression of AE1 (in red color) upon
glycophorin coexpression; the right panel showed the merged fluorescent signals of the glycophorin
fusion (green), AE1 (red) and the ER tracker (blue).
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Figure 5. GPB and GPBtail, but not GP.Mur or GPBhead, expressed predominantly in the Golgi
apparatus, suggesting a Golgi retention signal embedded in the glycophorin TM domain. HEK-
293 cells were transfected with only (A) GPMURgfp, (B) GPBgfp, (C) GPBhead-GFP, or (D) GPBtail-
GFP. On the second day post-transfection, the cells were labeled with a lipid marker for the Golgi
apparatus—BODIPY TR-ceramide (left panel), or with mouse anti-LAMP-1 (a protein marker for
lysosomes) following AF568 conjugated anti-mouse antibody (right panel). Scale bar = 25 µm.

3.4. The Glycophorin Transmembrane Domain Encodes a Golgi Retention Signal

To probe into the nature of GPBgfp aggregation, we utilized two naturally occurring,
exon-skipped variants of GYPB—GYPBhead and GYPBtail, cloned from the reticulocytes
of healthy subjects. To track their cellular expression, we also tagged GFP to their C-
termini to make GPBhead-GFP and GPBtail-GFP fusion proteins. The N-terminal sequence
of GPBhead is identical to that of GPB. On the other hand, GPBhead lacks exon 5 in
GYPA/GYPB that codes for the transmembrane sequence and was predicted to be novel
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and “non-transmembrane” (either cytosolic or membrane-associated) by TMHMM 2.0,
a structural prediction program for transmembrane helices [39]. In contrast, GPBtail
lacks most of the N-terminal, glycosylated domain but retains the transmembrane region
(Figure 1).

By tracking their subcellular localization, we found that, unlike GPBgfp, the GPBhead-
GFP fusion protein expressed almost everywhere in the cytoplasm (Figure 5C). On the other
hand, similar to the GPBgfp fusion protein, the GPBtail-GFP fusion was also concentrated
in the Golgi apparatus (Figures 3A and 5D). Thus, the glycophorin TMD encodes an
ER/Golgi retention signal. While there was little GPBgfp targeted to the lysosomes, more
GPBhead-GFP and GPBtail-GFP molecules were found in the lysosomes (Figure 5), hinting
that these partial GPB structures (head or tail) might have failed the quality control step
during membrane protein biosynthesis.

While AE1 coexpression could dissolve GPB aggregation in the ER and the Golgi, AE1
coexpression with either GPBtail or GPBhead did not affect their individual subcellular
localization (Figure 6). Thus, the complete GPB sequence could be required for partitioning
into AE1-associated protein complexes (Figure 3D).
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Figure 6. Subcellular localization of GBhead-GFP or GBtail-GFP was not affected by AE1 coexpression,
suggesting that there was not even remote interaction between AE1 and the partial GPB structure.
(TOP) HEK-293 cells were cotransfected with equal copy number of pGPBhead-GFP and pcAE1
plasmids, followed by immunolabeling with mouse anti-AE1 and then AF568 conjugated anti-mouse
mAb. Similar to the GPBhead-GFP expression alone (Figure 5C), the distribution of GPBhead-GFP
in AE1-coexpressed cells remained largely cytosolic and did not show any association with AE1
on the cell membrane. (BOTTOM) HEK-293 cells were cotransfected with equimolar pcAE1 and
pGPBtail-GFP plasmids, followed by the same immunolabeling protocol to track AE1, as described
above. Scale bar = 25 µm.
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4. Discussion

In this study, we identified that the glycophorin transmembrane domain encoded an
ER/Golgi retention signal, which could be counteracted by forward-trafficking signals
(i.e., the R18 epitope of GPA/GP.Mur; the cytoplasmic domain of GPA [33]) or by AE1
coexpression (Figure 7). GP.Mur lacks this cytoplasmic domain of GPA but still could
promote AE1 surface expression (Figure 2) [11]. By structural deduction, the R18 epitope
and its vicinity in GP.Mur and GPA thus encode a forward-trafficking signal (Figure 1). The
protein structure of GPB differs from the structure of GPA by lacking (1) an extracellular
O-glycopeptide that contains the R18 epitope, and (2) a large C-terminal, cytoplasmic
domain (Figure 1). Thus, GPB was by and large an intracellular protein and did not support
AE1 forward trafficking (Figures 1 and 3–5). While GPBhead (lacking the transmembrane
domain) was diffusive all over the cytosol and was not specifically targeted during in-
tracellular trafficking, GPBtail (containing the TMD) aggregated in the ER and the Golgi
apparatus like GPB (Figures 5 and 6). As the TMD of glycophorin B is identical to the
TMD of GP.Mur and is highly homologous to the TMD of GPA (Figure 1), the homologous
glycophorin transmembrane region conceivably encompasses a ER/Golgi retention signal.
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Figure 7. A working model illustrates different trafficking signals encoded in the glycophorin
sequence and manifested in glycophorin-AE1 interaction. (TOP) The common sequence of
GPA/GPB/GP.Mur and variants are divided in color-coded segments (from left to right, or the
N- to the C-terminus): the N-terminal sequence (orange), the Mur epitope (light purple), the R18
epitope (purple); the pre-TMD region that interacts with band 3 and facilitates band 3-mediated anion
transport (green); the TMD (pink), and the long C-terminal sequence only in GPA (dark gray). The
5 glycophorin variants studied are each presented in a hoop ring with color segments corresponding
to the sequence segments described above. GPA contains all the sequence segments but the Mur
epitope. GPB lacks the Mur and the R18 epitopes, as well as the long C-terminus unique to GPA.
GP.Mur, evolved from GPB, contains the Mur and the R18 antigens, and also lacks the long C-terminus.
GPBtail mainly expresses the TMD. GPBhead mainly expresses the N-terminal glycophorin sequence.
The lack of the TMD in GPBhead makes it a diffusive, cytosolic protein destined for the lysosomes.
Glycophorin transmembrane is essential for protein retention in the ER and the Golgi apparatus. The
glycophorin-R18 epitope (purple) is adjacent to the pre-transmembrane region (green) that includes
the Wrb motif (arisen from the AE1-GPA/GP.Mur interaction interface) and functions to assist band
3-mediated anion transport [12,24,26,33,40]. Thus, R18-mediated forward trafficking in GPA and
GP.Mur may involve protein–protein interaction with band 3 and co-migration to the cell surface.
The long C-terminal sequence of GPA also encodes a forward trafficking signal [33].
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We did not observe any known amino acid motifs for ER or Golgi retention in the
glycophorin alignment (Figure 1). On the other hand, Golgi retention could be driven
by properties of the TMD that are associated with the propensity of membrane protein
oligomerization (i.e., membrane protein partitioning into large AE1-associated complexes
in this case) [41]. Intriguingly, in another study by Förster Resonance Energy Transfer by
Fluorescence Lifetime Imaging (FLIM-FRET), AE1 and GPB do not interact directly (their
molecular distance≥ 10 nm and considered outside the range for dipole–dipole interaction)
(unpublished data). However, GPB is sorted into AE1-associated protein complexes on the
erythrocyte membrane [11,32]. Here, by heterologous expression, AE1 could direct GPB
trafficking and drive GPB to the cell surface (Figures 3 and 4). However, AE1 could not
affect the expression of GPBtail or GPBhead (Figures 5 and 6), indicating that the entire GPB
structure is required for it to be recruited into AE1-associated complexes during protein
sorting/partitioning, oligomerization, and post-translational modification/glycosylation
in the ER/Golgi apparatus.

From FLIM-FRET measurements, AE1 and GPA proteins physically interact in the
transfected cells (unpublished data). Though this study only observed AE1-GPA colocal-
ization, the two proteins likely utilize the same trafficking route and begin oligomerization
before they reach to the plasma membrane as AE1 protein complexes [11,24–26,32]. This
idea is also supported by several lines of evidence. First, in the dual absence of GPA and
GPB in MkMk RBCs, the glycosylation profile of AE1 is altered [29]. Second, in RBCs
bearing the Wrb, En(a-), or Dantu phenotype, their expressions of AE1 and GPA/GPB were
mutually affected [26,42–44]. Third, Pang et al. showed that the glycosylation time courses
of GPA/GPB and AE1 are linked to their intracellular trafficking patterns [23]. The direct
interaction between AE1 and GPA conceivably facilitates oligomerization and forward
trafficking of the AE1-associated protein complexes that also comprise GPB, Rh/RhAG,
and several other erythroid proteins. AE1-associated complexes are considered AE1-central
metabolic hubs on the RBC surface [11,29,32,40,45–48].

Pang et al. found that the ER processing of endogenous GPA in the human K562
erythroleukemic cell line is very efficient and takes only 5–10 min for the glycans of GPA to
be modified from high mannose forms to complex ones. Endogenous GPA in K562 cells
bears complex carbohydrates, and primarily resides in the Golgi apparatus and on the
plasma membrane. Heterologously expressed AE1 bears a high content of mannose and is
much retained in the ER of K562 cells [23]. A high content of mannose in a glycoprotein
indicates that this protein is most likely to be retained in the endoplasmic reticulum.
However, AE1 can traffic to the cell surface without the aid of GPA, and its expression does
not involve major ER chaperones, such as calreticulin (CRT) or calnexin (CNX) [49]. In
our study, using HEK-293 cells as the heterologous expression system, AE1 was expressed
substantially in the plasma membrane (Figures 3 and 4). GPA can further increase the
surface expression of other O-glycosylated erythroid membrane proteins [17], as well as the
surface expression of AE1 in several heterologous expression systems and in human RBCs
(Figures 2–4) [11–13,26,33,50]. Therefore, GPA conceivably could enhance AE1 surface
expression through their oligomerization/glycosylation/maturation while trafficking to
the plasma membrane.

AE1 is a versatile and functionally important protein that facilitates major physiologic
functions (blood CO2 metabolism and acid-base homeostasis), RBC structural stability, as
well as red cell processing of nitric oxide (NO) [20,21,51–56]. Glycophorin A, glycophorin
B and variants, such as GP.Mur, are involved in AE1 complex formation and surface ex-
pression to different extents [54]. Their trafficking signals, such as TMD and R18 identified
in this study, conceivably may play a critical role in modulating or fine-tuning erythroid
AE1 complex expression and functions.
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