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Abstract: Rationale: idiopathic pulmonary fibrosis (IPF) is the most severe form of fibrosing inter-
stitial lung disease, characterized by progressive respiratory failure leading to death. IPF’s natural
history is heterogeneous, and its progression unpredictable. Most patients develop a progressive
decline of respiratory function over years; some remain stable, but others present a fast-respiratory
deterioration without identifiable cause, classified as acute exacerbation (AE). Objectives: to develop
and characterize an experimental mice model of lung fibrosis AE, mimicking IPF-AE at the functional,
histopathological, cellular and molecular levels. Methods: we established in C57BL/6 male mice a
chronic pulmonary fibrosis using a repetitive low-dose bleomycin (BLM) intratracheal (IT) instillation
regimen (four instillations of BLM every 2 weeks), followed by two IT instillations of a simple or
double-dose BLM challenge to induce AE. Clinical follow-up and histological and molecular analyses
were done for fibrotic and inflammatory lung remodeling analysis. Measurements and main results:
as compared with a low-dose BLM regimen, this AE model induced a late burst of animal mortality,
worsened lung fibrosis and remodeling, and superadded histopathological features as observed in
humans IPF-AE. This was associated with stronger inflammation, increased macrophage infiltration
of lung tissue and increased levels of pro-inflammatory cytokines in lung homogenates. Finally, it
induced in the remodeled lung a diffuse expression of hypoxia-inducible factor 1α, a hallmark of
tissular hypoxia response and a major player in the progression of IPF. Conclusion: this new model is
a promising model of AE in chronic pulmonary fibrosis that could be relevant to mimic IPF-AE in
preclinical trials.

Keywords: animal model; lung fibrosis; inflammation; acute exacerbation

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is the most severe form of chronic fibrosing in-
terstitial lung disease (ILD), histologically defined by a usual interstitial pneumonia (UIP)
pattern. IPF is thought to be the consequence of repetitive micro-injuries of alveolar epithe-
lial cells (AEC), followed by inefficient epithelial repair and uncontrolled activation and
proliferation of interstitial (myo) fibroblasts [1]. Mainly observed in the elderly, it leads
to a progressive and fatal respiratory failure with a mean survival of 3–5 years from the
time of diagnosis [2]. There is no curative medical treatment for IPF except lung trans-
plantation when feasible, and current antifibrotic drugs only slow down the decline of
respiratory function, urging researchers to identify new therapeutic strategies. IPF’s natural
history is heterogeneous, and its evolution unpredictable. While most patients present a
progressive decline of respiratory function over years, some patients remain stable, and
others may present a fast deterioration of pulmonary function and respiratory failure
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without any identifiable cause such as volume overload or heart failure [3,4]. This rapid
respiratory deterioration has been classified as acute exacerbation (AE) of IPF (IPF-AE).
Clinically, IPF-AE is defined by acute worsening or development of dyspnea occurring in
typically less than one month. Computed tomography reveals new bilateral ground-glass
opacities or airspace consolidation superimposed on the underlying UIP pattern. On his-
tological biopsies, IPF-AE is characterized by a combination of a UIP pattern associated
with superimposed acute lung injury (ALI) with diffuse alveolar damage and organizing
pneumonia [5]. The occurrence of IPF-AE cannot be predicted or prevented, and it has a
bad prognostic impact in the absence of efficient medical treatment, with an in-hospital
mortality of about 50% because of respiratory failure, and an 80% mortality at one year [3].
The molecular mechanisms underlying the ALI observed during these exacerbation phases
are still poorly known and need further investigation.

To understand the physiological and molecular mechanisms involved in the develop-
ment and progression of IPF, murine models of pulmonary fibrosis have been developed.
The most widely used murine model consists of a single intra-tracheal (IT) instillation of
bleomycin (BLM) at a dose ranging from 2 IU/g to 3.5 IU/g. Following strong lung inflam-
mation during the first week post-instillation, lung fibrosis develops within 2–3 weeks, but
with a very heterogeneous distribution of lesions, which does not realistically replicate the
UIP histological features [6]. Moreover, a spontaneous resorption of fibrosis is observed
in surviving mice, which does not reproduce the natural progressive course of IPF [7–9].
More recently, a major improvement has been brought in these BLM mouse models by
using repetitive administration of low-dose BLM (3 to 8) IT instillations of 0.8 UI/g BLM
spaced two weeks apart), based on the IPF pathogenic hypothesis of repetitive alveolar
micro-injuries. These models, although not yet fully characterized at the cellular/molecular
level, have the advantage of inducing a persistent lung fibrosis without major inflammation,
reproducing histology features observed in UIP [10,11].

A suitable preclinical model of ALI occurring on a chronic pulmonary fibrosis back-
ground to mimic IPF-AE is urgently needed since IPF-AE is a major event in the course of
IPF. To our knowledge, reports dealing with AE models superadded on lung fibrosis are
scarce. These models include AE induced by gamma herpes virus infection in mice [12–14],
and only one noninfectious model has been proposed [15]. Therefore, the goal of the present
study was to develop and characterize a novel mouse model of non-infectious AE occurring
in a chronically fibrotic lung and mimicking IPF-AE. To do so, we first established a chronic
pulmonary fibrosis using a repetitive low-dose BLM regimen (four IT instillations of BLM
0.8 UI/g spaced two weeks apart), and induced AE by two additional IT instillations of a
double-dose BLM challenge (1.6 UI/g). The characterization of this model at the functional,
histopathological, cellular and molecular levels indicates that it fairly mimics IPF-AE and
that it is a promising tool for future preclinical trials.

2. Materials and Methods
2.1. Ethical Approval

Mouse models and experimental procedures were authorized by the French Ministry
of Higher Education, Research and Innovation (APAFIS #18309-2019010316127879 v16) and
done in accordance with the European Community’s council directive 2010/63/EU for
animal care.

2.2. Animals

Experiments were performed on 8-week-old C57BL/6 male mice weighing an average
of 25 g± 2 g (Janvier Labs, Le Genest-Saint-Isle, France). The animals were acclimatized for
at least 5 days to the local animal facility and housed in standard conditions in a 12 h/12 h
light/dark cycle, at an ambient temperature of 20–22 ◦C and had ad libitum access to water
and food.
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2.3. Experimental Design

Lung fibrosis was induced by intra-tracheal (IT) instillations of 0.8 UI/g body weight
bleomycin (BLM) (Sigma-Merck, Saint-Quentin-Fallavier, France), in 100 µL phosphate
buffer saline (PBS) every two weeks under 4% isoflurane anesthesia as already described [16].
Briefly, an intubation stand with adjustable head positioning (Kent Scientific) was used to
fixate the mice during the intubation procedure while anesthesia was maintained. The mice
were placed on the plastic support with the nose positioned in a facemask. The mice were
suspended by the upper teeth and the neck was placed with an angle of 45◦ backward. A
fiberoptic from an external halogen light source was placed at the front neck of the mice to
illuminate the larynx and make the vocal cords visible. Then, a homemade laryngoscope
(a syringe connected to a 26G catheter) was used. It was inserted in the direction of the
larynx under the control of a binocular loupe and the catheter was pushed into the trachea,
passing between the vocal cords. The instillation is carried out only at this moment. The
mice were monitored in cages until they had fully recovered. Mice were weighed daily. At
the beginning of the experiments, 31 mice were randomly divided into 3 groups: 8 mice
receiving 6 instillations of Phosphate Buffer Saline (PBS group), 10 mice receiving 6 instil-
lations of 0.8 UI/g body weight BLM in 100 µL PBS (BLM group) and 13 mice receiving
4 instillations of 0.8 UI/g body weight in 100 µL PBS and for the last 2 instillations 1.6UI/g
body weight BLM in 100 µL PBS to induce acute exacerbation (BLM-AE group) (Figure 1A).
At the end of the experiments, due to BLM-induced mortality, 25 mice were alive (8 mice
for the PBS group, 9 mice for the BLM group and 8 mice for the BLM-AE group).

Two weeks after the last instillation (D90), mice were sedated by intraperitoneal injec-
tion of a mixture of ketamine 1000 (Virbac, 06510 Carros, France) and xylazine rompen 2%
(Bayer Healthcare, Gaillard, France) (ketamine/xylazine; 100 mg/kg and 20 mg/kg respec-
tively), tracheotomized and ventilated for the measurement of compliance or exsanguinated
before lung sample collection (Figure 1A).

Lung compliance measurement by plethysmography: Pulmonary compliance was evaluated
on six mice from the PBS group, six mice from the BLM group and seven mice from the
BLM-AE groups using a plethysmograph (Emka technologies, Paris, France) as previously
described [17]. Briefly, the mice were ventilated (RoVent Jr., Kent Scientific Corporation;
respiratory frequency = 150 bpm, tidal volume = 0.27 mL; Insp/Exp ratio = 0.40). A
differential pressure transducer was used to obtain a flow signal that reflects the expansion
and contraction of the thorax during each ventilation cycle. Compliance and resistance
were calculated following flow signal and pressure signals acquisition. Volume signal
was obtained by an integration of the flow signal measured by the differential pressure
transducer. The pneumotachograph being the only way for air to flow into and out of
the chamber, the difference of pressure between inside and outside was proportional to
this flow.

Oxygen saturation (SpO2) monitoring: Oxygen saturation was assessed by a non-
invasive method of infrared pulse oximetry (mouseOx Plus), as previously described [18],
two weeks after the last instillation.
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Figure 1. Experimental protocol, survival and weight curves. (A) Eight-week-old C57BL6/J male 
mice received six IT instillations (arrows) of bleomycin (BLM) at 0.8 IU/g or PBS every two weeks 
to form the BLM (pink arrow) and PBS groups (white arrow), respectively. In parallel, a group of 
mice received four IT instillations of 0.8 UI/g BLM, and then two IT instillations of BLM at 1.6 UI/g, 
thus forming the acute exacerbation group (BLM-AE, pink-hatched black arrow). Mice were sacri-
ficed at day 90 (D90) for analyses. (B) Body-weight monitoring was established throughout the ex-
periment, the difference in weight compared to the weight measured on day 0 (D0) before the IT 
instillations of PBS (n = 6, black line), BLM, (n = 6, dotted pink line) and BLM-AE (n = 7, pink line) 
groups are reported on a graph. A Friedman test followed by a Dunn’s multiple comparisons test 
was performed to estimate the difference in mice weight as compared to initial weight, *** p < 0.001. 
(C) Mouse survival was recorded every day until the end of the experimental design for the different 
groups (PBS, black line; BLM, dotted pink line; and BLM-AE, pink line) and plotted on a Kaplan–
Meier curve. (D) Mouse peripheral oxygen saturation (SpO2) was measured by infrared pulse oxi-
metry. (E) Lung compliance was measured by plethysmography. (D,E) Data were presented as a 
box plot representing the median ± interquartile range. Raw data were submitted to one-way 
ANOVA test followed by Newman–Keuls to compare each group (control PBS group (white bar), 
BLM group (pink bar) and BLM-AE group (pink hatched black bar)). ns: not significant, * p < 0.05, 
** p < 0.01, *** p < 0.001, respectively. 
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Figure 1. Experimental protocol, survival and weight curves. (A) Eight-week-old C57BL6/J male
mice received six IT instillations (arrows) of bleomycin (BLM) at 0.8 IU/g or PBS every two weeks to
form the BLM (pink arrow) and PBS groups (white arrow), respectively. In parallel, a group of mice
received four IT instillations of 0.8 UI/g BLM, and then two IT instillations of BLM at 1.6 UI/g, thus
forming the acute exacerbation group (BLM-AE, pink-hatched black arrow). Mice were sacrificed at
day 90 (D90) for analyses. (B) Body-weight monitoring was established throughout the experiment,
the difference in weight compared to the weight measured on day 0 (D0) before the IT instillations
of PBS (n = 6, black line), BLM, (n = 6, dotted pink line) and BLM-AE (n = 7, pink line) groups are
reported on a graph. A Friedman test followed by a Dunn’s multiple comparisons test was performed
to estimate the difference in mice weight as compared to initial weight, *** p < 0.001. (C) Mouse
survival was recorded every day until the end of the experimental design for the different groups
(PBS, black line; BLM, dotted pink line; and BLM-AE, pink line) and plotted on a Kaplan–Meier
curve. (D) Mouse peripheral oxygen saturation (SpO2) was measured by infrared pulse oximetry.
(E) Lung compliance was measured by plethysmography. (D,E) Data were presented as a box plot
representing the median ± interquartile range. Raw data were submitted to one-way ANOVA test
followed by Newman–Keuls to compare each group (control PBS group (white bar), BLM group
(pink bar) and BLM-AE group (pink hatched black bar)). ns: not significant, * p < 0.05, ** p < 0.01,
*** p < 0.001, respectively.
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2.4. Lung Sampling for Analyses

Lung samples were obtained as previously described [16]. At the end of the experi-
ment, the surviving 25 mice were tracheotomyzed and exsanguinated; PBS was injected
into the right ventricle of the heart to rinse the lung vasculature. The right lobe of the lung
was isolated through a ligation to prevent the passage of instillated products. The left lobe
was inflated and fixed with 4% paraformaldehyde at a pressure of 20 cm H2O through the
tracheostomy cannula. The heart and lungs were removed “en bloc”. The right lung was
split into three samples (one per lobe) and placed in liquid nitrogen and stored at −80 ◦C
for molecular analyses (RNA and proteins). The left lung was placed in 20 mL of 4% PFA
for 24 h, paraffin embedded and 5 µm sections were cut.

2.5. Microscopy Analyses

Tissue staining: Hematoxylin-eosin staining: 5 µm sections from the left lung of six mice
from the PBS group, six mice from the BLM group and seven mice from the BLM-AE groups
were stained using Harris hematoxylin (Sigmaaldricht, MHS16, Saint-Quentin-Fallavier,
France) and aqueous eosin solution (Merck, Art.1144, Saint-Quentin-Fallavier, France).
The extent of lung injury was estimated by quantification of tissue optic density using
HistoLab®Image Analysis Software version 10.1 (Microvision Instrument, Evry, France).
The normally aerated alveolar spaces area was calculated, as well as the total area of the
section, the injured area was reported as the percentage of the total lung section. Masson’s
trichrome staining: Additional 5 µm sections of the same groups of mice were incubated
with phosphomolybdic/phosphotungstic acid solution (5 min), stained 5 min with aniline
blue solution (VWR International, Rosny-sous-Bois, France), and then rinsed with 1% acetic
acid solution (2 min). Sirius red/fast green staining: Additional 5 µm sections of the same
groups of mice were stained using 0.1% fast green (Merck, F7252, Saint-Quentin-Fallavier,
France) and 0.1% direct red 80 (Sigmaaldricht, Cat#365548, Saint-Quentin-Fallavier, France).

Immunohistochemistry: IHC was performed on tissue sections from six mice from the PBS
group, six mice from the BLM group and seven mice from the BLM-AE. Antigen retrieval
was performed in a boiling citrate buffer (10 mM sodium citrate, 0.05% Tween 20, pH 6.0).
Endogenous peroxidases were quenched with 3% hydrogen peroxide for 10 min and sections
were incubated with 5% of normal horse serum for 1 h to block nonspecific antibody binding
sites. Sections were incubated with the different primary antibodies overnight at 4 ◦C (for
detail see Table 1). The next day, slides were incubated with biotin-conjugated secondary
antibodies (Dako REAL ™ Detection System, Peroxidase/DAB+, Rabbit/Mouse, Les Ulis,
France) for 10 min and then with peroxidase-bound streptavidin (HRP) for 10 min. DAB
(3,3’-diaminobenzidine) solution and nuclear fast red (Sigma Aldrich, ref 60700, Saint-Quentin-
Fallavier, France) staining were used to visualize the positive reactions.

Table 1. Antibodies used for immunohistochemistry.

Antibody References Host Antibody type Dilution

F4-80 D2S9R, Cell Signaling
Technology Rabbit Monoclonal 1:250

CD3 D4V8L, Cell Signaling
Technology Rabbit Monoclonal 1:200

CD19 D4V4L, Cell Signaling
Technology Rabbit Monoclonal 1:800

HIF-1α NB100-479, Novus Biological Rabbit Polyclonal 1:750

Inflammatory cell quantification: Random fields of stained lung biopsies from six mice
from the PBS group, six mice from the BLM group and seven mice from the BLM-AE were
photographed. Quantification has been done on the whole left lung. For each field in each
mouse and in each condition, the average number of positive cells for F4-80, CD3 and CD19
immunolabelling was reported to the total number of cells present.
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2.6. Biochemical and Molecular Biology Analyses

Soluble lung collagen: The amount of soluble pulmonary collagen, comprising the
collagen released after enzymatic digestion with 0.1 mg/mL pepsin (516360-500MG, EMD
Millipore, MERK, Saint-Quentin-Fallavier, France), was measured on the right superior
lobe of six mice from the PBS group, six mice from the BLM group and seven mice from
the BLM-AE groups using the Sircol test (Biocolor Ltd., Belfast, UK) according to the
manufacturer’s instructions.

ELISA: Inflammatory markers were done on six mice from the PBS group, six mice from
the BLM group and seven mice from the BLM-AE groups. Interleukin (IL-6, CXCL1/KC,
IL1β) and tumor necrosis factor alpha (TNF-α) concentration were assessed using 50 µg
of total protein extracts according to the manufacturer’s instructions (Mouse IL-6 DuoSet
ELISA DY406-05, Mouse CXCL1/KC DuoSet ELISA DY453-05, Mouse IL1β Duoset ELISA
DY401-05 and Mouse TNF-αDuoSet ELISA MTA00B, R&D System, biotechne, Noyal
Châtillon sur Seiche, France). The absorbance was measured at 450 nm with a BIO-RAD,
Model 680 Microplate Reader.

Reverse transcription–quantitative polymerase chain reaction: 30 mg of lung tissue were
placed in 800 µL of TRIzol reagent (Qiazol®Lysis reagent, Courtaboeuf, France) and ho-
mogenized on ice using an Ultra-Turrax homogenizer. RNA extraction was performed
following the manufacturer’s instructions. Total RNA was quantified by measuring the
absorbance at 260 nm, using a Nanodrop reader (Shimdazu, BioSpecNano software, Marne-
la-Vallée, France). Extraction quality and the purity of the RNA (260 nm) were evaluated
using 260 nm/280 nm and 260 nm/230 nm absorbance ratios. Single-strand cDNAs were
synthesized from 0.5 µg of total RNA according to the manufacturer instructions (Maxima
First Strand cDNA Synthesis Kit Reaction Mix, ThermoFisher scientific, Ilkirch, France).

Resulting cDNA samples were 1:10 diluted and amplified by PCR conducted with abso-
lute qPCR SYBR green ROX mix (Fisher Scientific, Illkirch, France) on StepOne system qPCR
(Applied Biosystems, Life Technologies, France). Cycle threshold values were normalized to
amplification of the ribosomal 18S sub-unit. Relative quantification was performed using the
2−∆∆Ct method (AB Applied Bio Systems, Step One Plus Real Time PCR) on six mice from
the PBS group, five mice from the BLM group and five mice from the BLM-AE groups. The
primer sequences used for quantitative real-time PCR are listed in Table 2.

Table 2. Primers used for real-time polymerase chain reaction.

Gene Forward Primer Reverse Primer

BNIP3 5′-TTT-GGG-ATC-TAC-ATT-GGA-
AGG-C-3′

5′-GTG-CAG-ACA-CCC-AAG-GAT-
CA-3′

SERPINE1 5′-GCA-CAA-CCC-GAC-AGA-GAC-
AA-3′

5′-ATG-AAG-GCG-TCT-CTT-CCC-
AC-3′

18S 5′-GTA-AGT-GCG-GGC-CAT-AAG-
CTT-3′

5′-AGT-CAA-GTT-CGA-CCG-TCT-
TCT-CA-3′

2.7. Statistics

Graph and statistical analyses were performed using GraphPad Prism (GraphPad Soft-
ware, version 9). Data are presented as a box plot representing the median ± interquartile
range. Shapiro–Wilk and Kolmogorov–Smirnov tests demonstrate a normal distribution
of the data. Comparisons among groups were assessed using ordinary one-way ANOVA
followed by post hoc Newman–Keuls tests. p < 0.05 differences were considered significant.

3. Results
3.1. Acute Injury by Last Double-Dose Bleomycin Induces a Rapid Clinical and
Respiratory Deterioration

In the BLM and BLM-AE groups, a significant defect in the expected physiological weight
gain was observed next to D15 (Figure 1B). After the fourth injection at D45, the body weight
was stabilized in the two BLM and BLM-AE groups, while a significant decrease in body
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weight was observed after D70 only in the BLM-AE mice. The mortality observed in the
BLM group was limited (<10%), with animal death occurring around day 45 (D45), but not
afterward (Figure 1C). Mortality increased dramatically in the BLM-AE mice at D75 (reaching
approximately 40% at D90), whereas no death was noted in the BLM group during the same
period. At the end of the experiments (D90), a significant decrease in SpO2 was observed in the
surviving mice of the BLM-AE group (but not in the BLM group), as compared to the PBS group
(Figure 1D). In addition, lung compliance measured by plethysmography at D90 (Figure 1E)
was reduced in both BLM and BLM-AE groups as compared to the PBS group, and the decrease
was significantly greater in the BLM-AE group as compared to the BLM group.

3.2. Acute Injury by Last Double-Dose Bleomycin Instillation Increases Lung Remodeling and
Worsens Fibrosis

As shown by cartography of hematoxylin–eosin (HE)-stained lung sections, BLM treat-
ment induced marked changes in lung morphology as compared to PBS (Figure 2A,C).
Quantification of injured areas by HE staining (Figure 2G) confirmed significant injured lung
areas in the BLM and BLM-AE groups as compared to the PBS group, and an increase (while
still below the significance level) in the BLM-AE group as compared to the BLM group.Cells 2022, 11, x FOR PEER REVIEW 8 of 18 
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Figure 2. Histological study and analysis of collagen deposits. (A,C,E) Representative mapping of
hematoxylin and eosin-stained from the PBS (A), BLM (C) and BLM-AE (E) groups to evaluate global lung
architecture. (B,D,F) Representative Sirius red and fast green lung sections from the PBS (B), BLM (D)
and BLM-AE (F) groups (scale bar corresponding to 100 µm) to evaluate collagen deposits and lung
remodeling. (G) Lung injured area was estimated by quantification of sections density after H&E staining
using HistoLab®image analysis software and expressed as the percentage of the total lung section.
Injury quantification was normalized to the mean value of control group and presented as a percentage.
(H) Light microscopy quantification of Sirius red staining reported to fast green staining quantification.
(I) Quantification of soluble collagen in the right lung middle lobe by the Sircol method. (G–I) Data
were presented as a box plot representing the median± interquartile range. Raw data were submitted
to one-way ANOVA test followed by Newman–Keuls to compare each group (control PBS group (white
bar), BLM group (pink bar) and BLM-AE group (pink hatched black bar)), ns: not significant, * p < 0.05,
** p < 0.01, *** p < 0.001, respectively.
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Observation of sections stained by Sirius red/fast green (Figure 2B,D,F) showed an
excessive extracellular matrix with compact collagenous deposits associated with air space
reduction in BLM and BLM-AE lungs. The ratio of the red/green staining, which represents
the proportion of collagen vs. cellular background, respectively, confirmed this observation
(Figure 2H). Finally, quantification of lung total collagen content by the Sircol method
revealed a significant burst in collagen synthesis in the BLM-AE group, with a collagen
content in this group twofold higher than in the BLM group (Figure 2I).

When focusing the histopathology analysis on the BLM and BLM-AE groups, lung
remodeling reminiscent of the UIP pattern was observed in both groups, with additional
features in the BLM-AE group. In the lung of the BLM group, a dense remodeling made of
fibrosis and cellular infiltrate was constantly observed in a subpleural distribution with
various inward extension (Figure 3A,B). Remnants of airway lumen contribute to give a
cystic pattern reminiscent of the honeycomb cysts observed in UIP in the subpleural tissue.
A clear demarcation of the confluent fibrotic area with the preserved normal lung was a
notable observation. Characteristic alveolar collapse was constantly observed (Figure 3C),
but mostly encased in the fibrocellular changes. This pattern evocative of the one observed
in UIP was reinforced by the presence of airway “traction” resulting in contact with pleura
as observed in traction bronchiectasis in IPF patients (Figure 3D,E).
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Figure 3. Lung histopathology in the BLM group. Illustration of lung lesions observed in different
mice after repetitive low-dose BLM IT instillations. (A) Subpleural distribution with inward extension
of the dense lung remodeling (red arrow) with cystic airways remnants (H&E bar 1500 µm). (B) Higher
magnification of the A area framed in yellow showing a neat demarcation (red arrow) with the normal
lung (scale bar 500 µm) magnified 4x in the insert. (C) Subpleural remodeling showing alveolar
collapse especially in the framed area (H&E bar 500 µm). (D,E) Dense fibrotic areas with cystic
airways reaching the pleural limit (stars). (E) is a magnification of the (D) framed area (Sirius
red/green staining; (D): scale bar 1500 µm; (E): scale bar 300 µm).

In the lung of the BLM-AE group, lesions already described in the BLM group were
observed but with superadded features as shown in Figures 2F and 4A. First, the spared
lung, which was distinctly delimited from the remolded area in BLM mice, showed multiple
scattered, mostly perivascular mononuclear cell infiltrates (Figure 4B,C,E,F) interspersed
with collagen fibers. In these lesions, subacute alveolar cell damages with matrix deposits
were observed (Figure 4D,F,I). Organized intra-alveolar or interstitial loose collagenous
fibromyxoid scars evocative of organizing pneumonia lesions were present, as illustrated by
intra-alveolar buds layered by dysplastic alveolar epithelial cells (Figure 4G,H). In addition
to alveolar cells, reactive airway epithelial cells were also observed (Figure 4F).
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Figure 4. Lung histopathology in the BLM-AE groups. Illustration of lung lesions observed in
different mice after double-dose BLM intratracheal instillations. (A) Subpleural dense cellular and
fibrotic remodeling observed by Masson’s staining. Scale bar 2000 µm. (D) Magnification of the red
framed area in A, scale bar 200 µm. (B,C,E,F) Magnification of the yellow framed area in A showing
mononuclear cell infiltration. (B) Perivascular mononuclear cell infiltration (arrowheads). Scale bar
100 µm. (C,E) Acute alveolar cell lesions (arrows) and blue matrix deposits. (C) Scale bar 100 µm,
(E) scale bar 150 µm, (F) “Reactive” airway cells (arrowhead) compare to normal cells (arrows). Scale
bar 150 µm. (G–I) Subacute lesions in a dense remodeled area. (G) Masson’s staining. Scale bar
200 µm. (H) Magnification of the yellow framed area in G showing an interalveolar bud (star) layered
by atypical epithelial cells (arrow). Scale bar 50 µm. (I) Red-stained intercellular collagen deposits
(arrowhead) within the cellular infiltration (Sirius red/fast green staining, scale bar 100 µm).

3.3. Lung Inflammation Is Observed in the Acute Exacerbation Model of Pulmonary Fibrosis

Macrophages (Figure 5A,D,G) and T (Figure 5B,E,H) or B lymphocytes (Figure 5C,F,I)
were present within the remodeled interstitium of the BLM or BLM-AE groups but not in
the PBS group. F4-80 macrophages were observed in the fibrosis area in the BLM group or
in the vicinity of the fibrosis (Figure 5D). A marked upsurge of these cells was observed
after exacerbation (Figure 5G). T (Figure 5E) and B lymphocytes (Figure 5F) were present in
the remodeled areas of both the BLM and BLM-AE groups. Quantification of inflammatory
cells showed that exacerbation induced a doubling in the number of F4-80 macrophages
(Figure 5J), while it did not significantly affect the number of CD3-LT (Figure 5K) or
CD19-LB lymphocytes (Figure 5L), as compared to BLM.
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Figure 5. Identification of macrophage and lymphocyte cell populations. (A,D,G) Immunostained
representative lung sections for F4-80 macrophages, (B,E,H) CD3 T lymphocytes and (C,F,I) CD19
B lymphocytes identification in the PBS (A–C), BLM (D–F), BLM-AE (G–I) groups. Scale bar cor-
responding to 100 µm. A representative image of the PBS, BLM and BLM-AE groups is shown.
After BLM instillation, infiltration of F4-80 macrophages is observed in the BLM group (D) and an
upsurge is shown after exacerbation (BLM-AE, (G)). T lymphocyte infiltration was observed in the
BLM group ((E,F), respectively) and after exacerbation ((H,I), respectively). (J) Quantification of
macrophages, (K) CD3-LT and (L) CD19-LB in the control PBS group (white bar), BLM group (pink
bar) and BLM-AE group (pink hatched black bar). Six mice from the PBS group, six mice from the
BLM group and seven mice from the BLM-AE were photographed. For each field in each mouse and
in each condition, the average number of positive cells for F4-80, CD3 and CD19 immunolabelling
was reported to the total number of cells present. All values are represented as median± interquartile
range; one-way ANOVA analysis followed by Newman–Keuls was performed. ns: not significant
*** p ≤ 0.001.
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Lung inflammation was further quantified through the expression of pro-inflammatory
cytokines in lung extracts. Levels of KC (Figure 6A), IL-1β (Figure 6B) TNF-α (Figure 6C)
and IL-6 (Figure 6D) were not significantly modified in the BLM group as compared to
the PBS group. Interestingly, a significant induction of KC (Figure 6A), IL1-β (Figure 6B),
TNF-α (Figure 6C) and IL-6 (Figure 6D) was observed in the BLM-AE group as compared
to the BLM and PBS groups.
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KC (A), IL-1β (B), TNF-α (C) and IL-6 (D) pro-inflammatory proteins in whole-lung protein lysates
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black bar). All values are represented as median ± interquartile range; one-way ANOVA analysis
followed by Newman–Keuls was performed. ns: not significant, ** p ≤ 0.005, *** p ≤ 0.001.

3.4. HIF-1a Is Associated with the Worsening Effect of Acute Injury on Lung Fibrosis

Immunostaining of HIF-1α protein (Figure 7A) did not evidence any increase in the
lung expression of HIF-1α in the BLM group as compared to the PBS group. Of note,
exacerbation induced a strong increase in the expression of HIF-1α protein, particularly in
the cytoplasm of AEC (BLM-AE, Figure 7A). Moreover, mRNA expression levels of BNIP3
and SERPINE1 genes (encoding PAI-1) (two target genes of HIF), were strongly enhanced
in the BLM-AE group (Figure 7B,C).
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Figure 7. Hypoxia-induced factor HIF-1α immunostaining and expression level of target genes.
(B–E) Photographs of 5 µm serial lung sections immunostained for HIF-1α protein and a rabbit isotype.
(Scale bar corresponding to 50 µm). A representative image of the PBS (B), BLM (C), and BLM-AE (D)
groups was shown. When reported to the staining of isotype (A), no significant HIF-1α staining was
observed in the BLM group as compared to the PBS control group. Significant increase staining of
HIF-1α is observed in the BLM-AE group mainly localized in modified alveolar epithelial cells (black
arrow) (D). (E) mRNA expression of BNIP3 and (F) mRNA of SERPINE1 (PAI-1) quantified by RT-qPCR
from the control PBS group (white bar), BLM group (pink bar) and BLM-AE group (pink hatched black
bar). Effect of BLM or BLM-AE was presented as fold induction normalized to the mean value of PBS
group and reported to 1. All values are represented as median± interquartile range; one-way ANOVA
analysis followed by Newman–Keuls was performed. ns: not significant, * p ≤ 0.01.

4. Discussion

The present study was designed to set up and characterize a new non-infectious
mouse model to further study the mechanism implicated in the acute exacerbation of
pulmonary fibrosis and propose new drug treatment during AE. In mice harboring a
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chronic and moderate pulmonary fibrosis caused by 4 IT instillations of low-dose (0.8 UI/g)
BLM every 2 weeks, AE was induced by two additional instillations of a double-dose of
BLM (1.6 UI/g). The last two instillations of double-dose BLM induced in one month
a clear clinical aggravation with weight loss and a mortality of 40%, as well as rapid
respiratory deterioration as assessed by decreased oxygen saturation and lung compliance.
At the histopathological and molecular levels, exacerbation was associated with features
of subacute alveolar damage superadded to chronic lung remodeling reminiscent of the
UIP pattern, with massive infiltration of lung tissues by macrophages and with increased
levels of pro-inflammatory cytokines in lung extracts. Finally, double-dose instillations
of BLM induced alveolar expression of HIF-1a protein and of its target genes BNIP3 and
SERPINE1 (PAI-1).

Acute exacerbation (AE) is a dramatic event in the natural history of IPF associated
with the 80% mortality of patients within one year. IPF-AE is defined as an acute, clinically
significant, respiratory deterioration of unidentifiable cause (3). It is not clear whether
IPF-AE represents an intrinsic acceleration of the fibrotic lung process, or whether it is
induced by external occult insults such as viral infections, micro-aspiration, or thoracic
surgery on a predisposed lung. It is noteworthy that exposure to ozone and nitrogen
dioxide, which induced lung oxidative stress (as bleomycin), has been correlated to an
increased risk of AE of IPF, worsening overall mortality [19,20]. There is currently no
efficient medical treatment for IPF-AE [21]. Therefore, novel therapeutic strategies should
be developed, and the use of a suitable animal model could be most helpful. Over the
past 10 years, several studies using the classical mouse model of lung fibrosis induced
by administration of a single dose of BLM have been carried out to mimic IPF-AE. This
model of lung fibrosis is probably not the best model to reproduce the natural progression
of IPF. Indeed, lung fibrosis models developed in 14 days after a single instillation of a
high dose of BLM present many disadvantages. First, they are more representative of an
acute damage leading to tissue fibrosis than of a progressive fibrosing lung disease. Second,
as fibrosis is limited in time and can resolve spontaneously, these models contrast to the
known natural chronic and progressive evolution of human IPF (6) [22].

Based on the presumed triggers of IPF-AE, AE in murine models of BLM-induced
lung fibrosis were induced by one IT instillation of either LPS [23] or gamma herpes
simplex virus [12–14]. In all cases, the authors reported the worsening of fibrosis and
increased inflammatory response, with an increase in TH17 response and increased lev-
els of pro-inflammatory cytokines. However, although the occurrence of AE after viral
infection is well-described, such virus-induced models might not be suitable for study-
ing the molecular mechanisms associated with either “idiopathic” AE, or AE induced by
non-infectious triggers.

In the present study, we used an experimental protocol adapted from Degryse et al.
and Redente et al. [10,11], consisting of six repetitive IT instillations of low-dose BLM to
induce a chronic and moderate lung fibrosis in mice. According to Redente, our model
presents at day 90 a stable pulmonary fibrosis with a more uniform distribution of fibrotic
lesions and no reversibility of the lesions observed during the time points of the experi-
ments. The fibrosis is attested by a large amount of soluble collagen in lung extracts and a
decrease in the distensibility of the lung, i.e., lung compliance. The lungs were severely
damaged and the pulmonary architecture altered. The remodeled areas covering a large
fraction of the total surface of the lung were mainly extended subpleural fibrosis with
intraparenchymal fibrotic masses extension. These fibrotic areas show cystic cavities (some
of them reminiscent of honeycombing), alveolar collapse and airways mimicking traction
bronchiectasis, as observed in the UIP pattern characteristic of IPF [24]. Immunostaining
experiments revealed the presence of macrophages, T and B cell infiltrates. Noteworthy
is that the pro-inflammatory cytokine levels in lung extracts from the BLM group were
comparable to those in the PBS group, excluding major inflammation. In addition, as
described in biopsies from IPF patients [25,26], TUNEL-positive apoptotic cells were seen
(Supplemental Figure S1). We also observed the induction of cell cycle regulators p21WAF1
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and p16INK4 (Supplemental Figure S2) implicated in cellular senescence and aging and
mainly reported in IPF lung biopsies [27–29]. All together, these results indicate that repeti-
tive instillations of low-dose BLM induce chronic and moderate lung fibrotic disease that
recapitulates most of the characteristics of IPF [30].

In this chronic pulmonary fibrosis model, AE was produced by doubling the dose
of BLM (1.6 instead of 0.8 UI/g) for the last two instillations in the last 30 days of the
experiment (BLM-AE group) which induced a strong oxidative injury. Based on previous
reports in rats [31] or mice [15], we anticipated that the oxidative stress generated by a
higher dose of BLM would promote an inflammatory environment in the distal lung, which
is characteristic of AE. This procedure has been chosen to get as close as possible to the
clinical description of AE in IPF patients, where a degradation of lung function is observed
typically within less than a month [3]. Indeed, we observed a 40% mortality as seen in
patients with IPF where 50% in-hospital mortality was observed. As compared to the BLM
group without exacerbation, histopathology showed superadded inflammatory and loose
collagenous deposits suggesting organizing pneumonitis features as observed in the autop-
sies of patients deceased from IPF-AE [5]. We also observed a more extensive pulmonary
remodeling with an increase in collagen content leading to a decrease in pulmonary com-
pliance. A major observation made in the BLM-AE group was an activated inflammatory
response, characterized by an increase in KC, IL1-β IL-6 and TNF-α pro-inflammatory
cytokines in lung extracts, associated with a higher recruitment of macrophages in injured
lung areas. Our cytokine data on lung extracts are in line with observations made in IPF
patients with AE showing increased levels of IL-6 and IL-8 either in the bronchoalveolar
lavage fluid (BALF) [32,33] or in blood [34]. Further experiments in our mice model of
AE could be realized to investigate BALF or blood sample content. Finally, neither an
increase in TUNEL positive cells and caspase 3/7 activities (Supplemental Figure S1) nor
an induction of cell cycle regulators p21WAF1 and p16INK4 (Supplemental Figure S2) were
observed in BLM-AE as compared to BLM group.

Acute exacerbations in IPF patients often lead to episodes of severe hypoxemia, as it
is the case for ALI or acute respiratory distress syndrome [32]. Accordingly, in the present
study, we observed in the BLM-AE group a decrease in SpO2. Although we did not directly
measure oxygen tension in lung tissue, this blood desaturation strongly suggests that remod-
eled and inflammatory lung tissues are hypoxic. In line with this hypothesis, we observed
a strong increase in HIF-1a labeling in the distal lung from BLM-AE mice as compared to
BLM mice. We also found increased mRNA expression of Bnip3 and Serpin1 HIF-dependent
genes, both strongly implicated in either apoptosis or autophagy [35] and in the fibrosing
process [36]. Interestingly, acute exposure of AECs to environmental hypoxia favors the secre-
tion of pro-inflammatory cytokines and/or pro-fibrotic mediators in the lung by recruitment
of macrophages [37,38], and hypoxia has been proposed to participate in AEC deregulation
in the pathogenic process of IPF [39–42]. Furthermore, HIF-1α has been suggested to play
a critical role in regulating the inflammatory response as a decrease in the secretion of pro-
inflammatory cytokines has been observed in HIF -/- mice [43]. Therefore, these results
strengthen a pathogenic role of HIF-1α expression in our model of AE.

5. Conclusions

In conclusion, the present study confirms that repetitive intratracheal instillations
of BLM at low dose induce a chronic and stable pulmonary fibrosis in mice reproducing
many characteristics of IPF. It also demonstrates that once lung fibrosis is well-established,
instillation of higher doses of BLM induces a rapid clinical deterioration and histological
remodeling together with acute exacerbation of pre-existing pulmonary fibrosis. This new
mouse model of non-infectious exacerbation of pulmonary fibrosis is easily applicable and
could represent a suitable preclinical model to test the impact of new therapeutic molecules
for the treatment of IPF-AE. Futures studies are now necessary to test the relevance of
the nintedanib or pirfenidone therapeutic molecules currently used in clinics to better
understand their impact on AE [44].
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