
Citation: Luo, L.; Zhang, Z.; Weng, Y.;

Zeng, J. Ferroptosis-Related Gene

GCLC Is a Novel Prognostic

Molecular and Correlates with

Immune Infiltrates in Lung

Adenocarcinoma. Cells 2022, 11, 3371.

https://doi.org/10.3390/

cells11213371

Academic Editors: Maura Poli and

Michela Asperti

Received: 8 September 2022

Accepted: 20 October 2022

Published: 25 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Article

Ferroptosis-Related Gene GCLC Is a Novel Prognostic
Molecular and Correlates with Immune Infiltrates in Lung
Adenocarcinoma
Lianxiang Luo 1,2,* , Zhentao Zhang 3, Yanmin Weng 3 and Jiayan Zeng 3

1 The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
2 The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
3 The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China
* Correspondence: luolianxiang321@gdmu.edu.cn

Abstract: Ferroptosis, a newly discovered iron-dependent type of cell death, has been found to
play a crucial role in the depression of tumorigenesis. However, the prognostic value of ferroptosis-
related genes (FRGs) in lung adenocarcinoma (LUAD) remains to be further elucidated. Differential
expression analysis and univariate Cox regression analysis were utilized in this study to search for
FRGs that were associated with the prognosis of LUAD patients. The influences of candidate markers
on LUAD cell proliferation, migration, and ferroptosis were evaluated by CCK8, colony formation,
and functional experimental assays in association with ferroptosis. To predict the prognosis of LUAD
patients, we constructed a predictive signature comprised of six FRGs. We discovered a critical gene
(GCLC) after intersecting the prognostic analysis results of all aspects, and its high expression was
associated with a bad prognosis in LUAD. Correlation research revealed that GCLC was related
to a variety of clinical information from LUAD patients. At the same time, in the experimental
verification, we found that GCLC expression was upregulated in LUAD cell lines, and silencing
GCLC accelerated ferroptosis and decreased LUAD cell proliferation and invasion. Taken together,
this study established a novel ferroptosis-related gene signature and discovered a crucial gene, GCLC,
that might be a new prognostic biomarker of LUAD patients, as well as provide a potential therapeutic
target for LUAD patients.

Keywords: ferroptosis; lung adenocarcinoma; prognostic signature; overall survival; GCLC

1. Introduction

LUAD, a type of non-small cell lung cancer (NSCLC), is the most common subtype
of lung cancer worldwide [1–3]. With advances in diagnosis, chemotherapy, radiotherapy,
molecular biology, and precision medicine, the efficacy in LUAD patients improves signifi-
cantly, but the 5-year overall survival (OS) in LUAD patients remains very low, indicating
that the treatment of LUAD still faces huge challenges [4]. As a consequence, discovering
new prognostic biomarkers that could be used to provide prognostic predictions and act as
new treatment targets for LUAD patients is crucial.

Ferroptosis, a recently found iron-catalyzed type of regulated cell death, is induced by
the imbalance of cellular redox homeostasis, leading to a large amount of lipid peroxidation
and finally the accumulation of excessive iron-dependent lipid hydroperoxides to a lethal
level, which results in cytological changes [5]. Ferroptosis has been associated with the
pathophysiological process of many diseases, including cancers, neurological disorders,
ischemia–reperfusion damage, renal injury, and blood diseases, according to a recent
study [6]. Furthermore, emerging evidence suggests that ferroptosis plays a critical role
in tumor suppression and metastasis control, implying that it has significant promise for
cancer treatment and prognosis prediction [7–9]. Ferroptosis have a regulatory influence
on the progression of tumors such as renal cancer, pancreatic cancer, NSCLC, and diffuse
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large B-cell lymphoma [10], and as a result, ferroptosis induction has emerged as a viable
anti-cancer therapy [11].

In recent years, numerous genes have been discovered as modulators or indicators
of ferroptosis in addition to ferroptosis-inducing agents [9,11–14]. Glutathione (GSH)
production pathway activation in NSCLC cells has been shown to reduce ferroptosis in
recent studies [15,16]. SLC7A11, a critical gene related to ferroptosis, could negatively
regulate the process of ferroptosis because of its role in iron concentration regulation.
SLC7A11 is overexpressed in LUAD and is strongly linked to tumor growth [15,17–19].
It has been reported that the hub gene AKR1C1 is highly expressed with low ferroptosis
levels in NSCLC tumors. However, AKR1C1 has been implicated in many pathways
involved in the ferroptosis process and connected with diverse cancer infiltrating immune
cells, and knockdown suppresses the development of ferroptosis in NSCLC cells [20].
Meanwhile, some studies have shown that redox imbalance and iron absorption and
storage dysfunction are important factors in inducing ferroptosis, which is associated
with significantly altered expression of GCLC, SLC7A11, and GPX4 [21]. Moreover, ethyl
carbamate induced ferroptosis by inhibiting the expression of GCLC and SLC7A11 to
inhibit GSH synthesis [22]. Research suggested that γ-glutamyl-peptide synthesis by
GCLC provides GSH-independent protection from cystine starvation-induced ferroptosis
in cells with NRF2 activation [23]. What is more, it has been discovered that ferroptosis
interacts with immune cells to promote tumor progression. One example is that CD8+ T
cells stimulate ferroptosis by downregulating SLC7A11 and SLC3A2 and that ferroptosis
increases the anticancer efficacy of immunotherapy, demonstrating that ferroptosis may
be a mechanism by which the immune system works [24]. Other studies reveal that long
non-coding RNA (lncRNA) is increasingly recognized as a key mediator in the regulation
of ferroptosis. For example, cytosolic lncRNA P53RRA can promote ferroptosis through the
nuclear chelation of P53 [25,26]. As a consequence, looking into the expression profile of
the ferroptosis gene and its predictive significance might lead to novel therapeutic thoughts
for LUAD.

For this study, we obtain the mRNA expression profiles and clinical data of LUAD
patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
databases. Then, based on differentially expressed FRGs with significant prognostic value,
we built a prognostic signature model that can be used to predict the risk of LUAD patients.
The prediction effectiveness of the model is evaluated by a series of analyses. Finally, after
risk stratification analysis of patients, we found an important gene, GCLC, and carried
out correlation analysis and experimental verification on it to investigate its potential role
and activities in the regulation of ferroptosis in LUAD cell lines. Our findings might be
valuable for future research on this subject.

2. Materials and Methods
2.1. Data Collection

A total of 1064 LUAD patients from three independent datasets were included in this
study. The RNA-seq data of 594 patients (59 normal samples and 535 LUAD samples)
and the corresponding clinical information, such as gender, age, tumor stage, survival
status, survival time, and smoking history, were extracted from the TCGA database (https:
//portal.gdc.cancer.gov/repository, accessed on 8 April 2021) as the training cohort. In
the subsequent analysis, 35 patients in the TCGA-LUAD cohort were removed due to
their clinical data being incomplete. Thus, the remaining data (n = 500) with complete
follow-up information were included in our training data set for further analyses. For
external validation, the gene expression files and corresponding clinical data from two
independent cohorts (GSE68465, n = 462 [27]; GSE68571, n = 96 [28]) were downloaded
from the GEO database (https://www.ncbi.nlm.nih.gov/geo, accessed on 29 April 2021)
and combined as a single validation dataset (29 normal and 528 tumors). Batch effects from
non-biological technical biases were corrected with the “ComBat” algorithm of the sva
package. In terms of data processing, all gene expression profiles were normalized using the

https://portal.gdc.cancer.gov/repository
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scale method provided in the “limma” R package. Simultaneously, the corresponding FRGs
were downloaded from FerrDb (http://www.zhounan.org/ferrdb, accessed on 8 April
2021) [29], which is a web-based consortium that provided a comprehensive and up-to-
date database for ferroptosis markers, their regulatory molecules, and associated diseases.
Overall, based on the data from multiple data sets, 195 FRGs were included in our analysis.
The acquisition of the above data fully complied with the access policies of the TCGA and
GEO databases. Approval from the local ethics committee was not needed, because our
research was based on public databases and strictly followed the publication guidelines.

2.2. Identification of Differentially Expressed Genes in the TCGA Datasets

We utilized the “DESeq2” R package to discover the differentially expressed genes
(DEGs, with false discovery rate (FDR) < 0.05 and |log2FC|≥ 1) associated with ferroptosis
between 500 tumor tissues and 59 normal tissues in the training cohort based on the
FRGs expression profile. The “EnhancedVolcano” R package generated the volcano figure
comparing the expression levels of each DEG in normal and malignant tissues. As in
previous research, we calculate the ferroptosis potential index (FPI) between the normal
and tumor groups using the expression matrix for the purpose of uncovering the functional
functions of ferroptosis [30].

2.3. Stepwise Construction of Prognosis Signature

First, a univariate Cox analysis of overall survival (OS) was performed to screen
FRGs with significant prognostic values of the TGGA training cohort, and genes with a
p-value < 0.05 were considered statistically significant and incorporated into the subsequent
analysis. The Venn diagram indicated the intersection between DEGs and prognostic
ferroptosis genes. On the other hand, to examine the connection between the expression of
intersected genes and the survival of LUAD patients, the survival analysis of each gene
was performed by the “survival” and “survminer” R package (all p < 0.05). Next, the
LASSO-penalized Cox regression analysis was applied to the intersected genes to minimize
the risk of overfitting [31]. Applying the “glmnet” R package, genes with a potentially
high correlation with other genes were excluded with the LASSO algorithm with penalty
parameter tuning that was conducted through tenfold cross-validation. The LASSO model
created a prognostic gene list with coefficients based on the optimal lambda value. Multiple
stepwise Cox regression was utilized to establish the prognostic signature. Protein–protein
interactions (PPI) analysis was performed on the genes in the signature using the Search
Tool for the Retrieval of Interacting Genes (STRING) web tool (http://string-db.org/,
accessed on 29 April 2021). A linear combination of the regression coefficient in the
regression model and the gene expression levels was used to calculate the prognostic risk
score. The gene expression level and related coefficients may be used to calculate each
patient’s risk score, as illustrated in the formula below.

Risk score = esum (each gene’s expression× corresponding coefficient) (1)

Each LUAD patient’s related risk score was also calculated. Based on their median
risk score, patients in the training cohort were divided into low-risk and high-risk groups.
Furthermore, Kaplan–Meier analysis was employed to evaluate the recognition efficiency
of the signatures by measuring the survival difference between the two groups. Then,
based on the R packages “Rtsne” and “rgl,” t-SNE and PCA analytics were, respectively,
performed to investigate the distribution of the high- and low-risk groups. Finally, the R
package “timeROC” was used to construct receiver operating characteristic (ROC) curves
at one, two, and three years and the corresponding time-dependent area under the curves
(AUCs) were computed simultaneously, which was used to evaluate the efficiency of the
prognostic signature.

http://www.zhounan.org/ferrdb
http://string-db.org/
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2.4. External Validation of the Prognostic Signature

For external validation of the predictive capability and applicability of our established
signature, we created validation cohorts by two datasets from the GEO database in the
previous processing. In the validation cohorts, the same formula and statistical methods
were adopted to validate the prognostic capacity of the gene signature. Each patient in the
validation cohort had their risk score determined utilizing the same formula as was used
in the training cohort. Patients in the validation cohort were also separated into low- and
high-risk subgroups based on their risk scores. The Kaplan–Meier survival curve analysis
was used to compare the OS times of the two groups, and the ROC curve was utilized to
assess the sensitivity and specificity of the gene signature. Similarly, we also performed
t-SNE and PCA analytics to explore the distribution of the different groups respectively.

2.5. Independence of the Prognostic Signature from Traditional Clinical Characteristics

For the purpose of studying whether the prognostic signature was independent of
other traditional clinical characteristics in predicting the OS of patients with LUAD, such
as age, gender, and tumor stage, univariate and multivariate Cox regression analyses were
performed. p < 0.05 was considered statistically significant. The ROC curve was also
utilized to determine the sensitivity and specificity of each clinical feature.

2.6. Construction and Evaluation of a Predictive Nomogram Integrating FRG Signature and
Clinical Data

After the univariate Cox analysis and multivariate Cox analyses, we selected clinical
variables with a p-value < 0.05 and prognostic signature as the independent prognostic
variables, and they were incorporated into the construction of the nomogram. Utiliz-
ing the R package “rms”, the nomogram was designed to integrate the risk score of the
model as a prognostic factor to evaluate the predictive probability of 1-, 3-, and 5-year
OS. Furthermore, calibration curves were developed to evaluate the agreement between
actual and nomogram-predicted results. Random opportunities and excellent ability to
forecast survival by the nomogram model are represented by the values 0.5 and 1.0, re-
spectively. Net decision curve analyses demonstrate the benefit of predicting LUAD by the
nomogram model.

2.7. Functional and Pathway Enrichment Analysis

The DEGs between the high-risk and low-risk groups were then screened out by the
“limma” package (criteria: FDR < 0.05 and |log2FC| ≥ 1.1). The Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses
were then performed utilizing “clusterProfiler” packages to find the related pathway and
functions of these differential genes.

2.8. Tumor Microenvironment and Immune Infiltration Analysis

To quantify the proportions of immune cells, we utilized the “gsva” R package to
perform a single-sample gene set enrichment analysis (ssGSEA). Moreover, for the sake of
comparing the differences in the results obtained by various immune infiltration algorithms,
we also downloaded and visualized the immune infiltration results of the TCGA-LUAD
cohort from the TIMER2.0 (Tumor Immune Estimation Resource 2.0, http://timer.comp-
genomics.org, accessed on 5 July 2021) [32]. An integrated analysis using the Spearman
coefficient and Wilcoxon rank-sum was used to determine the association between the
immune cell percentage and risk score. Cox, clutter, and Kaplan–Meier analyses were
used to filter immune cells with prognostic significance using the percentage and survival
data from the immune cells. Yoshihara et al. developed the ESTIMATE method for
predicting tumor purity in TME, which includes stromal score, immune score, and estimate
score [33]. The stromal, immune and estimate scores of LUAD patients were estimated by
the “ESTIMATE” package. The statistically significant criterion was set at a p-value of less
than 0.05.

http://timer.comp-genomics.org
http://timer.comp-genomics.org
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2.9. Comprehensive Bioinformatics Evaluation of Key Gene GCLC

After single gene survival analysis, we undertook a follow-up investigation on the
intersection gene GCLC. The connection between the GCLC expression level and propor-
tions of immune cells, ESTIMATE score, and clinical characteristics were determined us-
ing an integrated analysis employing the Kruskal–Wallis test, Spearman coefficient, and
Wilcoxon rank-sum. The TISIDB database (http://cis.hku.hk/TISIDB/index.php, accessed
on 20 July 2021) is a web-based integrated repository portal that collects large amounts of
human cancer data from the TCGA database [34]. The TISIDB database was applied to
investigate the relationships between GCLC expression and immunological or molecular
subtypes in various cancer types. p-values less than 0.05 were deemed statistically significant.

2.10. The Human Protein Atlas (HPA)

The Human Protein Atlas (HPA) (http://proteinatlas.org, accessed on 5 January 2022)
is a free database of pictures of protein expression in normal and malignant tissues. The
immunohistochemistry images of GCLC were searched in the HPA database to verify the
bioinformatics analysis results in our study.

2.11. Cell Culture and Transfection

Human NSCLC cells(H358) were purchased from the American Type Culture Col-
lection (ATCC). RPMI-1640 medium (Gibco, GrandIsland, NE, USA) containing 10% fetal
bovine serum (FBS; Gibco, GrandIsland, NE, USA) and 1% penicillin–streptomycin (Gibco,
GrandIsland, NE, USA) was applied to cells culture in a humidified atmosphere with 5%
CO2 at 37 ◦C. GCLC was purchased from Sangon Biotech (Shanghai, China) for silenc-
ing the expression of GCLC. In this study, the GCLC-siRNA sequence was as follows:
5′-GCUAAUGAGUCUGACCAUU (dTdT)-3′. Cells were cultured in 12-well plates at a
density of 5 × 104 cells/well until 60%–70% cell confluence for transfection. The siRNA
Transfection Reagent (Polyplus, Illkirch, France) was transfected into H358 cells for 72 h to a
final concentration of 5 nM. Successfully transfected cells were used for trials subsequently.

2.12. Cell Proliferation

A Cell Counting Kit-8 (CCK8; Beyotime Biotechnology, Shanghai, China) was con-
ducted to examine cell viability according to the manufacturer’s protocols. After being
transfected with GCLC-siRNA/ NC-siRNA for 48 h, cells were inoculated in 96-well plates
at a density of 4 × 103 cells/well, and we add CCK-8 solution. Then, they were cultured
for 0, 24, 48, and 72 h and calculated at 450 nm to determine the number of viable cells.

2.13. Colony Formation Assay

The colony formation assay was used to evaluate cell proliferation analysis. Cells were
seeded in 12-well plates at a density of 2000 cells/well and incubated at 37 ◦C and 5% CO2
for one week. Later, the cells were rinsed with phosphate-buffered saline (PBS) and fixed in
1 mL/well 4% paraformaldehyde (Leagene Biotechnology, Beijing, China) for 30 min. The
dye was then stained with 1% crystal violet solution (Solarbio, Beijing, China) for 20 min at
ambient temperature. Eventually, we slowly washed the crystal violet staining solution
with PBS and dried it.

2.14. Cell Death Assays

Cell death was assessed by flow cytometry following the manufacturer’s instructions.
In brief, after transfecting for 72 h, we washed the cells one time with PBS and stained with
Annexin V-FITC and PI for 30 min at room temperature in the dark. The measurements are
from flow cytometry (BD Biosciences).

http://cis.hku.hk/TISIDB/index.php
http://proteinatlas.org


Cells 2022, 11, 3371 6 of 26

2.15. Iron Assay

H358 cells were stained with a concentration of 1 µmol/L FerroOrange (Dojindo, Tokyo,
Japan) and incubated under 37 ◦C and 5% CO2 conditions for 30 min. Finally, cells were
observed under a fluorescence microscope (BioTek Cytation 5, BioTek, Winooski, VT, USA).

2.16. Lipid Peroxidation Assay

C11-BODIPY 581/591 (10 µM; ABclonal, Wuhan, China) was added to transfected
H358 cells and incubated at 37 ◦C and 5% CO2 for 1 h. After incubating, the cells were
washed twice with PBS and digested with trypsin; then, the cells were resuspended in PBS
containing 5% FBS and eventually analyzed by flow cytometry. The data were analyzed
using FlowJo 10.0.

2.17. Glutathione Quantification

The intracellular glutathione (GSH) levels were evaluated using the GSH assay kit
(Beyotime, Shanghai, China) according to the manufacturer’s instructions. A total of 5 × 105

H358 cells were seeded in twelve-well plates after treatment with APAP. Harvesting and
counting the cells, and the GSH levels were determined using a GSH assay kit.

2.18. MDA Assay

The relative concentration of malondialdehyde (MDA) in cells was assessed with a
Lipid Peroxidation MDA Assay Kit (Beyotime, Shanghai, China) according to the manufac-
turer’s instructions. OD values were measured at 532 nm by a microplate reader.

2.19. Western Blotting

Proteins were extracted from cells, and cells were lysed with RIPA lysate (Solarbio,
Beijing, China) added with PMSF, which was followed by protein quantification using the
BCA protein assay kit (Sangon Biotech, Shanghai, China). Proteins were size-fractionated
by SDS-PAGE and transferred to nitrocellulose membranes. Membranes were blocked in 5%
bovine serum albumin (BSA) for 1 h and then incubated with primary antibodies overnight
at 4 ◦C. The next day, after being washed three times for 15 min in TBST, the membrane was
incubated with horseradish peroxidase-labeled secondary antibodies (1:4000) for 1 h at room
temperature and then washed three times for 15 min in TBST. Finally, color development
was performed using BeyoECL Moon (Beyotime Biotechnology, Shanghai, China).

2.20. Statistical Analysis

All data are expressed as mean ± standard deviation (SD). Bioinformatics analyses in
this study were performed with R software (v.4.0.3, https://cran.r-project.org/, accessed
on 20 January 2022). Statistical analysis was analyzed by using GraphPad Prism analysis
software. The t-test and Kruskal–Wallis test was used to assess the difference between the
two groups and a value of p < 0.05 indicates a statistically significant difference, * indicates
p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001.

3. Results
3.1. Identification of Prognostic Ferroptosis-Related DEGs in the Training Cohort

The flowchart of this study is illustrated in Supplementary Figure S1. A total of 500
patients from the TCGA-LUAD cohort and 528 LUAD patients from the GEO cohort were
included in the study. To establish a prognostic model that is efficient, we must first identify
the genes that are tightly associated with the prognosis of LUAD patients. As a result, we
performed difference analysis and univariate Cox analysis first. With an absolute log2-fold
change (FC) > 1 and an adjusted p-value < 0.05 to perform differential expression analysis,
compared with normal tissues (n = 59), we identified a total of 10,081 DEGs (7217 upregu-
lated and 2864 downregulated) in TCGA that were related to ferroptosis in LUAD. Nearly
one-third of the genes (10,081/31,454, 32.0%) were differentially expressed between tumor
samples and normal samples (Figure 1A). On the other hand, a total of 195 FRGs were

https://cran.r-project.org/
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identified to match the mRNA-sequencing data in the TCGA and GEO databases (Sup-
plementary Table S1). The differences in FPI, a calculated marker of ferroptosis, between
tumor and normal tissues were then examined. Significant changes were discovered in the
tumor group, with a higher FPI (p < 0.001), which illustrated that FPI is closely related to
the progression and deterioration of LUAD, and ferroptosis-related prognostic markers
may have great potential for the prognosis evaluation of LUAD patients (Figure 1B).

After that, based on 500 LUAD samples with OS rates and survival status in TCGA, we
performed univariate Cox regression to investigate the relationship between the expression
of the 195 FRGs and prognosis, and the results indicated that 40 genes had significant
correlations with the prognosis of LUAD patients (p < 0.05). The forest plot showed the
results of the univariate Cox regression analysis (Figure 1C). Then, the DEGs obtained from
the TCGA datasets were intersected with the prognostic gene set to obtain “differentially
expressed prognostic ferroptosis genes”. The Venn diagram revealed that twelve genes
were intersected between two gene sets, and they will be included in the subsequent
analysis (Figure 1D). The intersected genes were further studied for their prognostic value
in LUAD patients. We determined the relationship between the genes’ expression in LUAD
and the survival probability of the LUAD patient by survival analysis of the single gene. In
both the training and validation cohorts, genes were classified into two groups: high and
low expression. After analysis, genes with adjusted P values less than 0.05 were selected for
visualization. Supplementary Figure S2 depicted the corresponding Kaplan–Meier survival
curves. Analysis showed that the high expression of CA9, GCLC, TFAP2A, SLC12A1, and
TXNRD1 correlated with a poor prognosis in LUAD, while the low expression of ALOX15,
AQP5, CDO1, and GDF15 correlated with a poor prognosis in LUAD. Significantly, GCLC
is included in the results of both cohorts, suggesting that GCLC might be an essential
survival-related gene in LUAD.

3.2. Construction of the Six-Gene Signatures Related to Ferroptosis

The above twelve genes were then evaluated again to find the optimum gene com-
bination for developing the prognostic model. We first applied LASSO Cox regression
analysis. The best lambda value remains twelve, as calculated by the LASSO regression
with 10-fold cross-validation, indicating that these twelve genes have certain independence
and no potential significant association (Figure 1E,F). To further identify the FRGs with the
greatest prognostic value, we conducted multiple stepwise Cox regressions and determined
six FRGs to construct the prognostic signature among LUAD patients (Figure 1G). The heat
map shows the difference in the expression of these six genes in the normal and tumor
groups of the training cohort, and the results showed that TFAP2A, SLC16A1, HNF4A and
GDF15 were upregulated in the tumor group, while CDO1 and ALOX15 were downregu-
lated in the tumor group (Figure 1H). A correlation chart based on the expression patterns
of the six genes was also developed to highlight the linkages between them (Figure 1I).
In the visualization of the prognostic signatures, to demonstrate the links between the
six genes in the prognostic signatures, a PPI analysis was conducted, and the minimum
needed interaction score was established at 0.70 (Figure 1J). According to the signatures
we established, the risk score of each LUAD patient was measured based on the format:
Risk score = (−0.043 * expression level of ALOX15) + (−0.089 * expression level of CDO1)
+ (−0.041 * expression level of GDF15) + (0.089 * expression level of HNF4A) + (0.062 *
expression level of SLC16A1) + (0.068 * expression level of TFAP2A). The patients in two
cohorts were then categorized into a high-risk group (training cohort: n = 250; validation
cohort: n = 223) or a low-risk group (training cohort: n = 250; validation cohort: n = 305)
based on the median value of the training cohort’s risk score (Figure 2A,E). After that, we
conducted various analyses to assess the effectiveness and stability of the model predictions.
As shown in Figure 2B,F, the patients’ death risk increases, and the survival time decreases
as the risk score increases, which proves that our prognostic signatures are effective. Ac-
cording to PCA (Figure 2C,G) and t-SNE (Figure 2D,H) analysis, patients in different risk
categories were distributed in two separate orientations, which indicated that the risk score
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we established had a good correlation with the prognosis of LUAD patients. Moreover, the
predictive performance of the risk score for OS was evaluated by time-dependent ROC
curves, and the area under the curve (AUC) reached 0.678 at 1 year, 0.699 at 3 years, and
0.626 at 5 years (validation cohort: 0.678 at 1 year, 0.699 at 3 years, and 0.626 at 5 years)
(Figure 2I,K), indicating better specificity and sensitivity of the prognostic signature in
predicting OS. Consistently, the Kaplan–Meier curve demonstrated that patients in the
high-risk group had a significantly worse OS than their low-risk counterparts (p < 0.05,
Figure 2J,L). Clinically, three elements make up the description of the anatomic extent of a
lung tumor: T for the extent of the primary tumor, N for lymph node involvement, and
M for distant metastases [35]. The TMN classification is a conventional clinical prognostic
indicator that can be used to describe tumor progression. Based on the relatively complete
clinical data of the training cohort, we compared the survival status, tumor stage, and
TMN classification between the high-risk group and low-risk group. The chi-squared test
showed that the high-risk group exhibited poorer T classification (p = 0.0084), N classi-
fication (p = 0.0079), stage (p = 0.0069), and survival status (p < 0.001) than the low-risk
group, suggesting that highly malignant LUAD is associated with high predicted values
(Figure 2M). According to the results of the preceding investigation, the six-gene signature
is trustworthy and valid for prognosis and OS prediction across datasets and platforms.

3.3. Independent Prognostic Predictive Efficacy of the Six-Gene Signature

We proceeded to investigate the independence of the six-gene prognostic signature
and traditional clinical characteristics in predicting the prognosis of LUAD patients based
on the finding above, ensuring that our model is better than the general clinical characteris-
tics in predicting the prognosis of patients, and it can independently predict the prognosis
of patients. Firstly, we preliminarily explored the prognostic value of risk score and various
clinical factors through ROC curve analysis (Figure 3A,B). The findings revealed that in ad-
dition to the smoking history of the training cohort, additional clinical characteristics of the
two cohorts had certain prognostic values. It is worth mentioning that the risk score of the
two cohorts showed stronger prognosis predictive power than other clinical variables. Then,
univariate and multivariate Cox regression analyses were carried out among the available
variables to determine whether the risk score was an independent prognostic predictor for
OS. In univariate Cox regression analyses, we found that the tumor stage (HR = 2.584, 95%
CI = 1.893–3.527, p < 0.001), T classification (HR = 2.298, 95% CI = 1.568–3.366, p < 0.001),
M classification (HR = 2.133, 95% CI = 1.245–3.654, p = 0.006), N classification (HR = 2.244,
95% CI = 1.569–3.210, p < 0.001) and risk score (HR = 1.946, 95% CI = 1.593–2.377, p < 0.001)
in the training cohort were significantly associated with OS (Figure 3C). Similarly, in vali-
dation cohort, age (HR = 1.420, 95% CI = 1.110–1.816, p = 0.005), gender (HR = 1.428, 95%
CI = 1.116–1.826, p = 0.005), T classification (HR = 2.783, 95% CI = 1.921–4.032, p < 0.001), N
classification (HR = 3.462, 95% CI = 2.559–4.683, p < 0.001) and risk score (HR = 1.600, 95%
CI = 1.268–2.018, p < 0.001) were significantly associated with the OS of LUAD patients
(Figure 3E). After correction for other confounding factors, the T classification (HR = 1.890,
95% CI = 1.163–3.010, p = 0.01) and risk score (HR = 1.982, 95% CI = 1.571–2.500, p < 0.001)
in the training cohort (Figure 3D), and the age (HR = 1.383, 95% CI = 1.066–1.795, p = 0.015),
T classification (HR = 2.095, 95% CI = 1.425–3.081, p < 0.001), N classification (HR = 3.096
95% CI = 2.226–4.305, p < 0.001) and risk score (HR = 1.416, 95% CI = 1.116–1.797, p = 0.004)
in the validation cohort (Figure 3F) still proved to be independent predictors for OS in the
multivariate Cox regression analysis. By and large, the risk score was a reliable independent
risk factor connected with OS for LUAD patients in both the training and the validation
cohort, and it is more effective than other traditional clinical characteristics in predicting
the prognosis of LUAD patients.
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Figure 1. Establishment of the six-gene signature related to ferroptosis. (A) The distribution of
downregulated and upregulated DEGs is depicted by a volcano map. Blue, black, and red represent
the low, equal, and high expression of genes in the relevant group, respectively. The X-axis represents
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fold change, whereas the Y-axis represents the -log10 FDR value. (B) The different FPIs between
tumor and normal tissues in LUAD. (C) Forest plots showing the results of the univariate Cox
regression analysis between gene expression and OS. (D) The Venn diagram revealed that 12 genes
were intersected between the DEGs set and the prognostic gene set obtained by univariate Cox
regression. (E) Selecting the optimal λ-value through the cross-validation in the LASSO model.
(F) LASSO coefficient spectrum of genes enrolled and generate a coefficient distribution map for
a logarithmic (λ) sequence. Each curve represents the change trajectory of a single independent
variable coefficient. The ordinate represents the coefficient value, the lower abscissa represents log (λ),
and the higher abscissa represents the number of non-zero coefficients in the model. (G) The forest
plot of the multivariate Cox regression analysis. (H) A heatmap of the genes in the signature. Blue
represents downregulation of genes and red represents upregulation of genes. (I) Correlations among
TFAP2A, CDO1, HNF4A, GDF15, ALOX15 and SLC16A1 levels in LUAD tissues (TCGA cohort, red:
positive correlations; blue: negative correlations). (J) The PPI network downloaded from the STRING
database indicated the interactions among the candidate genes.
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Figure 2. Validation of the six-gene signature in two cohorts. (A,E) The distribution and median value
of the risk scores in two cohorts ((A): training cohort; (E): validation cohort). (B,F) The distributions
of survival status, overall survival time and risk score ((B): training cohort; (F): validation cohort).
(C,G) Principal component analysis (PCA) of two cohorts ((C): training cohort; (G): validation cohort).
(D,H) t-SNE analysis of two cohorts ((D): training cohort; (H): validation cohort). (I,K) ROC curve
analysis shows the prognostic prediction efficiency of the signature ((I): training cohort; (K): validation
cohort). (J,L) Kaplan–Meier curves for the OS of patients in the high- and low-risk groups of two
cohorts ((J): training cohort; (L): validation cohort). (M) Pie charts showing the Chi-squared test of
clinicopathologic factors in LUAD tumor samples from the TCGA.
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Figure 3. Evaluation of prognostic predictive efficacy of traditional clinical characteristics and six-
gene signature. (A,B) ROC curve analysis shows the prognostic prediction efficiency of the traditional
clinical characteristics ((A): training cohort; (B): validation cohort). (C–F) Forest plot of univariate
Cox regression analysis ((C): training cohort; (E): validation cohort) and multivariate Cox regression
analysis ((D): training cohort; (F): validation cohort) of the six-gene prognostic signature and other
clinical characteristics.
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3.4. Construction and Validation of the Predictive Nomogram

In previous studies, nomograms have been widely used in predicting the prognosis of
patients. In this study, we combined our risk-scoring model with clinical traditional clinical
features to establish nomograms to further explore the accuracy of prognosis prediction of
LUAD patients. T classification and risk score were recognized as important prognostic
characteristics in both cohorts based on our study; therefore, we used them to build a
predictive nomogram to quantify the prediction results of individual survival probability
at 1, 3, and 5 years. As shown in Figure 4A, this nomogram was able to assess two
variables to predict a patient outcome, which is based on T classification and risk score.
The C index of the OS nomogram was 0.699, and the calibration curves of the nomogram
showed great consistency between the predicted OS rates and actual observations at 1, 3,
and 5 years; the survival of the nomogram-predicted probability approached the actual
survival (Figure 4B–D). In net decision curve analyses for LUAD patients, the nomogram
model had a higher net benefit and exhibited a wider range of threshold probabilities in
terms of detecting the prognosis of LUAD patients compared with other prediction models
(Figure 4E,G). The nomogram model showed a benefit for LUAD threshold probabilities
larger than 20%. Net reduction curves, which show the potential to reduce unnecessary
intervention (Figure 4F,H), demonstrate that the nomogram model had excellent reduction
rates of unnecessary intervention. In general, the nomogram combines the prognosis model
we established with the T classification of LUAD patients, and it can be used to predict the
prognosis of LUAD patients more accurately.

3.5. Functional Enrichment Analyses of Different Risk Groups

To elucidate the biological functions and pathways that were associated with the risk
score, the DEGs between the high-risk and low-risk groups were used to perform GO
enrichment and KEGG pathway analyses (Figure 5A,B). In GO enrichment analyses of
the training cohort, DEGs were mainly involved in several biological processes (BP) that
are closely related to the tumor progression and immune response, such as response to
xenobiotic stimulus, antimicrobial humoral response, mitotic cell cycle phase transition,
humoral immune response, mitotic nuclear division, nuclear division, mitotic sister chro-
matid segregation, and G2/M transition of the mitotic cell cycle, which suggested that
these DEGs may be related to the proliferation, invasion and migration of LUAD tumor
cells (p. adjust < 0.05, Figure 5C,E). In the validation cohort, DEGs were mainly enriched in
the activation and migration of leukocytes, such as myeloid leukocyte migration, leukocyte
chemotaxis, and leukocyte migration (p. adjust < 0.05, Figure 5D,F). It is worth noting that
response to metal ion was significantly enriched in both cohorts, implying that there may
be an important correlation between high- and low-risk groups and ferroptosis. KEGG
pathway analyses on two cohorts indicated that the mainly enriched pathways included the
complement and coagulation cascades, cell cycle, ECM–receptor interaction, IL-17 signaling
pathway, DNA replication, arrhythmogenic right ventricular cardiomyopathy, viral protein
interaction with cytokine and cytokine receptor, PI3K–Akt signaling pathway, etc. The top
five enriched pathways for each cohort are shown in Figure 5G,H (p. adjust < 0.05). The
complete results of KEGG and GO enrichment analyses were shown in Supplementary
Tables S2 and S3, which provided references for further research.
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Figure 4. Construction and validation of the predictive nomogram. (A) The nomogram for OS
prediction at 1, 3 and 5 years was constructed in the training cohort. A value of p < 0.05 indicates a
statistically significant difference, *** indicates p < 0.001. (B–D) Calibration plots of the nomogram
for OS prediction at 1, 3 and 5 years in the training cohort, respectively. (E,G) Net decision curve
analyses demonstrating the benefit of predicting LUAD patients’ prognosis ((E): training cohort;
(G): validation cohort). (F,H) The net reduction analyses based on nomogram model and other
models ((F): training cohort; (H): validation cohort).
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Figure 5. DEGs functional enrichment analysis between high and low-risk groups. (A,B) The volcano
map depicts the distribution of downregulated and upregulated DEGs in the two cohorts’ high-risk
and low-risk groups ((A): training cohort; (B): validation cohort). (C,D) The point diagram shows
the top ten GO terms of each subclass (BP, biological processes; MF, molecular function; CC, cellular
component) ((C): training cohort; (D): validation cohort). (E,F) The chord plot shows the genes of the
top five GO terms of the BP sub-class ((E): training cohort; (F): validation cohort). (G,H) The network
diagram shows the expression relationship of genes in the top five pathways of KEGG pathway
analyses. Fold enrichment of each term is indicated by the x-axis and bar color. ((G): training cohort;
(H): validation cohort).
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3.6. Evaluation of the LUAD Patients’ Immune Microenvironment

To further explore the correlation between the risk score and immune cells, we quan-
tified the enrichment scores of diverse immune cell subpopulations with the ssGSEA R
package. The results showed that the activated B cell, central memory CD4 T cell, effector
memory CD8 T cell, immature B cell, T follicular helper cell, type 1 T helper cell, eosinophil,
immature dendritic cell, macrophage, mast cell, and plasmacytoid dendritic cell were
significantly different between the low-risk and high-risk group, and the scores of them
were all lower in the high-risk group. The scores of activated CD4 T cell, effector memory
CD4 T cell, memory B cell, type 17 T helper cell, type 2 T helper cell, CD56 bright natural
killer cell, natural killer T cell, and neutrophil, on the other hand, were significantly higher
in the high-risk group, implying that these immune cells were more active in the high-risk
group (p < 0.05, Figure 6A). Meanwhile, we visualized the immune infiltration results of
the TCGA–LUAD cohort from the TIMER2.0 database to examine the discrepancies in the
results generated by various immune infiltration algorithms (Supplementary Figure S3).

Then, we calculated the Pearson correlation coefficient between each immune cell
based on the ssGSEA results to estimate the correlation between them (Figure 6B). Moreover,
after a univariate Cox analysis of each immune cell (Figure 6C), we draw an immune cell
network, which depicted a comprehensive landscape of tumor–immune cell interactions,
cell lineages, and their effects on the overall survival of patients with LUAD (Figure 6D).
Finally, we determined the relationship between the immune cell and the survival probabil-
ity of the LUAD patient by survival analysis. We set the threshold of p-value as p < 0.001,
and the immature B cell (Figure 6E) and type 2 T helper cell (Figure 6F) revealed by the
data showed they are both significantly associated with survival in LUAD patients.

3.7. GCLC Could Be a Significant Prognostic Predictor

We obtained the intersection gene GCLC of the two cohorts in the single gene survival
analysis, suggesting that GCLC may be a significant survival-related gene. It is interesting to
note that when the Venn diagram is made (Figure 7A), it is discovered that GCLC is also the
differential gene between the two cohorts’ risk groups. As a result, we performed a series
of single-gene bioinformatics analyses on GCLC to assess its predictive potential in depth.
Firstly, GCLC was discovered as a poor prognostic factor in the aforementioned survival
study, and it is highly expressed in LUAD tissue. Therefore, we verified this conclusion by
obtaining the IHC images of normal and LUAD tissues from the HPA database. In normal
tissue, GCLC was mostly found in macrophages, but alveolar cells were not stained, which
was consistent with earlier findings. GCLC also exhibited medium staining in tumor tissue
(Figure 7B). Then, we evaluated the correlation between the expression level of GCLC and
various clinical characteristics. After analysis, the expression level of GCLC was related to
tumor stage (stage I to stage IV and stage II to stage IV, p < 0.05, Figure 7C), patients’ gender
(p < 0.001, Figure 7E), the location of the tumor in the lung parenchyma (p < 0.05, Figure 7F)
and tobacco smoking history (p < 0.001, Figure 7G), but not to the patient’s age (p > 0.05,
Figure 7D). In summary, in male LUAD patients (classification of gender), LUAD patients
with tumors located in the peripheral lung (classification of the location of the tumor in the
lung parenchyma), and LUAD patients who smoked in the past (classification of tobacco
smoking history), the expression level of GCLC is higher than the LUAD patients in other
groups under this classification (p < 0.05), which suggested that the expression of GCLC has
an important relationship with the occurrence and development of LUAD. Furthermore,
ROC curves were used to assess GCLC’s predictive ability for patients’ OS, and the area
under the curve (AUC) reached 0.581 (Figure 7H), indicating that GCLC has some utility
in predicting patients’ OS. The patients were then divided into two groups based on the
median value of GCLC expression, and we used GO and KEGG enrichment analysis to
look for the significant enrichment of biological processes and pathways of DEGs between
the two groups. As shown in Figure 7I,J, biological processes such as cell cycle process,
cellular macromolecule biosynthetic process, cytoskeleton organization, mitotic cell cycle
and regulation of cell cycle, pathways such as metabolism of xenobiotics by cytochrome
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p450, oocyte meiosis, spliceosome, steroid hormone biosynthesis, and ubiquitin-mediated
proteolysis were significantly enriched in the GCLC high-expression group, which further
proved that the high expression of GCLC promotes tumor growth and metastasis.
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indicates a statistically significant difference, * indicates p < 0.05; ** indicates p < 0.01; *** indicates
p < 0.001. (B) Correlation diagram between every two immune cells. The size of the circle and color
represents the correlation coefficient R. Red indicates a positive correlation between two immune cells
and blue indicates a negative correlation between two immune cells. (C) Forest plot of univariate
regression Cox analysis based on 28 kinds of immune cells. (D) Cellular interaction of tumor microen-
vironment cell types. The size of each cell represents the survival impact of each immune cell type,
which was calculated using the formula log10 (log-rank test p value). Cellular interactions are shown
by the lines linking immune cells. The strength of connection calculated using Spearman correlation
analysis is shown by the thickness of the line. The positive correlation is shown in red, while the
negative connection is shown in blue. (E,F) The corresponding Kaplan–Meier survival curves of
the immune cells that are significantly associated with survival ((E), immature B cell; (F), type 2 T
helper cell).

Moreover, we also studied the relationship between GCLC and the immune microen-
vironment. Based on the previously obtained immune cell proportion matrix, we calculated
the Pearson correlation coefficient between the proportion of each immune cell and the
expression level of GCLC (Figure 8A,B). According to the findings, GCLC expression ex-
hibited the highest positive correlation with type 2 T helper cell and the highest negative
correlation with central memory CD4 T cell expression. (Figure 8C, p < 0.001). Interestingly,
the type 2 T helper cell had also been proven to have an important relationship with the
survival of LUAD patients in the previous results, suggesting that the type 2 T helper
cell may be important cells for LUAD tumor progression. Then, we continue to study the
relations between three kinds of immunomodulators (immunostimulator (Figure 8D), MHC
molecule (Figure 8E), and immunoinhibitor (Figure 8F)) and the expression of GCLC. The
results showed that in LUAD, compared with other immunomodulators, the expression
of immunostimulator TMEM173 had a stronger negative correlation with the expression
level of GCLC (R = −0.476, p < 0.001, Figure 8G). The ER protein TMEM173 was previ-
ously identified to enhance ferroptosis in human pancreatic cancer cell lines by enhancing
MFN1/2-dependent mitochondrial fusion [36]. Therefore, TMEM173 may be an important
immunomodulator to promote ferroptosis in LUAD patients. In addition, we estimated
the immune cell and stromal cell scores of each LUAD patient in the training cohort to
investigate the impact of GCLC expression on the immune microenvironment. The results
revealed that GCLC expression was negatively correlated with stromal cell scores (R =−0.1,
p < 0.05, Figure 8H) and immune cell scores (R = −0.15, p < 0.001, Figure 8I). Moreover,
to study the genes highly associated with GCLC, we set the threshold as the correlation
coefficient R > 0.5, p-value < 0.05 to screen the genes based on the patient’s gene expression
profile. The findings revealed that 33 genes were highly correlated to GCLC expression lev-
els. The heat map depicts the relation between the expression of 33 genes and some LUAD
patient clinical characteristics (Figure 8J). Furthermore, we performed GO enrichment
analysis on these 33 genes to investigate the biological processes, molecular function, and
cellular components of gene enrichment. The findings reveal that these highly correlated
genes are mainly enriched into two biological processes: regulation of cellular response
to insulin stimulus and generation of precursor metabolites and energy (q-value < 0.05,
Figure 8K).
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two risk groups of validation cohort; blue: survival-related genes of training cohort; brown: survival-
related genes of validation cohort). (B) GCLC protein expression in LUAD tissue samples and
corresponding non-cancer tissue samples. GCLC protein levels were upregulated in LUAD tis-
sues compared to the corresponding non-cancer tissues in the IHC results from the HPA database.
(C–G) Correlation between GCLC expression level and various clinical characteristics ((C), tumor
stage; (D), age; (E), gender; (F), the location of the tumor in the lung parenchyma; (G), tobacco smok-
ing history). The test for association between paired samples used Pearson’s correlation coefficient.
Two-tailed statistical p values were calculated by a two-sample Mann–Whitney test or Student’s
t-test when appropriate. (H) ROC curve analysis shows the prognostic prediction efficiency of GCLC.
(I,J) GSEA analysis showed the top five GO (I) and KEGG (J) enrichment results of the high- and
low-expression groups of GCLC.

3.8. GCLC Silencing Promotes Ferroptosis of H358 Cells

To further evaluate GCLC expression in NSCLC, we examined protein levels of GCLC
in human bronchial epithelial cells and NSCLC cell lines. It was found that the protein
level of GCLC was much higher in NSCLC lines (Figure 9A). As a consequence, H358
cells were selected for the subsequent experiments. To verify the above conclusion, we
examined the biological function of GCLC in H358 cells. GCLC protein expression was
significantly downregulated in H358 cells after transfection with siRNA, indicating that
GCLC was successfully knocked down (Figure 9B). Then, we performed the CCK8 and the
colony formation assay in H358 cells to explore the effect of GCLC on the proliferation of
the cells. The results showed that compared to the si-NC group, the proliferation in the
si-GCLC group was significantly reduced (Figure 9C,D). In addition, we performed the cell
death assay to show whether GCLC affects cell survival. As we expected, the percentage
of cell death was significantly increased in the si-GCLC group compared with the si-NC
group (Figure 9E).

Furthermore, we studied key indicators of ferroptosis by interfering with GCLC
expression in H358 cells to learn more about the role of GCLC expression in ferroptosis.
First of all, we discovered that after knocking down GCLC, the level of intracellular Fe2+

increased in H358 cells (Figure 9F). Ferroptosis is characterized by lipid peroxidation, which
produces malondialdehyde as a byproduct (MDA). As a result, we examined the influence
of GCLC on intracellular lipid peroxidation and MDA in H358 cells, discovering that
inhibiting GCLC expression enhanced intracellular lipid peroxidation and MDA levels in
H358 cells (Figure 9G,H). GSH is an antioxidant that plays a crucial role in maintaining the
redox balance and defending against oxidative stress in cells. GSH levels in H358 cells were
significantly decreased following GCLC knockdown in comparison with the control group
(Figure 9I). What is more, Western blot results showed that GPX4, FTH1, and SLC7A11
levels were decreased in H358 cells after silencing GCLC (Figure 9J). In conclusion, these
results suggested that silencing GCLC can cause H358 cells to go into ferroptosis.
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Figure 8. Further study of GCLC in immunity and gene correlation. (A,B) Correlations between GCLC
and 28 kinds of immune cells ((A): heat map; (B): lollipop graph). (C) There is a decent correlation
coefficient between central memory CD4 T cell and the expression level of GCLC. (D–F) The heat map
shows the relations between three kinds of immunomodulators ((D), Immunostimulator; (E), MHC
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molecule; (F), Immunoinhibitor) and the expression of GCLC in Pan-cancer. (G) TMEM173 has a
strong correlation with the expression of GCLC in patients with LUAD. (H,I) The correlation between
the level of GCLC expression and the tumor stromal cell scores (H) and immune cell scores (I). (J) The
heat map shows the relation between the expression of the 33 genes and some LUAD patient clinical
characteristics. (K) The dot map shows the GO enrichment analysis results of 33 genes.
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Figure 9. GCLC silencing promotes ferroptosis of H358 cells. (A) The expression level of GCLC
in BEAS2B cells and NSCLC cell lines by Western blot. (B) After H358 cells were transfected with
si-GCLC or si-NC for 72 h, the protein expression of GCLC was detected by Western blot assay.
* si-GCLC vs. si-NC, * p < 0.05, ** p < 0.01, *** p < 0.001, ****p<0.0001. (C,D) CCK8 assay and colony
formation assay were measured in siNC- or siGCLC-transfected cells. * si-GCLC vs. si-NC, * p < 0.05,
** p < 0.01, *** p < 0.001. (E) Cell death assay was determined by flow cytometry in H358 cells.
* si-GCLC vs. si-NC, * p < 0.05, ** p < 0.01, *** p < 0.001. (F–I) Fe2+, lipid peroxidation, MDA, and
GSH levels were examined in H358 cells transfected with si-NC or si-GCLC. * si-GCLC vs. si-NC,
* p < 0.05, ** p < 0.01, *** p < 0.001. (J) The expression levels of GPX4, FTH1, and SLC7A11 in H358 cells
with GCLC silencing were determined by Western blot. * si-GCLC vs. si-NC, * p < 0.05, ** p < 0.01,
*** p < 0.001.
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4. Discussion

Ferroptosis is a novel form of programmed cell death characterized by the excessive
accumulation of intracellular iron and an increase in reactive oxygen species (ROS) [5]. This
distinct pattern of cell death has been the subject of several research in recent years, and it is
widely regarded as a viable treatment option for a variety of cancers [11]. However, research
on the precise involvement of ferroptosis in LUAD, as well as its possible mechanisms and
routes, is currently rare. In our study, we gradually constructed a prognostic signature
consisting of six FRGs and separated LUAD patients into high- and low-risk groups. In
the evaluation, the Kaplan–Meier curves and the area under the curve of the ROC curves
manifested that the ferroptosis-related signature had fine predictive accuracy, and its good
prediction performance is also maintained in the validation cohort. More importantly, in the
single gene survival analysis and the risk difference analysis of the model, we found a key
gene, GCLC, and its high expression was related to a poor prognosis in LUAD. Moreover,
we experimentally verified that silencing GCLC promoted the development of ferroptosis
and inhibited the proliferation and invasion of LUAD cells.

In the model we established, a total of six genes (ALOX15, CDO1, GDF15, HNF4A,
SLC16A1, TFAP2A) were implicated. Among them, ALOX15 and CDO1 positively reg-
ulated ferroptosis, while GDF15, SLC16A1, TFAP2A, and HNF4A negatively regulated
ferroptosis. In addition, we evaluated the effectiveness of the model prediction through
a variety of bioinformatics analyses and external validation to determine the value of it
in clinical application In time-dependent ROC curves analysis, the area under the curve
(AUC) is greater than 0.626, indicating the better specificity and sensitivity of the prognostic
signature in predicting OS. Moreover, the Kaplan–Meier curve demonstrated that patients
in the high-risk group had a significantly worse OS than their low-risk counterparts, which
further proves the effectiveness of the model in predicting and classifying the prognosis of
LUAD patients. However, the prognostic score model was built based on the TCGA–LUAD
cohort, and it is clear that internal validation alone is insufficient and the quality of external
verification results is crucial for accurately assessing the model’s ability to make predictions.
Compared with the model established in previous LUAD studies [37,38], our model shows
better predictive effectiveness in external validation, which suggested that our model has
reliable prediction performance for prognosis. In addition, in some subsequent analyses,
our model is superior to the traditional clinical features in predicting the prognosis of pa-
tients, and significant differences between high-risk and low-risk groups were also found,
indicating the good classification effect of the model. Ultimately, our analysis confirmed
the model’s accuracy and stability in forecasting the prognosis of LUAD patients.

More importantly, we intersected the differential genes of patients in high-risk and low-
risk groups with survival-related genes and obtained an important gene GCLC. The ligation
of cysteine with glutamate is catalyzed by GCLC, which is the initial step in glutathione
production. Cysteine levels, on the other hand, are tightly regulated due to their reactive
thiol moiety and crucial role in redox homeostasis. Although cysteine is directly related
to GSH synthesis, cysteine availability can affect the levels of cofactors and metabolites
associated with ferroptosis, including the production of coenzyme A [39,40] and iron–sulfur
clusters [41]. Several studies have shown that cysteine starvation can impair growth in nu-
merous in vivo cancer models [42,43], and the pharmacological targeting of cystine uptake
can effectively cause cancer cell death, such as ferroptosis [5,42,43]. Interestingly, previous
studies have found that non-small cell lung cancer (NSCLC) cells are sensitive to cystine
starvation [44]. GCLC generates γ-glutamyl-peptides by substituting small, non-charged
amino acids for cysteine in the ligation with glutamate when cysteine was deficient. GCLC
was also shown to produce γ-glutamyl-peptide in mouse tissues. This promiscuous activ-
ity reduced glutamate buildup to defend against ferroptosis [23]. Moreover, in previous
studies, GCLC has been reported to be highly expressed in various types of cancer, such
as breast cancer [45], hepatocellular carcinoma [46], and colon cancer [47]. High GCLC
expression in breast cancer enhances GSH biosynthesis with a concurrent reduction in
intracellular ROS accumulation, thereby provoking reductive stress [48]. Likewise, the
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results of another study also showed that tumor GCLC is a potential prognostic biomarker
for HCC patients after receiving curative resection [46]. However, the biological role of
GCLC in LUAD has not been clarified.

It is important to mention that we discovered that the type 2 T helper cell was strongly
associated with LUAD patients’ survival. The content of the type 2 T helper cell was
inversely correlated with patients’ quality of life for LUAD. Additionally, there was a
strong correlation between the expression of GCLC and the quantity of type 2 T helper
cell in the LUAD tumor tissue. In previous studies, allergen-specific T helper 2 (Th2) cells
play central roles in developing allergic asthma [49], but in tumor research, the study of
lung cancer immunity has focused almost exclusively on Th1/Th2 cell balance. In the late
stage of NSCLC precursor lesion, the content of TH1 cytokines decreases and the content
of TH2 and Treg cytokines increases, and these changes are related to tumor immune
escape [50]. Therefore, we infer that in the development of LUAD, the upregulation of
GCLC expression may lead to the increase in type 2 T helper cell content, thereby promoting
tumor immune escape.

In the present study, we found that the high expression of GCLC, a ferroptosis-related
gene, was related to a poor prognosis in LUAD. In addition, the results of our experiments
show that silencing GCLC inhibited the release of glutathione, increased ferrous ions,
malondialdehyde, and lipid peroxidation levels of LUAD cells, promoting the development
of ferroptosis and inhibiting the proliferation and invasion of LUAD cells. However, the
more complex relationships and regulatory mechanisms among GCLC, ferroptosis, and
LUAD still has to be clarified.

Inevitably, there are several limitations in our study. First, because there have been few
studies on the role of ferroptosis in malignancies, the information provided by the FerrDb
website regarding FRGs may be unreliable, and certain critical ferroptosis-mediating genes
may be absent from the ferroptosis gene sets. Second, we built a survival model based on
FRGs for making prognostic predictions of LUAD patients using retrospective data from
the TCGA database. The model was validated using data from the GEO database that
was collected retrospectively. As a result, more prospective data are required to confirm
the therapeutic utility of our FRG-based survival model. Furthermore, in the subsequent
experiments, we will construct shRNA to stably knock down GCLC and then observe its
effect on the tumor for the reason that the si-RNA we used in this experiment can only
briefly knock down GCLC. In addition, we will construct xenograft models with nude mice
and collect clinical samples for further validation and intensive study.

In conclusion, our study developed a novel prognostic model based on six FRGs,
which was found to be independently associated with OS, indicating that it can apply to
predict LUAD patients’ OS. In addition, we discovered a key gene, GCLC, which is related
to LUAD patients’ prognosis and ferroptosis. Our study may provide insight into the
identification of therapeutic targets for LUAD.
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