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Abstract: Increasing interest is being addressed to the development of a reliable, reproducible and 

relevant in vitro model of intestinal barrier, mainly for engineered nanomaterials hazard and risk 

assessment, in order to meet regulatory and scientific demands. Starting from the consolidated 

Caco-2 cell model, widely used for determining translocation of drugs and chemicals, the establish-

ment of an advanced intestinal barrier model with different level of complexity is important for 

overcoming Caco-2 monoculture limitations. For this purpose, a tri-culture model, consisting of two 

human intestinal epithelial cells (Caco-2 and HT29-MTX) and a human lymphocyte B cell (Raji B), 

was developed by several research groups to mimic the in vivo intestinal epithelium, furnishing 

appropriate tools for nanotoxicological studies. However, tri-culture model shows high levels of 

variability in ENM uptake/translocation studies. With the aim of implementing the standardization 

and optimization of this tri-culture for ENM translocation studies, the present paper intends to 

identify and discuss such relevant parameters involved in model establishment as: tri-culture con-

dition set-up, barrier integrity evaluation, mucus characterization, M-cell induction. SiO2 fluores-

cent nanoparticles were used to compare the different models. Although a low level of SiO2 trans-

location is reported for all the different culture conditions. a relevant role of mucus and M-cells in 

NPs uptake/translocation has been highlighted.  

Keywords: intestinal absorption; in vitro intestinal triculture model; mucus layer; microfold cells 

intestinal barrier permeability; model standardization; nanoparticles 

 

1. Introduction 

Engineered nanomaterials (ENMs of at least one dimension ≤ 100nm) are increas-

ingly present in drugs and consumer products due to the innovative commercial and tech-

nical opportunities that they can offer. Conversely, concerns about ENMs’ impact on hu-

man health and the environment have been raised by scientists and regulators, who have 

stressed the need to properly assess and manage any potential risk linked to the nano-

specific properties.  

It is commonly considered that traditional assays for chemical safety assessment are 

also suitable for ENM risk evaluation, albeit with necessary adaptations [1]. Fadeel and 

co-authors, suggest that simple adaptation could be insufficient and a speedup of EMN 

testing is needed preferentially using advanced in vitro tools [2]. The development of ad-

vanced in vitro models is a fast-moving area in which human relevant systems, more rep-
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resentative of the in vivo situation, are considered for hazard and risk assessment, fol-

lowed by exposure to chemical substances including ENMs [3]. In the meanwhile, an in 

vitro approach fulfils European and International commitment towards the reduction of 

animal use in scientific research in line with the 3R principle, coupled with the shift from 

a phenomenological to a mechanistic approach [4,5]. From a regulatory perspective, it is 

important to verify if these models are robust enough to fulfil the regulatory requirements 

of inter-laboratory reproducibility and protocol transferability and, mainly, predictability 

of in vivo and/or human exposure data for specific endpoints. 

Among the different routes of exposure to ENMs, oral ingestion is one of the most 

relevant and it is considered crucial for the investigation of the biological effects of ENMs. 

Ingestion of food containing ENM is the primary source of exposure since they are widely 

used as food additives to enhance food organoleptic properties or improve quality and 

safety [6–8]. ENMs are also used in food packaging to improve product stability and bio-

degradability of packages. The gastrointestinal tract (GIT) is considered the primary target 

organ for EMNs once ingested. Moreover, a small fraction of inhaled nanoparticles (NPs) 

can move to the GIT by systemic circulation through both muco-ciliary clearance mecha-

nisms and alveolar barrier crossing, causing indirect toxic effects at the intestinal level [9].  

After ingestion along the GIT, ENMs are exposed to the different physiological con-

ditions existing in mouth, oesophagus, stomach and intestine [10,11]. Exposure to these 

conditions changes the ENM properties (size, aggregation/agglomeration, or alteration of 

the dispersion stability) which in turn can influence NPs’ behaviour at the intestinal bar-

rier level as well as their potential toxicity. Recently, European and international regula-

tory agencies, such as EFSA or ISO, have emphasized the importance of hazard identifi-

cation to investigate ENMs’ dissolution profile in the digestive tract and their (eventual) 

translocation through the intestinal barrier [12,13]. In this respect, some artificial digestion 

models were developed using artificial matrixes simulating the different human digestion 

fluids. These have been successfully applied to different types of ENMs either with dy-

namic or static conditions of incubation [14–17]. 

In vitro models of the intestinal barrier are long-established and transversally applied 

in many research fields. In particular, Caco-2 cells grown on inserts are a well-established 

model of human enterocytes, widely used for determining active and passive absorption 

of drugs and chemicals [18]. However, the culture has some limitations especially because 

it does not properly mirror the structural complexity of the in vivo gut environment. Caco-

2 cells are of colonic origin and display junctions tighter than those present in the small 

intestine, thus causing less permeability through the paracellular route, but they also exert 

an overexpression of P-Glycoprotein which limits absorption to compounds transported 

by the carrier [19,20]. The use of co-cultures with different levels of complexity, which 

combine different types of intestinal cell lines, has greatly expanded the application capa-

bilities of the model [21,22]. For instance, the simultaneous presence of mucus-secretory 

cells (HT29-MTX), due to the relevance of mucus defensive properties and impacts on 

nanoparticle mobility, and hematopoietic cells (Raji-B cells), able to promote Caco-2 con-

version in specialized microfold cells (M-cells) involved in particulate uptake, can en-

hance the physiological relevance of the model [23,24].  

M-cells are located in the follicle-associated epithelium of Peyer’s patches and highly 

specialized in the phagocytosis and transcytosis of gut lumen macromolecules, particulate 

antigens and pathogenic or commensal microorganisms across the epithelium. [25]. Func-

tionally, they transport particulate matter from the gut lumen across the epithelial barrier 

to allow sampling by antigen-presenting cells of the immune system, which traffic 

through the extracellular lymph fluid on the basolateral side [26]. Overall, M-cells repre-

sent approximately 1% of the cells lining the intestine and their phenotype has largely 

remained uncharacterized, due to difficulties in identifying and isolating sufficient quan-

tities of this sparsely occurring cell population [27]. 



Cells 2022, 11, 3357 3 of 23 
 

 

M-cell morphology is characterized by the lack of apical microvilli in the intestine 

and absence of cilia in the upper airway, a feature that could be helpful for luminal mi-

croparticles in binding apical capture receptor, but this is not the sole responsible factor. 

In fact, epithelial microvilli house a multitude of glycoproteins and associated carbohy-

drates on the apical membrane. Little is known about the proteins expressed on the apical 

surface of M-cells, which show a different degree of glycosylation than enterocytes [28]. 

The reduction of the carbohydrate component can reduce the electrostatic repulsion, al-

lowing microparticles to get closer to the M-cell apical membrane [29]. On their basolateral 

surface, M-cells possess a membrane invagination, which acts as a “pocket”, forming a 

specialized microenvironment containing B- and T-lymphocytes, macrophages and den-

dritic cells. This component provides a docking site for lymphocytes and other antigen-

presenting cells, reducing the distance between the apical and basolateral surfaces from 

which trans-cytotic vesicle transport begins, also playing a role in intracellular communi-

cation [30].  

Presence of B cells seems to be an essential requirement for development of peculiar 

M-cell functions, in particular the establishment of a polarized cellular machinery able to 

capture a large cargo at the apical membrane and transport it to the basolateral end for 

delivery to dendritic cells. For this purpose, they reorganized tight junction (TJ) structures 

to allow large endocytosis. This activity is specifically directed at particulate matters in 

the range of micro/nano dimension (for example, bacteria and viruses) [31]. 

The possibility of obtaining “M-like' cells through in vitro enterocytic conversion af-

ter lymphocyte stimulation provides a great opportunity to recreate a more physiological 

model of intestinal mucosa, since the in vivo M-cell population is scarcely characterized, 

due to their limited presence [25]. However, identification of specific markers for charac-

terization and identification of these cells is still challenging. In fact, in the in vitro model 

represented by the Caco-2 /Raji B co-culture, most of the genes selectively expressed by 

natural intestinal M-cells are not induced [30] Recently, in murine enterocyte cultures the 

cytokine receptor activator of NFK-ligand (RANKL) and the transcription factor Spi-B 

have been shown to be required for the differentiation of M-cells from epithelia stem cells 

[32]  

Globet cells are considered the second most prevalent phenotype, after enterocytes, 

in the intestinal mucosa. They are responsible for the production of mucus, which covers 

the epithelium and regulates the exchange of water, gases or nutrients, as well as having 

a protective function for the gastrointestinal tract by preventing (nano)particles or patho-

gen penetration [33].  

Mucins are the main structural components of mucus. They are high molecular 

weight glycoproteins linked to each other by disulfide bonds forming a network able to 

sieve varied sizes of (nano)materials that come in contact with the mucus layer. Mucins 

are categorized into distinct families (Muc 1, Muc 2, Muc 3, etc.) and roughly classified 

into acid or neutral mucins, based on their carbohydrate chemical composition. The neu-

tral mucins can be found primarily in the surface epithelia of the stomach and Brunner’s 

glands of the duodenum. The acid mucins are found widely distributed throughout the 

gastrointestinal tract. [34]. Important levels of MUC5C mRNA are found in the HT29-MTX 

cell line, with the level increasing dramatically between 7 and 14 days of culture. Con-

versely, a similar increase in expression was not detected in the Caco-2 cell line where the 

expression remains low [35].  

Some ENM properties can drive the interaction with mucus, such as size, chemical 

composition, surface charge and ligand density; ENMs with size below 50 nm easily pen-

etrate the mucus layer and several biological effects on the intestinal mucus have been 

reported for a panel of different ENMs [36] 

Consequently, the absence of mucosal component in the in vitro model does not al-

low an accurate and reliable assessment of ENMs’ absorption profile [34,37]  

In order to construct an in vitro model that better respects the composition and char-

acteristics of the intestinal mucosa in vivo, a co-culture model was established consisting 
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of Caco-2 and HT29-MTX cells, such as mucus-secreting cells [38]. Mature HT29-MTX 

cells are obtained by methotrexate treatment of the HT29 adenocarcinoma cell line [39]. 

According to previous works, the 9:1 ratio (Caco-2: HT29 MTX) was selected [20,40]. The 

presence of Raji B cells, derived from a human lymphoma, induce the transformation of 

Caco-2 cells in M-cells [40], so a tri-culture model has been proposed by several research 

groups to better mirror the in vivo intestinal epithelium and furnish suitable tools for 

nanotoxicological studies [21,22,27,41]. 

The co-culture models developed so far show high results variability in ENM up-

take/translocation studies. This variability is related to the different conditions of prepa-

ration and culture maintenance used in different laboratories. It is therefore extremely 

advisable to promote standardization and optimization of a Caco-2 absorption model for 

ENM translocation studies [42,43]. 

The [resent paper intends to identify and critically discuss the relevant parameters 

involved in the establishment of the intestinal barrier tri-culture model with the aim of 

promoting the protocol robustness for improvement of its inter-laboratory transferability. 

Particularly, protocol improvements have been focused on (i) identification of the best 

procedure for tri-culture model set-up and M-cell phenotype induction(ii) definition of 

some benchmarks (barrier integrity, mucus production, M-cell identification) to evaluate 

model performances. Moreover, some important aspects and limits of the proposed model 

are also evaluated, as for instance the influence of the pore dimension of the trans-well 

membrane in ENM translocation. In this respect, the trans-well system on its own may 

represent a limiting factor for ENM passage, depending on several characteristics such as 

pore size and density and, to a lesser degree, by their direct interaction with the tested 

materials [44]). In general, 3 µm pore size inserts are the more commonly used filters for 

ENM translocation studies, since this pore dimension ensures the passage of particles 

even in aggregate form [22,45], although Garcia Rodrigues and colleagues reported cell 

migration phenomena from the apical (Ap) to basolateral (Bl) chamber resulting in the 

formation of a double cell layer [41]. For this reason, it is noteworthy to make a careful 

evaluation of the interactions between NPs and empty inserts before proceeding with cel-

lular barrier experiments [46,47]  

Finally, SiO2 fluorescent NPs have been used to test the system, comparing their 

translocation through the Caco-2 monolayer and in the tri-culture model. These NPs were 

selected due to their large application in different market products including food, as food 

additive, and nanomedicine, as drug carriers. Moreover, they have been extensively char-

acterized on the Caco-2 model in our previous studies in the frame of H2020 EU project 

NANoREG. 

2. Materials and Methods 

2.1. Cell Culture 

Caco-2 cells (HT-B 37 clone) (human colorectal adenocarcinoma) and Raji B cells (hu-

man B lymphocyte) were obtained from the European Collection of Cell Culture (ECACC, 

UK); HT29-MTX E12 cells (human colorectal adenocarcinoma) were obtained from the 

American Type Culture Collection (ATCC,Manassas, VA, USA).  

Caco-2 (passage 5–12) and HT29-MTX (passage 38–45) cells were cultured in DMEM 

high glucose (Dulbecco’s modified Eagle medium) supplemented with 10% heat-inacti-

vated Foetal Bovine Serum (FBS), 1% non-essential amino acids, 1% L-glutamine and 1% 

penicillin and streptomycin (PEST). Caco-2 and HT29 MTX-E12 were sub-cultured at 90% 

confluence once a week by dissociating with trypsin (Tryple L-select,) and seeded at a 

density 30 × 103/cm2 (split 1:6) and 25 × 103/cm2 (split 1:10) respectively. 

Raji B cells (passage 7–14) were cultured in suspension in RPMI high glucose supple-

mented with 10% heat-inactivated FBS, and 1% Penicillin/Streptomycin. Raji B cells were 

maintained at a cell density of 1 million cells/cm3 and sub-cultured only two times before 
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performing the experiments. The cell lines were grown under standard incubation condi-

tion (37 °C–5% CO2). All the reagents used for the cultures were purchased from Gibco 

(Gibco- Thermo Fischer Scientific, Waltham, MA, USA). 
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2.2. Bi-coltures and Tri-culture Model Assembly on Inserts 

A monoculture of Caco-2 cells, a bi-culture of Caco-2/HT29-MTX cells and a bi-cul-

ture of Caco-2/Raji B cells were run in parallel to compare the performance of the Caco-

2/HT29 MTX/ Raj B triculture model. 

a. Caco-2 monoculture on inserts was obtained by seeding 2.25 × 103 cells on the Ap 

compartment of Polyethylene Terephthalate Transwells®  insert (PET) with a pore 

size of 1 and 3 μm (Millipore®) (Merck KGaA, Darmstadt, Germany), allocated in 12-

well culture plates (Falcon) with 0.5 mL of complete culture medium in the Ap com-

partment, while Bl compartment was filled with 1.5 mL. DMEM complete culture 

medium was changed every two days.  

b. Caco-2 /HT29-MTX bi-cultures were obtained by mixing and seeding the two cell 

lines at 9:1 ratio at a density of 2.25 × 105 cells/cm2, in the Ap compartment. Inserts 

were then maintained as reported for Caco-2 monoculture. 

c. Caco-/Raji and Caco-HT29 MTX/Raji B co-cultures were obtained by adding at the 

14th day of co-culture, 5 × 105 Raji B cells in the Bl side of each insert in DMEM: RPMI 

(1:1) culture medium to allow M phenotype induction in Caco-2 cells. Raji B cells 

were completely removed and reseeded on day 16th and 19th of co-culture. 

Moreover, in the present study the following three different conditions have been 

used to induce M-cell conversion, according to literature evidence: 

1. Raji B cells seeded in the Bl compartment. Raji B cells were seeded in the Bl compart-

ment and refreshed at 14th, 16th, and 19th days of culture to prevent their overgrowth 

which might cause degeneration of the lymphocyte's population and, consequently, 

presence of necrotic factors in the model. 

2. Simplified inverted culture method. In this case Caco-2 and Caco-2 /HT29-MTX cells 

were seeded on the Bl side of the insert and left for 48 h to allow cells’ adherence to 

the insert membrane before turning them upside down. Inverted cells were cultured 

for 14 days and then stimulated with Raji B cells placed in the Ap compartment. The 

inverted model required an elevated level of expertise coupled with a high risk of 

contamination during the turning phase of the inserts. For this reason, it was consid-

ered not suitable for the next steps in procedure standardization and will not be fur-

ther discussed. 

3. Raji B conditioned medium. To investigate if the direct contact between intestinal 

epithelial cells and lymphocytes is required to induce M-phenotype in Caco-2 cells, 

conditioned medium from Raji B cells was also used at each cycle of induction (14, 

16 and 19 days of co-culture). Lymphocytes conditioned medium from Raj B cells 

was obtained as follows: the day before each induction, 330 × 103 Raji B cells/mL Raji 

B cells were cultured in DMEM/RPMI (1:1) for 24 h, then the cellular suspension was 

centrifuged and 1.5 mL of the supernatant was added to the Bl compartment of the 

insert. This experiment has been investigated only with 3 µm pore size inserts to 

maximize the effect of diffusion factor(s). 

Finally, to determine how long the M-phenotype was maintained in our experi-

mental conditions after the last cycle of induction (19th day of culture), co-cultures were 

checked for the next 5 days for barrier integrity. We observed that the model was stable 

until the 22nd day of culture (data not shown). 

2.3. Barrier Integrity  

Trans-epithelial Electrical Resistance (TEER) was evaluated by a chop-stick electrode 

device (Millicell ERSVoltameter-Millipore-Sigma, San Luis, Mo, USA). On day 20 of co-

cultures, inserts were moved to a new 12-well culture plate, in fresh DMEM in both com-

partments. TEER measurements were performed at 37 °C. A cells free-insert (blank) was 

included. Three separate measures were performed for each insert. Results were ex-

pressed as ohms × cm2 according to the following formula (1): 
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TEER = [Ω cell monolayer - Ω filter (cell-free)] x filter area (1.12 cm2) (1) 

2.4. Paracellular Permeability  

Paracellular permeability was assessed by fluorescein isothiocyanate dextran (FITC-

dextran) 40 kDa (Sigma-Aldrich) and by Lucifer Yellow CH di-lithium salt (LY) 457 D 

(Sigma-Aldrich) translocation. Briefly, after the 20th day of co-culture, the medium was 

removed from the inserts and Ap and Bl chambers were washed twice with Hanks Bal-

anced salt solution Buffer (HBSS). Then 1mg/mL of FITC-dextran or 0.4 mg/mL of LY in 

0.5 mL of HBSS were added in the Ap compartment while the Bl side was filled with 1 mL 

of HBSS. After 2 h incubation at 37 °C, 100 µL of the Bl volume from each insert were 

collected and transferred into a black microtiter 96 well-plate (Perkin Elmer). Samples 

were analyzed by spectro-fluorimetry (Nivo, Perkin Elmer) at λ 495 em- λ 521 exc) nm for 

FITC dextran and λ 485–528 for LY. Results were expressed as Papp according to the fol-

lowing formula (2): 

Papp = ((DQ/Dt) x V) x (1/AC0) (2) 

where DQ/Dt is the amount of LY and FITC dextran transported in the Bl compartment 

per time unit (t), V is the Bl volume (cm³), A is the surface area of the filter (1.12 cm2) and 

C0 is the initial concentration in the Ap compartment. 

2.5. Localization of Tight Junction ZO-1 Protein 

Tight junction protein ZO-1 expression was assessed by laser scanning confocal mi-

croscopy performed on a Zeiss LSM 980 with Airyscan2, using the 40 × and 63 × oil objec-

tives and excitation spectral laser lines at 405, 488, 546, 594 and 633 nm. Briefly, at the end 

of the differentiation process, trans-well membranes were washed twice with PBS and 

fixed for 10 min at cold temperature ( + 4 °C) with methanol. Following further washing, 

the samples were blocked with 2% w/v bovine serum albumin in PBS for 60 min at 37 °C, 

to prevent non-specific binding by antibodies. Mouse monoclonal anti-ZO-1 antibody 

(1:50, BD Biosciences Billerica, Ma, USA)) was then incubated for 1 h at 37 °C, followed by 

the appropriate Alexa fluor-conjugated secondary antibody (Thermo Fisher Scientific, 

Waltham, Ma, USA)). After further washing, the samples were counterstained with DAPI 

(Thermo Fisher Scientific, Waltham, Ma, USA) for 10 min and then washed three times 

with PBS. Finally, the membranes were removed with a scalpel and placed on glass slides, 

before mounting coverslips with Vectashield (Vector Laboratories, Burlingame, CA, USA) 

mounting medium. Two independent experiments were performed for each condition.  

2.6. Mucus Characterization 

2.6.1. Mucus Staining 

For acid mucins identification, on the 21st day of culture, culture medium was re-

moved and 0.5 mL of Alcian blue staining (pH 2.5) dissolved in acetic acid (Sigma-Al-

drich) was added to the mono-layer cultured in 6 well plates and then incubated for 30 

min at RT. The excess of dye was removed by washing the wells three times with distilled 

water.  

Neutral mucins production was determined by Periodic Acid Schiff (PAS) staining. 

On the 21st day of culture, cells were fixed for 1 min with 0.5 mL/well of a formalin/ethanol 

fixative solution (1:10) and rinsed with water. Periodic acid (0.5 mL/well) was then added 

and kept for 5 min at RT. Dye in excess was removed and 0.5 mL of Schiff reagent were 

incubated for 15 min at RT. After washing with distilled water, the monolayers were ob-

served under the optical microscope (Nikon TE 2000U, Amstelveen, The Netherlands), 

equipped with a digital camera DXM1200F (Nikon, Amstelveen, The Netherlands). 
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2.6.2. Muc-5AC and Muc-2 expression and release 

Mucin-5AC and mucin-2 expressions was analyzed by immunostaining with a con-

focal microscopy (Zeiss LSM 980, Oberrkochen, Germany). Cells were fixed with para-

formaldehyde 3% for 30 min, rinsed with PBS, permeabilized with 0.1% Triton X-100 for 

10 min, and blocked with 3% BSA for 60 min at RT. The cells were labeled with mouse 

monoclonal anti-Mucin 5AC antibody (1:100, Thermo-Fisher, Waltham, Ma, USA) or 

mouse monoclonal anti-Muc-2 antibody (1:100, Thermo Fisher Waltham, Ma, USA ), in-

cubated for 60 min at RT and labeled with Alexa Fluor 488 conjugate secondary antibod-

ies. Nuclei were stained with DAPI.  

Mucin 5AC and Mucin 2 release in the medium were also quantified by Elisa (FnTest, 

Fine Biotech Co., Ltd Wuhan, Hubei, China) according to the manufacturer’s instructions. 

2.7. Electron Microscopy 

Transmission Electron Microscopy (TEM) analysis was performed according to Ber-

nardo et al (2021) [48] with slight modifications. Mono-cultures, bi-cultures and tri-cul-

tures (established as described in paragraph 2.2) grown on inserts were fixed in 2.5% glu-

taraldehyde, 2% paraformaldehyde, 2 mM CaCl2 in 0.1 M sodium cacodylate buffer, pH 

7.2, overnight at 4 °C. After washing, samples were post-fixed with 1% OsO4 in 0.1 M 

cacodylate buffer for 1h at RT and treated with 1% tannic acid in the same buffer for 30 

min. Post-fixed specimens were washed, dehydrated through a graded series of ethanol 

solutions (30–100% ethanol) and embedded in Agar 100 (Agar Scientific Ltd, Stansted 

Mountfitchet, UK). Insert membranes were detached from their supports by a razor and 

polymerized in a beam flat embedding mold for TEM.  

Ultrathin sections, obtained by an UC6 ultramicrotome (Leica), were stained with 

uranyl acetate and Reynolds’ lead citrate and examined at 100 kV by EM 208S TEM (FEI - 

Thermo Fisher Scientific, Eindhoven - The Netherlands), equipped with the Megaview II 

SIS camera (Olympus,Co, Shinjuku, Tokio, Japan). 

For Scanning Electron Microscopy (SEM) analysis, cell cultures grown on inserts 

were fixed with 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer overnight at 4 °C. 

Samples were post-fixed with 1% OsO4 in 0.1 M sodium cacodylate buffer for 1h at RT 

and dehydrated through a graded series of ethanol solutions (from 30% to 100%). Ethanol 

was gradually substituted by a 1:1 solution of hexa-methyl-disilazane (HMDS): absolute 

ethanol for 30 min, and successively by pure HMDS for 1h (RT). Then, samples were com-

pletely dried removing the HMDS and left under the hood for 30 min. Dried samples were 

detached from the supports by a razor and mounted on SEM stubs, coated with gold (10 

nm) and analyzed by a field emission GeminiSEM450 (ZEISS, Oberkochen, Germany ) 

[49]. 

2.8. SiO2 NPs Dispersion Preparation and Characterization   

Ultra-stable red fluorescent SiO2 nanobeads (50 nm, Z-potential – 45 ± 6 mV)) (HiQ-

Nano s.r.l. Arnesano, Lecce, Italy) were provided as stock solution in water at a concen-

tration of 1mg/mL. As recommended by the provider, SiO2 NPs were sonicated for 5 min 

and vortexed for 1 min and resuspended in DMEM complete culture medium (w/o Phenol 

Red) with 1% heat-inactivated FBS at the final concentration of 100 µg/mL. The suspension 

was characterized by Dynamic Light Scattering (DLS) Zetasizer NanoS (Malvern Panalyt-

ical LtD, UK) determining Z average and PDI values. Measurements of NP suspension in 

H2O and in complete culture medium were performed at time 0 and after 24 h at 25 C°. 

For each sample, 10 repeated measurements were collected. 

2.9. SiO2 NPs Translocation and Uptake  

On day 21 of culture, the medium was removed and Ap and Bl chambers were 

washed twice with PBS. Fluorescent SiO2NPs (100 µg/mL) in 0.5 mL complete DMEM w/o 

phenol red containing 1% FBS were added to the Ap compartment, while 1 mL of fresh 

http://www.thermofisher.com/order/genome-database/details/antibody/MA512345


Cells 2022, 11, 3357 9 of 23 
 

 

medium was added in the Bl compartment; inserts were incubated at 37 °C for 24 h. NP 

translocation was determined by spectrofluorometer (Nivo, Perkin Elmer) at λ 565 nm 

excitation and λ 590 nm emission by analyzing 100 μL of Bl medium, in triplicate for each 

insert. NPs uptake was analyzed by confocal microscopy on a Zeiss LSM 980. Cell mono-

layers were washed twice with PBS and fixed for 30 min with paraformaldehyde 3%. The 

samples were then rinsed with PBS, nuclei were counterstained with DAPI (Thermo 

Fisher Scientific) for 10 min. Membranes were then removed with a scalpel and placed on 

glass slides, before mounting coverslips with Vectashield (Vector Laboratories) mounting 

medium. 

2.10. Statistical Analysis  

Statistical analyses were performed with the SPSS software package (SPSS for Win-

dows 14.0, SPSS, Chicago, IL, USA). One-way analysis of variance (ANOVA) was used to 

evaluate group comparison. If the group by each time interaction was significantly differ-

ent (p < 0.05), differences between groups were compared with a post hoc test (Tukey’s). 

Data represents the average of three independent experiments. 

3. Results 

3.1. M Cell Phenotype Induction 

3.1.1. Raji B Exposure Conditions 

M-cells are characterized by irregular brush border and a reduced glycocalyx; their 

origin as well as the regulation of their development is not yet fully defined. 

Although many different protocols have been developed to obtain Caco-2 conversion 

into M cells, Caco-2/Raji B co-culture is the most controversial and critical aspect of the 

proposed model. A plethora of different conditions were used to promote this conversion 

ranging from (i) direct contact between the two cell lines by adding in normal orientation 

Raji B cells to the basolateral compartment [21,27,38,41]; (ii) inverted models in which ep-

ithelial monolayers are grown in normal orientation for few days and then turned upside 

down; the Raji B cells are then added apically to an inverted insert sealed with silicone 

wrap in a petri dish [25,40]; (iii) use of conditioned medium [50]. None of these protocols 

are completely satisfactory so far. In the present study we attempted to optimize all these 

approaches, by identifying strengths and weakness of each of them, aiming to identify 

best and simplest experimental conditions.  

Moreover, although different attempts have been made to identify specific markers char-

acterizing M-cells [21,22,41], to date no unequivocal indicator has been clearly identified. 

Frequently, this gap has been overcome by indirect evidence as, for instance, variation of 

barrier integrity or cytoskeleton and tight junction proteins perturbation. Furthermore, to 

determine how long the M-phenotype was maintained in our experimental condition after 

the last cycle of induction (19th day of culture), co-cultures were checked for barrier integ-

rity until the next 5 days after the end of the induction cycle. We observed that the model 

was stable until the 22nd day of culture (data not shown). 

3.1.2. M-cell Marker: Zonula Occludens (ZO-1) Expression  

To investigate M-phenotype induction, the labelling of ZO-1, a marker of TJ integrity, 

was performed in the different (co)-culture conditions. As reported in Figure 1, an evident 

perturbation of this protein network is observed in all the co-culture conditions providing 

indirect evidence of the presence of M-cells. For Caco-2/HT29-MTX co-culture , the mask-

ing of the fluorescent signal can be attributed to the presence of the mucus layer. 
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Figure 1. Analysis of ZO-1 expression (green) by confocal laser scanning microscopy (CLSM) in 

different (co)-culture conditions after 21 days of culture. Caco-2 mono-culture; Caco-2/HT29-MTX 

co-culture; Caco-2/Raji B co-culture; Caco-2/HT29-MTX co-culture; Caco-2/HT29-MTX/Raji B tri-cul-

ture. Nuclei were counterstained with DAPI (blue). Bars, 20 µm. 

3.1.3. M Cell MARKER: Wheat Germ Agglutinin (WGA) 

As reported in Figure 2, WGA staining fails to represent a specific marker for M-cells, 

since it is observed in all culture conditions. It is noteworthy that, in the tri-culture Caco-

2/HT29-MTX/ Raji B and in the bi-culture Caco-2 /Raji B conditions the signal is less in-

tense, confirming that M-cells display a reduced glycocalyx, according to the evidence 

that WGA has a high binding affinity to sialic acid and N-acetylglucosamine sugar resi-

dues [51]. 

Figure 2. CLSM analysis of WGA expression (red) in the different (co)culture conditions at 21st day 

of culture. Caco-2 mono-culture; Caco-2/Raji B co-culture; Caco-2/HT29-MTX co-culture; Caco-

2/HT29-MTX/Raji B tri-culture. Nuclei were counterstained with DAPI (blue). Bars, 20 μm. 

3.1.4. Ultrastructural Characterization 

Ultrastructural analysis of the differentiated tri-cultures by scanning electron micros-

copy (SEM) confirmed the growth of a polarized epithelial leaflet characterized by a rich 
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brush border, typical of the intestinal barriers, and the formation of an apical region ver-

sus a basolateral one. As previously reported, no specific markers for human M-cells have 

been clearly identified; however, tri-cultures electron microscopy analysis undoubtedly 

confirmed the ability of Raji B cells, or their conditioned medium, to induce numerous 

regions of totally loss of surface microvilli (considered a distinctive sign of an M-cell phe-

notype) (Figure 3).  

 

Figure 3. SEM micrographs of the different combinations of cell cultures grown on inserts, at 21st 

day of culture. (a): Caco-2 monoculture showing a homogeneous leaflet of polarized epithelial cells 

with a great abundance of surface microvilli. (b): Caco-2/Raji B co-culture displaying some rounded 

areas of microvilli loss. (c): high magnification of the squared area in b showing the boundary (white 

arrow) between presence (Mv) and absence (*) of the surface microvilli. (d): Caco-2/HT29-MTX dif-

ferentiated co-culture rich in surface microvilli. (e,f): Caco-2/HT29-MTX/Raji B tri-culture showing 

a lot of inducted smooth rounded areas of possible M-cell phenotype (*). (g): Caco-2/HT29-MTX co-

culture displaying a consistent mucus layer (Mu) on the microvilli. (h,i): high magnifications of a 

feasible M-cell phenotype (*) in Caco-2/HT29-MTX/Raji B tri-culture (white arrow: boundary of the 

microvilli loss. 

In particular, the mono- and co-cultures of Caco-2 and Caco-2/MTX cells, respec-

tively, were both well-differentiated polarized cell leaflets, rich in surface microvilli and 

the latter one showing extended zones of mucus (Figure 3 a,d,g). The addition of Raji B 

cells to the basolateral side of both the models clearly showed the induction of an M-cell 

phenotype in several, and not consecutive, round surface areas, suggesting that there was 

transformation of a subpopulation of epithelial cells (Figure 3 b,c,e,f,h,i).  

Results from the addition of Raji B conditioned medium to the basolateral side of the 

co-cultures showed the same M-cell phenotype induction in the epithelial leaflet surface, 

although in a lesser extent (Figure 4), suggesting that soluble mediators are involved in 

the M-cell conversion, although their action on the morphological changes is less effective. 
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Figure 4. Caco-2 (a,b) or Caco-2/HT29-MTX cultures (c,d) grown in Raji B conditioned medium, at 

21st day of culture. SEM micrographs show the ability of the only conditioned medium to induce 

the loss of surface microvilli both in Caco-2 (b) or Caco-2/HT29-MTX cultures (d). Bars a and c 20 

μm; b and d 1 μm. 

Transmission electron microscopy analysis of transversal ultrathin sections of the co-

cultures onto inserts highlighted a strong polarization of the differentiated intestinal cells 

revealing the set-up of well-organized TJ and microvilli (Figure 5). The M-cell phenotype 

in the Raji B induced leaflets was rarely observed, as the method was not adequate to the 

frequency of the event, but when cells without microvilli were found, they were charac-

terized by a reduced and more electrodense cytoplasm (Figure 5c,d). These cells appeared 

morphologically different but it was not possible to find other specific ultrastructural fea-

tures. No differences were observed in the monolayers grown on 1 or 3 µm pore size in-

serts (reported in Supplementary Figure S1)  

 

Figure 5. TEM micrographs of: (a) Caco-2 monoculture, (b) Caco-2/HT-29 MTX co-culture, (c) Caco-

2/Raji B co-culture, and (d) Caco-2/HT-29 MTX/Raji tri-culture at the 21st day of culture. Differenti-

ated epithelial cells show the typical brush border and TJ of the intestinal barrier (a,b) while, in the 

tri-culture with Raji B cells, cells are characterized by the loss of microvilli (mV) displayed always a 

more electrodense cytoplasm and the absence of the typical electron transparent accumulation of 

amorphous material of Caco-2 cells. Bars a and c 5 μm; b and d 2 μm. 
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3.2. Barrier Integrity  

3.2.1. Transepithelial Electrical Resistance (TEER) 

Integrity of the mono and (co)-culture models was evaluated by TEER measurements at 

the 20th and the 21st days of culture. Before TEER determination, inserts were relocated in 

a new multi-well plates, to reduce any confounding factors due to presence of Raji B cells 

or cellular debris in Bl compartment. TEER values for Caco-2 monoculture and Caco-2 

/HT29MTX (9:1 ratio) grown on n 1 µm and 3 µm pore size inserts were monitored up to 

21 days to check the differentiation process (Supplementary Figure S2)  
As shown in Figure 6a, on 1 µm pore size inserts a drastic TEER reduction was observed 

in the Caco-Raji B co-culture in respect to the Caco-2 monoculture and Caco-2/HT29-MTX 

co-culture conditions (195 ± 47 against 396 ± 63 and 334 ± 44 ohms × cm2, respectively) at 

the 20th day of culture immediately after the end of lymphocyte stimulation. A slight re-

covery was observed at the 21st day even if not significant. The tri-culture condition dis-

played a milder decreased TEER value (297 ± 53 ohms × cm2) compared to the Caco-2/ Raji 

B system, still significantly lower than Caco-2 monocultures. 

 

Figure 6. TEER evaluation in 1 (a) and 3 (b) µm pore size insert at 20th and 21st days of culture. 

Results are the mean of three separate experiments performed in triplicate. Statistical analysis has 

performed by One-way Anova Test followed by post hoc test (Tukey’s (p < 0.05) to evaluate group 

comparison. #versus Caco-2, * versus Caco-2/RajB; °versus Caco-2/HT29-MTX; Δ versus Caco-

2/HT29-MTX/ Raji B, $ versus Caco-2/Raji B medium; δ versus Caco-2/HT29-MTX/ Raji B medium. 

When the cells are cultured on 3 μm pore size inserts higher difference between the 

Caco-2 monoculture (540 ± 50 ohms × cm2) and the Raji B co- cultures were reported; in 

fact, in the Caco-Raji B condition, a dramatic drop of TEER values was registered (168 ± 

24. ohms × cm2), while in the tri-culture TEER values (285 ± 60 ohms × cm2) came closer to 

in vivo values of human intestinal barrier. 

The effect of Raji B conditioned medium on barrier integrity has also been investi-

gated. As shown in Figure 6b, conditioned medium caused a very slight decrease TEER 

both in the Caco-2 cells (485 ± 42 ohms × cm2) and in Caco-2/HT29-MTX co-culture (470 ± 

30 ohms × cm2) that is more pronounced at the 21st day.  

3.2.2. FITC-Dextran and Lucifer Yellow Passage  

Barrier permeability was assessed by passive passage of paracellular markers FITC-

dextran 40 KD and LY (457 D) at the 21st day of culture on 1- and 3- µm pore size inserts. 

An increase of passage of both markers is reported in presence of Raji B cells (Figure 7a,b) 
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particularly noticeable on 3 µm pore inserts, confirming that they are a more suitable sup-

port for M-phenotype induction.  

 

Figure 7. FITC-dextran (a) and LY translocation (b) in 1 and 3 µm pore size inserts at 21st day of 

culture. Results are the medium of three separate experiments performed in triplicate. Statistical 

analysis was performed by One-way Anova Test followed by post hoc test (Tukey’s (p < 0.05) to 

evaluate group comparison. #versus Caco-2, * versus Caco-2/RajB ; °versus Caco-2/HT29-MTX; Δ 

versus Caco-2/HT29-MTX/ Raji B , $ versus Caco-2/Raji B medium; δ versus Caco-2/HT29-MTX/ Raji 

B medium. 

In particular, FITC dextran passage has a Papp value of 3.79 × 10−5 ± 0.01 cm/sec for 

Caco-2 monolayer on 1 µm pore size insert instead of 5.95 × 10−5 ± 0.2 cm/sec when cells 

are cultivated on 3 µm pore size insert. Caco-2/HT-29 MTX condition with respect to the 

Caco-2 monoculture showed similar Papp values, (2.1 × 10 –5 ± 0.8 cm/sec for 1 mm and 

5.9 × 10−5 ± 0.06 cm/sec for 3 mm). Conversely, an increase passage in the Caco-2/Raji B 

condition was observed (4.65 × 10−5 ± 1.2 cm/sec for 1 µm and 7.6 × 10−5 ± 0.2 cm/sec for 3 

µm). In the triple-culture condition, there was a milder passage in respect to the Caco-

2/Raji B bi-culture, confirming that the presence of mucus is able to ameliorate the model 

by mitigating the barrier permeability. 

The same scenario has been observed for LY passage. Even in this case, the highest 

translocation rate is obtained with the coculture Caco-2/Raji B condition compared to the 

Caco-2 monoculture (1.7 × 10 –6 ± 0. 1 cm/sec versus 0.5 × 10−6 ± 0.03 cm/sec for 1 µm and 

14,4 × 10 –6 ± 0.03 cm/sec versus 3.15 × 10−6 ± 0.2 cm/sec for 3 µm pore size inserts). Again, 

in the triple co-culture the strong impairment of the barrier caused by lymphocytes is mit-

igated (0.7 × 10−6 ± 0.06 cm/sec for 1 µm and 13 × 10−6 ± 0.3 cm/sec for 3 µm pore size inserts). 

As observed for TEER values, Raji B conditioned medium is less effective in both cases for 

FITC dextran and LY in increasing barrier permeability, which is an indirect proof of its 

lesser capacity in inducing the M-phenotype in Caco-2 cells. Moreover, in the present ex-

perimental conditions, LY has been shown to be a more sensitive and reproducible marker 

3.3. Mucus Characterization  

3.3.1. Mucus Staining  

Caco-2 cells /HT29-MTX co-cultured at a 9:1 ratio provide a model where absorptive 

and globet cells are present simultaneously, comprising small clusters of HT29-MTX em-

bedded in Caco-2 absorptive cells [52]. The co-culture consists of polarized monolayers 

that are morphologically and functionally similar to the native epithelium. According to 

literature evidence, a 9:1 ratio (Caco-2:HT29 respectively) was revealed as the optimal co-
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culture ratio for permeability studies application [53,54]. This cell seeding ratio repro-

duces the in vivo balance between epithelial cells and globet cells allowing maintenance 

of good functionality of the in vitro barrier (e.g., TEER values), although it is reported that 

the mucus secreted in these in vitro cultures is thinner compared to the mucus layer found 

on human explants (approximately 5 mm versus 600 mm thick [55] 

To assess mucus production, Caco-2 /HT29-MTX co-cultures were seeded at 9:1 ratio 

on 6-well plates and left to differentiate for 21 days. At the end of this period, both cultures 

were stained with Alcian blue for acidic mucins and Periodic Shiff for neutral ones. As 

shown in Figure 8, both staining methods confirmed the production of mucus byHT29-

MTX cells by forming a layer on top of the epithelial cells. 

 

Figure 8. Alcian blue staining in: (a): Caco-2 monoculture and (b): Caco-2/HT29-MTX co-culture. 

Periodic Acid Schiff staining in: (c): Caco-2 monoculture and (d): Caco-2/HT29-MTX at 21st day of 

culture on 6 multi-well plates. Magnification 200×. 

3.3.2. MuC-2 and MuC5 AC Expression and Release 

HT29-MTX represent a homogeneous subpopulation selected by adapting to 10–5 

meto-therexate and are able to produce different mucins such as MUC-2, MUC-AC and 

MUC5B [35]. As reported in Figure 9, Caco-2, HT29-MTX and co-culture Caco-2/HT29-

MTX at a 9:1 ratio were compared for MUC-2 and MUC-5AC expression by confocal mi-

croscopy. HT29-MTX shows an intense signal for MUC-5 AC compared to Caco-2 mono-

culture. A similar signal is observed for MUC-2, which is rarely expressed by Caco-2 cells 

and more consistently by HT29-MTX cells. 

 

Figure 9. MUC 2 and MUC 5 AC (green) labelling in Caco-2 monoculture, HT29-MTX monoculture 

and Caco-2/HT29-MTX co-culture analyzed by confocal microscopy. The cells were counterstained 

with Hoechst 33258 (blue) for nuclei identification. 
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The bi-culture provides some clusters of expression both for MUC-2 and MUC-5AC, 

confirming the formation of a mucus layer in our experimental culture condition.  

Characterization of the secreted gel forming mucins MUC-2 and MUC-5AC release 

in the medium was investigated by ELISA assay both in the monocultures and in the bi-

culture Caco-2 /HT29-MTX, as shown in Figure 10. 

 

Figure 10. MUC 2 and MUC 5 AC mucins release in Caco-2 monoculture, HT29-MTX monoculture 

and Caco-2/HT29-MTX co-culture. 

MUC5 AC release was abundant compared to MUC-2 in all the culture conditions, 

with a higher production for HT29-MTX monoculture.  

3.4. SiO2 NPs Uptake and Translocation as A Case Study for Tri-culture Model Efficiency  

3.4.1. SIO2 NPs Characterization by DLS  

Fluorescent SiO2 nanobeads were characterized by Dynamic Light Scattering (DLS), 

which provides the hydrodynamic diameter and the agglomeration state of the samples, 

referred to as Z-average (Z-ave) and polydispersity index (PDI), respectively. The SiO2 

nanobeads, diluted in DMEM without Phenol Red supplemented with 1% FBS, were an-

alyzed at a concentration of 100 µg/mL, before performing each experiment (time 0) and 

after 24 h. In Table 1, Z-ave and PDI values of SiO2 dispersions in water and DMEM at 

time 0 and in DMEM after 24 h of exposure are reported. 

Table 1. DLS characterization. Z average and PDI values (± SD) of fluorescent SiO2 nanobeads dis-

persion (100 µg/mL). 

Dispersant Time (hours) Z-ave ± SD (nm) PDI ± SD 

H20 0 82. ± 2 0.09 ± 0.01 

DMEM 1%FCS 
0 155 ± 2 0.22 ± 0.02 

24 125.7 ± 2 0.29 ± 0.08 

Increase of the Z-ave in respect to the nominal NPs dimension (50 nm) is observed in 

water dispersion; it can be attributed to an increase in the hydrodynamic radius due to 

the behaviour of the charged particles in a polar aqueous environment rather than to a 

NPs agglomeration. The dispersion in the treatment medium (DMEM plus 1% FCS) gen-

erates limited particle aggregation that remains constant during the following 24 h. PDI 

value also increase in DMEM dispersion in respect to water dispersion but, anyway, only 

single particle size population has been identified. After 24 h, particle size distribution is 

quite worse and a small peak is detected on the left of the main peak, probably caused by 

experimental artefacts or small protein aggregates. Graphs of population size distribution 

for intensity have been added as Supplementary Material (Figure S3). 

Moreover, further experiments with stable particles are needed to assess the validity 

of the proposed model. 
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3.4.2. Uptake and Translocation  

To highlight the different behaviors of the (co)culture models toward nanoforms, 

treatments with SiO2 fluorescent NPs were performed at 100 µg/mL for 24 h evaluating 

internalization by confocal microscopy and translocation by fluorometric analysis. As 

shown in Figure 11, nano silica NPs are visible on the extra cellular surface of Caco-

2/HT29-MTX co-culture, probably entrapped by mucus. Some particles were also noted 

on the Caco-2/Raji B cells co-culture, where mucus is absent but microvilli-free regions are 

present in correspondence with M-cells.  

 

Figure 11. SiO2 nanobeads (red) internalization in Caco-2 monoculture, Caco-2/HT29-MTX co-cul-

ture, Caco-2/Raji B co-culture, and Caco-2/HT29-MTX/Raji B tri-culture on 3 µm pore insert. Cells 

were counterstained with DAPI (blue) and ZO-1 (green). Representative 3D reconstructions (Z-

stacks) by CLSM are reported. 50–70 Z-slices were acquired every 0.20 µm covering the total height 

of the cell cultures on inserts. Left panels show xy Z-stack projections, while right panels show xz 

Z-stack projections; the upper and the lower surface of inserts are indicated. Scale bars are 20 and 

10 µm, as indicated. 

Furthermore, a ZO-1 perturbation n in all the culture conditions following 24 h expo-

sure to 100 μg SIO2 is observed. 

As reported in Figure 12, the highest translocation rate was determined in the Caco-

2/Raji-B culture followed by the tri-culture model, suggesting that M-cells act as portals 

for NPs cell crossing.  

The impact of pore inserts dimension is evident even in this case, with a magnifica-

tion of the effect on 3 µm pore inserts. Passage through empty filters has been analyzed 

(Supplementary Figure S4) to evaluate the impact of the different pore size. 

Conditioned medium from Raji B cells in co-culture with both Caco-2 and Caco-

2/HT29-MTX cells proved to be less efficient in allowing the nano silica translocation, con-

firming the limited performances of this model. 
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Figure 12. SiO2 NPs translocation in Caco-2 monoculture in the different (co)-culture conditions on 

1 µm and 3 µm pore size inserts. On 3 µm pore, insert data on silica translocation in presence of Raji 

B conditioned medium are also reported. #versus Caco-2, *versus Caco-2/RajB; °versus Caco-

2/HT29-MTX; Δversus Caco-2/HT29-MTX/ Raji B, $versus Caco-2/Raji B medium; δversus Caco-

2/HT29-MTX/ Raji B medium. 

4. Discussion 

The first in vitro model of human FAE was developed by Kerneis and co-authors 

(1997) [56] by co-culturing Caco-2 cells with isolated lymphocytes from mouse Peyer’s 

patches. Previous in vivo murine models showed that the intravenous injections of Peyer’s 

patches lymphocytes in immunodeficient mice resulted in new formation of lymphoid 

follicles and follicle-associated epithelium with typical M-cells [57]. Several years later, 

Gullberg et al (2000) [27] proposed a model culturing Caco-2 cells with human B lympho-

cytes, while in another study [58] inserts were inverted to promote accessibility and con-

tact among lymphocytes and intestinal epithelial cells. The same model, although very 

laborious, was applied by des Rieux et al [40] in pilot studies with NPs used to assess the 

functionality of the in vitro barrier. Study results indicate that NPs were preferentially 

transported through the M-cell. Recently the application opportunities of advanced in 

vitro models of intestinal barrier with respect to Caco-2 monolayer for NPs uptake and 

translocation raised much interest in many research groups.  

Intestinal co-culture with mucus secreting cells and M-cells induction by lympho-

cytes resembles the in vivo intestinal mucosa, since it includes crucial elements for NP 

internalization such as the presence of mucus, which actively interacts with NPs entrap-

ping or facilitating their passage, and of M-cells that have a primary role in the sampling 

and traffic of particulate matter.  

As reported above, available studies from the literature are patchy and diluted over 

time. So further efforts are needed to harmonize the various protocols developed, aiming 

to find the most suitable experimental conditions for improving the protocol transferabil-

ity between laboratories. 

In this respect, many efforts have been dedicated to defining the conditions of stim-

ulation of M-cells as well as to the identification of specific markers of this conversion. In 

our opinion, this remains the aspect of the model that needs to be optimized and stand-

ardized even more. For instance, it must be definitely clarified whether the different cycles 

of stimulation by Raji B cells need the addition of fresh cells every time, or whether they 

can remain for the whole stimulation period. According to our results the best condition 

to obtain M cell phenotype induction is by co-culturing Caco-2/HT29 –MTX at 9:1 ratio 

from the 14th day of culture and adding Raji B cells for 5 days in the Bl compartment, 

refreshing them three times and allowing the inserts to rest 24 h before any treatments 
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and TEER measurement. We observed that the tri-culture model was stable for 48 h from 

the end of lymphocyte induction, so it is recommended to perform the experiments no 

later than this period. 

Moreover, we observed that presence of Raji B cells in the Bl compartment interferes 

with the barrier integrity measurements (particularly for TEER determination), so we ad-

vise the removal of lymphocytes from the Bl compartment before any evaluation of barrier 

integrity, moving the inserts in a clean multi-well plate.  

Results obtained with Raji B conditioned medium, in terms of functionality of the 

barrier (Figure 6B) SEM analysis (Figure 4) and nanoparticle translocation (Figure 12), 

were less efficient compared to the traditional model and this protocol is not suggested 

for further applications.  

Many efforts have been made to determine the reliable cellular markers of human M-

cells, but to date this marker has not yet been identified. In vivo models' identification of 

M-cells has been more clearly proven. For instance, in murine models, intestinal M-cells 

were stained by Ulex euroaeus agglutinin (UEA, 1) but were negative for WGA (Wheat 

germ agglutinin) [59]. Conversely, in in vitro studies this identification is much more am-

biguous. WGA was used for M-cells identification [22] while in other papers it was used 

for mucus staining [41]. 

Our results indicate that WGA staining fails to be a specific and simple marker to 

identify enterocytes conversion to M-cells. In our opinion, ultrastructural investigation by 

TEM and SEM is to date the best approach to verify M-cells presence. 

In the present study, an extensive characterization of the barrier integrity of the (co)- 

culture model has been performed. We confirm what is reported by several authors [41], 

i.e., the presence of HT29 and Raji B cells increases the barrier permeability, allowing bet-

ter reproduction of the epithelium of the human gut. Both TEER and LY have proven to 

be simple and reproducible indicators of barrier performances, also useful to quickly 

check the acceptability of the model before NPs treatment. In our experimental conditions, 

a TEER value below 150 ohms × cm2 and a LY Papp value > 15 × 10−6 are considered not 

acceptable.  

Regarding the impact of the trans-well insert pore dimension on barrier function, our 

data indicate that, for NPs translocation studies, 3 µm pore dimension is preferable since 

it ensures a greater possibility of particle passage even in conditions of NP aggregation. 

TEM images confirm that there is no passage of epithelial cells thorough the filter mem-

brane (Supplementary Figure S1).  

Production of a mucus layer in 9:1 co-culture of Caco-2/HT29-MTX has been con-

firmed by Alcian blue and Periodic Shiff staining. Both methods are fast and simple so 

they can be proposed as routine methods to verify the presence of the mucus layer in the 

(co)-culture. The more refined characterization of mucins presents in the mucus layer by 

confocal microscopy and by secreted gel forming mucins, clarifying that both MUC-2 and 

MUC-5AC are expressed, the latter in larger quantity. Mucus characterization is relevant 

in predicting the possible interactions with NPs which may affect their barrier penetration 

capacity. In the near future the possibility of using synthetic mucus with controlled com-

position could provide an additional useful element for model standardization [60]. 

The parameters and indicators considered in the study are summarized in Table 2 

Table 2. Summary of the main parameters and indicators investigated in the study. 

Parameters Indicators Protocol Optimization 

Transwell support Insert pore size 
3 µm pore inserts more suitable for 

NPs translocation studies 

Barrier integrity TEER and LY Yes, acceptance criteria proposed 

Mucus production 
Alcian blue and 

Periodic Schiff staining 
Yes, but only qualitative data 



Cells 2022, 11, 3357 20 of 23 
 

 

M-cell phenotype in-

duction 

Biochemical markers, 

TEM/SEM images 

Yes, for TEM/SEM investigation 

(qualitative data) 

No specific biochemical markers 

identified 

The SiO2 case study has provided interesting confirmation on the suitability of the 

proposed approach. An evident effect of the mucus layer in entrapping the NPs is high-

lighted in Figure 11, where the red NP spots are clearly observable in the presence of 

HT29-MTX (Figure 11). This result agrees with what was reported by Garcia Rodriguez 

and co-authors [41] on a similar tri-culture model. They observed by confocal analysis that 

a considerable number of NPs remained in the apical side of the membrane, detained be-

tween microvilli and the mucus matrix. Moreover, a slight perturbation of ZO-1 is ob-

served in all the culture conditions, indicating an alteration of the integrity of the epithelial 

barrier. Further experiments are needed to clarify this point. Despite the sieve action of 

the mucus, SiO2 NPs are also translocated through the cells, although in small quantity, 

in all the culture conditions, according to the following order: Caco-2/Raji B > Caco-

2/HT29-MTX/Raji B > Caco-2/HT29-MTX ≥ Caco-2 (Figure 12). These data provide evi-

dence of the fundamental role played by M-cells in the internalization of these NPs. More-

over, 3 µm pore inserts enhance the NP translocation and highlight the differences be-

tween the different culture conditions. Finally, once again results obtained with condi-

tioned medium from Raji B cells are lower than expected.  

5. Conclusions 

In conclusion, the tri-culture model Caco-2/HT29-MTX/Raji B is confirmed to be a 

reliable model for investigation of NPs interaction with intestinal epithelium. In this study 

some of the critical points related to its developing and functionality have been addressed 

to improve its standardization. In summary, the main points raised are:  

• M cell phenotype induction: the best protocol is to co-culture Caco-2/HT29 –MTX at 

9:1 ratio and, from the 14th day of culture, to add Raji B cells for the following 5 days 

in the Bl compartment in RPMI/DMEM (1:1) medium, refreshing them for three 

times. Inserts are put to rest for the next 24 h before any experimental activity. Model 

is stable for about 48 h; 

• M cell marker: no specific marker for M cells has been identified. Electron microscopy 

(SEM or TEM) is now the unique way to identify them but further investigations are 

required to find a more practical and cheaper approach; 

• Determination of barrier integrity is an important parameter of the model, easy and 

fast to measure. Both TEER and LY are simple and reproducible indicators of this 

parameter and, based on present data and literature evidence, the following ac-

ceptance criteria are proposed: TEER values must not be below 150 ohms × cm2 and 

the LY Papp value must not be greater than 15 × 10−6.  

• Insert pore size is important aspect for NPs translocation experiments; present data 

indicate that 3 µm pore dimension is preferable; 

• Co-culture of Caco-2/HT29 –MTX at 9:1 ratio produces an abundant mucus layer in 

which MUC-5AC are predominant. Alcian blue and Periodic Shiff staining can be 

used as routine method to verify the presence of the mucus layer in the (co)-culture. 

The present study intends to provide a useful and standardized tool for researchers 

and for transferability of the model for regulatory purposes. It certainly can be improved 

and implemented with other cellular types such as, for instance, immunocompetent cells 

to bring us closer to the complexity of the intestinal mucosa.  
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Translocation studies through empty filters and cell monolayers. 
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