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Abstract: Every organ develops fibrosis that compromises functions in response to infections, inju-

ries, or diseases. The cornea is a relatively simple, avascular organ that offers an exceptional model 

to better understand the pathophysiology of the fibrosis response. Injury and defective regeneration 

of the epithelial basement membrane (EBM) or the endothelial Descemet’s basement membrane 

(DBM) triggers the development of myofibroblasts from resident corneal fibroblasts and bone mar-

row-derived blood borne fibrocytes due to the increased entry of TGF beta-1/-2 into the stroma from 

the epithelium and tears or residual corneal endothelium and aqueous humor. The myofibroblasts, 

and disordered extracellular matrix these cells produce, persist until the source of injury is removed, 

the EBM and/or DBM are regenerated, or replaced surgically, resulting in decreased stromal TGF 

beta requisite for myofibroblast survival. A similar BM injury-related pathophysiology can underly 

the development of fibrosis in other organs such as skin and lung. The normal liver does not contain 

traditional BMs but develops sinusoidal endothelial BMs in many fibrotic diseases and models. 

However, normal hepatic stellate cells produce collagen type IV and perlecan that can modulate 

TGF beta localization and cognate receptor binding in the space of Dissé. BM-related fibrosis is de-

serving of more investigation in all organs. 
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1. Introduction 

Fibrosis is a common terminal pathology for numerous insults in most, if not all, or-

gans. For example, in the lung, fibrosis can be triggered by radiation, infection, toxic ex-

posures, hypersensitivity pneumonitis or unknown factors underlying idiopathic pulmo-

nary fibrosis [1]. Similarly, many insults can produce scarring stromal fibrosis in the cor-

nea, including viral infections, bacterial infections, trauma, chemical burns, and surgical 

procedures [2]. While fibrosis often represents an end stage of irreversible organ dysfunc-

tion, there are specific conditions where fibrosis may reverse spontaneously if the inciting 

factors are eliminated. For example, myofibroblast-related scarring stromal fibrosis of the 

cornea after laser vision correction photorefractive keratectomy (PRK) often resolves 

spontaneously over time measured in months to years in both humans and rabbits [3,4]. 

Major advances have been made in understanding the factors underlying corneal 

stromal fibrosis over the past few years. This research pointed to the critical roles of the 

two major basement membranes (BMs) of the cornea, the epithelial basement membrane 

(EBM) underlying the epithelium [5] and Descemet’s basement membrane (DBM) overly-

ing the corneal endothelium [6,7], in the pathophysiology of stromal fibrosis. Both the 

corneal EBM and DBM modulate the passage of transforming growth factor (TGF) beta-1 

and TGF beta-2 into the central stroma from the tears and epithelium [5] or residual 
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corneal endothelial cells and the aqueous humor [7], respectively. In both locations, injury 

and defective or delayed regeneration of the corneal BMs leads to penetration of high lev-

els of the TGF beta into the stroma that drive the development of myofibroblasts from at 

least two different precursor cells. The pathophysiological mechanisms leading to fibrosis 

in the cornea are likely relevant to fibrosis that develops in many other organs. This review 

will detail the pathophysiology of fibrosis in the cornea and then provide examples where 

BM injury and defective regeneration can underlie the development of fibrosis in other 

organs. 

2. BM-related Corneal Fibrosis 

The cornea is an exceptional model to study fibrosis due to its relative simplicity, 

normal transparency, available imaging modalities, and large variety of reproducible 

wounding models. Corneal fibrosis responses can be separated into anterior EBM-related 

and posterior DBM-related fibrosis, although severe injuries and infections often involve 

both BMs and some fibrosis producing infections or immune-related diseases can enter 

from the peripheral limbal blood vessels. 

2.1. Normal Cornea Structure and Transparency 

The normally transparent cornea (Figure 1A) is composed primarily of three tissues, 

the epithelium, stroma, and corneal endothelium (Figure 2). The approximately 50 µm 

thick corneal epithelium is a 5 to 7 layer thick nonkeratinized, stratified, squamous epi-

thelium that lies atop the EBM (Figure 2) and is bathed in tears produced by the accessory 

and main lacrimal glands. The stroma is approximately 300 to more than 600 µm thick, 

depending on the species, and is populated by keratocan-positive keratocyte fibroblastic 

cells that function to maintain the unique packing of uniform diameter stromal fibers (Fig-

ure 3A, B) that provides the cornea its transparency. The stromal ECM is primarily com-

posed of collagen type I, along with smaller amounts of collagen type III, IV, V, VI, VIII 

and XII [8]. The extracellular matrix (ECM) between the corneal stromal fibrils, that is 

sometimes referred to as the “ground substance”, contains small leucine-rich proteogly-

cans (SLRPs), including decorin, biglycan, lumican, keratocan, and fibromodulin [8]. 

Some species, including humans, have an acellular condensation of the anterior stroma 

termed Bowman’s layer [9]. The corneal endothelium [10], unlike vascular endothelium, 

develops from neural crest and is a monolayer of cells that lies posterior to DBM (Figure 

2) [11]. The corneal endothelium cooperates with keratocytes to produce the DBM during 

development and after injury [7]. The proliferative capacity of the corneal endothelial cells 

may vary between species, with human endothelial cells thought to have a relatively low 

capacity to proliferate, but this may be related to the ages of the animals studied [10]. 

The normal central cornea is avascular, but bone marrow-derived cells, including fi-

brocytes, migrate into the stroma from the edge of the cornea (limbus) after corneal inju-

ries [12]. The corneal stroma is also richly innervated, primarily with sensory nerves that 

arborize and terminate in the basal epithelium [13]. There are also normally small num-

bers of immune cells, including resident macrophages and Langerhans cells in the cornea 

[14]. 
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Figure 1. Slit lamp photographs of haze and scarring fibrosis in rabbit corneas. (A) Normal unwounded transparent cor-

nea. (B) One month after -4.5D PRK a cornea has faint opacity (haze) within arrows [5]. (C) One month after -9D PRK a 

cornea has dense scarring fibrosis within arrows [5]. (D) At 2 mo. after -9D PRK areas of clearing (lacunae, arrows) are 

developing within scarring fibrosis [5]. (E) Dense scarring fibrosis 2 weeks after 5 mm surface alkali burn with 1 N NaOH. 

Stromal neovascularization (arrowheads) begins to develop. (F) Scarring fibrosis has progressed at 4 weeks after alkali 

burn. Stromal neovascularization (arrowheads) has progressed. (G) Dense scarring fibrosis 1 mo. after 8mm Desceme-

torhexis. Stromal neovascularization (arrowheads) has developed [7]. (H) Scarring fibrosis has diminished by 6 mo. after 

Descemetorhexis with iris details now visible. Most of the opacity that remains is associated with the corneal neovascu-

larization (arrowheads) [7]. Mag. 20X. 

 

Figure 2. Corneal BM components that modulate TGF beta-driven myofibroblast development and 

fibrosis in unwounded rabbit corneas [5]. (A) Immunohistochemistry (IHC) for perlecan (Perl), as 

well as laminin alpha-5 (LAMA5) [5]. (B) IHC for perlecan alone. (C) IHC for collagen type IV. Ar-

rows indicate the EBM with overlying epithelium (e) and arrowheads indicate Descemet’s 
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membrane that overlies the corneal endothelium, respectively, in all panels. S is stroma populated 

primarily with keratocytes. Blue is DAPI stained nuclei. Mag. 200X. 

 

Figure 3. TEM of normal and fibrotic rabbit corneas. (A) Lower magnification image of an un-

wounded cornea showing the epithelium (e) and stroma (s) with a keratocyte (arrow). (B) Higher 

magnification image showing the epithelium (e) with the underlying EBM. The arrows indicate the 

lamina lucida anterior to the lamina densa of the EBM. In the stroma (s) note the uniform diameter 

of the collagen fibrils, with some seen in cross-section and others longitudinally, and the highly 

ordered packing of the fibrils. (C) In a cornea with severe fibrosis at 1 month after PRK, the stromal 

ECM is highly disorganized (*), without evidence of regular fibrils or packing. The anterior stroma 

(S) is also populated with many layered myofibroblasts (m). These images were previously un-

published but from the study of Torricelli et al., Investig. Ophthalmol. Vis. Sci. 2013, 54, 4026–4033. 
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2.2. The Corneal Wound Healing Response to Injury 

The first observable stromal cellular change after corneal injury is apoptosis (Figure 

4) of the keratocytes in proximity to the injury to the epithelium [15] or the endothelium 

[16] that is mediated by interleukin (IL)-1 alpha released by the injured epithelial and/or 

endothelial cells and the activated Fas/Fas ligand system [17,18]. The extent of the apop-

tosis response is proportional to the severity of the injury to the epithelium and/or endo-

thelium [19], and this response is thought to have evolved as an innate response to pro-

duce a cellular firebreak in rejoinder to viral infections to the epithelium and/or endothe-

lium that have the capacity to spread to stromal cells and into the eye [20]. 

Injury to the epithelium and underlying EBM results in the entry of large amounts of 

TGF beta-1 and TGF beta-2 (Figure 5) from the corneal epithelium and tears into the 

stroma [5], in addition to other growth factors such as the platelet-derived growth factor 

(PDGF). Similarly, injury to the corneal endothelium and overlying DBM results in the 

entry of large amounts of TGF beta-1 and TGF beta-2 into the stroma from the aqueous 

humor in the anterior chamber of the eye and residual peripheral corneal endothelial cells 

[7]. In both the epithelial-stromal and endothelial-stromal injuries some stromal cells also 

begin to produce TGF beta isoforms, but this production is relatively limited compared 

with the TGF beta that enters from tears, epithelium, endothelium and aqueous humor 

[5,7]. The TGF beta-1 and -2, along with PDGF, trigger keratocytes in proximity to the 

injury, that escape the initial wave of keratocyte apoptosis, to differentiate into vimentin-

positive, keratocan-negative corneal fibroblasts. These corneal fibroblasts, along with fi-

brocytes that enter the stroma from the limbal blood vessels [12,21], begin a developmen-

tal program to transition into alpha-smooth muscle actin (SMA)-positive, desmin-posi-

tive, vimentin-positive, keratocan-negative myofibroblasts, and that development only 

continues as long as requisite levels of TGF beta are available in the stroma where these 

precursors exist. Otherwise, if stromal TGF beta levels decline, the precursors undergo 

apoptosis or transition back to their cell types of origin [5,7]. That myofibroblast develop-

ment from precursor corneal fibroblasts and fibrocytes occurs over a period of weeks to 

months depending on the severity of injury, the localized concentration of TGF beta-1 and 

TGF beta-2 in the stroma [5,7], and the species. For example, after high correction photo-

refractive keratectomy (PRK) surgery, scarring stromal fibrosis develops 3 to 4 weeks after 

surgery in rabbits [5] but typically does not develop until three to 6 months after surgery 

in humans [3]. Critically, whether the development of corneal fibroblast- and fibrocyte-

derived precursor cells receive sufficient and ongoing levels of TGF beta-1 and TGF beta-

2 depends on whether, or not, the EBM and/or DBM regenerate their normal structures 

and functions in a timely manner (or in the case of DBM is replaced surgically by trans-

plantation) [5,7]. In turn, whether the EBM regenerates in a timely manner depends on the 

severity of the injury (and, therefore, the level of the initial keratocyte apoptosis response), 

the irregularity of the stromal surface induced by the trauma or surgery (that interferes 

mechanically with EBM regeneration), and likely genetic factors [22]. 
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Figure 4. Keratocyte apoptosis in response to injury in rabbit corneas. (A) TUNEL assay at 24 h after 

-4.5D PRK that entails epithelial debridement and then anterior stromal ablation with the excimer 

laser. Arrows indicate anterior stromal keratocytes undergoing apoptosis. The apoptotic cells can 

be detected with TEM within moments of epithelial scrape but become strongly TUNEL+ from 4 to 

more than 24 h. Many bone marrow-derived cells such as monocytes and fibrocytes detected with 

markers such as CD34, CD45, and CD11b infiltrate the stroma from the limbus and many also un-

dergo apoptosis in the first 24 to 72 h. (B) At 24 h after -9D PRK, with twice the number of excimer 

laser pulses, many more anterior stromal keratocytes (arrows) undergo apoptosis. Thus, there is a 

correlation between the magnitude of the anterior corneal injury and the number of keratocytes that 

undergo early apoptosis [19]. (C) At 1 h following an 8 mm corneal endothelial scrape injury, many 

posterior stromal keratocytes (arrows) undergo apoptosis detected with the TUNEL assay. Note the 

edema of the stroma that also occurs immediately after endothelial injury. The arrowhead indicates 

DBM stained (green) for BM component nidogen-1. Figure A and B were previously unpublished 

but from the study of Mohan et al., 2003 [19]. Figure C reprinted with permission from Medeiros et 

al. Exp. Eye Res. 2018; 172:30-35. 
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Figure 5. Localization of TGF beta-1 and TGF beta-2 in unwounded and wounded rabbit corneas. 

(A) TGF beta-1 (TGFb1) is produced (large arrows) in corneal epithelium (e) and endothelium (large 

arrowheads) and is also present in tears and aqueous humor in the anterior chamber (AC) [5]. In 

unwounded cornea, collagen type IV (COL IV) is detected in the EBM (small arrows) and in DBM 

(small arrowheads). (B) TGFb2 is not expressed in the corneal epithelium or corneal endothelium 

(arrowhead indicates a small area of visible corneal endothelium) but is present in tears (produced 

by accessory and main lacrimal glands) and in the aqueous humor. (C) In corneas that do not de-

velop fibrosis or in corneas that develop fibrosis that subsequently resolves, as in this cornea at 8 

weeks after PRK, TGFb1 is retained from entering the stroma by the fully regenerated EBM (arrows) 

and regeneration of the superficial epithelial barrier function (EBF, small arrowheads). Note no 

SMA-positive myofibroblasts remain, but a few vimentin-positive, SMA-negative corneal fibro-

blasts persist just posterior to the EBM. (D) In a cornea that develops fibrosis 4 weeks after PRK, 

high levels of TGFb1 (and TGFb2 not shown) accumulate throughout the epithelium (e) and into the 

anterior stroma (s) without evidence of EBM regeneration or EBF. Numerous SMA-positive myofi-

broblasts (arrows) and SMA-negative, vimentin-positive corneal fibroblasts are present in the sub-

epithelial stroma. (E) The same section as in D, but showing only TGFb1, highlights the penetration 

of the TGFb1 into the anterior stroma (arrows), although some stromal cells also produce limited 

amounts of TGFb1 [5]. (F) In a rabbit cornea at 4 weeks after Descemetorhexis removal of an 8mm 

disc of DBM and corneal endothelium, TGFb1 (arrows) is localized at the posterior corneal surface 

still devoid of DBM or endothelium. Much of the posterior stroma (bracket) contains collagen type 

IV (COL IV) not associated with DBM that is upregulated in corneal fibroblasts by TGFb1. Since 

COL IV directly binds TGFb1 in competition with cognate TGF beta receptors, it is hypothesized 
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this COL IV is produced to downregulate TGFb1 effects on cells in the posterior stroma, including 

myofibroblast precursors [7]. A similar upregulation of non-EBM COL IV occurs in the anterior 

stroma after injuries such as PRK. Panels A and B are previously unpublished images from study 

de Oliveira et al. Exp Eye Res, 2021;202:108325. Panels C, D and E reprinted with permission from 

de Oliveira et al. Exp Eye Res, 2021;202:108325. Panel F reprinted with permission from Sampaio LP 

et al. Exp Eye Res. 2021;213:108803. 

2.3. Minor Injuries and Non-Fibrotic Healing in the Anterior Cornea 

Relatively minor injuries to the anterior cornea, such as corneal abrasions or laser 

vision correction PRK for low myopia, usually heal with little stromal opacity (Figure 1B) 

and no stromal fibrosis (Figure 6B) [5]. The priority to prevent fibrosis after these injuries 

is for the epithelium to first close within a period of 1 to 2 weeks [5], and therefore, that a 

persistent epithelial defect does not develop [23]. This is because the epithelial cells, and 

not keratocytes or corneal fibroblasts, at least early in the regeneration process, produce 

self-polymerizing laminins 511 and 521 that initiate BM regeneration [24], and trigger the 

subsequent binding of other BM components, such as perlecan and nidogens, to form the 

nascent EBM [5]. Thus, no EBM regeneration occurs in an area of the cornea where the 

epithelium does not close, and if it does not close, stromal fibrosis invariably develops in 

that area [23]. The critical importance of the fully regenerated EBM (and DBM that will be 

discussed later in this paper) is that it contains the components perlecan and collagen type 

IV that modulate the passage of TGF beta-1 and TGF beta-2 through the BM (from the 

tears, epithelium, endothelium, and/or aqueous humor) and into the stroma [5,7,25]. Per-

lecan produces a high negative charge due to its three heparan sulfate side chains [24,26] 

and, therefore, generates a non-specific barrier to TGF beta-1 and TGF beta-2 passage 

through the EBM (or DBM) into the stroma [5]. Collagen type IV directly binds TGF beta-

1 or TGF beta-2 [2,27,28]; therefore, EBM (or DBM) collagen type IV also impedes the 

movement of the TGF betas through the BM into the corneal stroma [5,25]. Nidogen-1 and 

nidogen-2 in the EBM [5,25] also bind PDGF [29], and thereby modulate the transition of 

keratocytes to both corneal fibroblasts and myofibroblasts [30]. 

Once the EBM regenerates, TGF beta levels in the anterior stroma decline and pre-

cursor cells in transition to myofibroblasts either undergo apoptosis or, in the case of cor-

neal fibroblasts, can revert to keratocytes [5,25]. Thus, the progression to myofibroblast-

mediated fibrosis is halted. The relatively small amounts of disorganized ECM compo-

nents, such as collagen type I, secreted by the corneal fibroblasts, are subsequently reor-

ganized and/or phagocytized [31] by keratocytes, thereby returning the cornea to trans-

parency [5,25]. 
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Figure 6. Stromal cellularity of a normal cornea and corneas after injuries that heal without fibrosis and with fibrosis in 

rabbits. (A) The unwounded corneal stroma (s) is populated with keratocan-positive keratocytes between the epithelium 

(e) and corneal endothelium (arrowheads). At the vimentin (vim) antibody concentration used [5,25], only a few anterior 

stromal keratocytes were vimentin positive. No SMA-positive cells were detected. (B) One month after -4.5D PRK, there 

were numerous vimentin-positive corneal fibroblasts in the anterior stroma but the stroma was mostly populated with 

keratocan-positive keratocytes. No SMA-positive myofibroblasts were detected. (C) One month after -9D PRK, the anterior 

stroma is populated with SMA-positive, vimentin-positive myofibroblasts and SMA-negative, vimentin-positive corneal 

fibroblasts (and possibly fibrocyte progeny). (D) At 1 month after a one-minute 1N NaOH alkali burn that also destroyed 

the endothelium and Descemet’s membrane, the full-thickness corneal stroma is filled with myofibroblasts and corneal 

fibroblasts. Few keratocytes are detected. (E) At 1 month after infection with Pseudomonas aeruginosa keratitis sterilized 

with topical tobramycin there is severe opacity of the cornea in a slit lamp photograph. In IHC, approximately 90% of the 

stroma is filled with SMA-positive myofibroblasts, and in this cornea sparred only the most posterior stroma adjacent to 
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the corneal endothelium. In a TEM image of this cornea, no lamina lucida/lamina densa is detected. The stroma (s) has 

disorganized ECM (*) and numerous myofibroblasts (m). (F) At 1 month after infection with Pseudomonas aeruginosa 

keratitis sterilized with topical tobramycin, the opacity in the cornea decreases and numerous transparent areas called 

lacunae (black arrows) develop. On IHC in this cornea where the Pseudomonas aeruginosa extended through the entire 

cornea and destroyed the corneal endothelium, SMA-positive myofibroblasts populate the posterior stroma but myofibro-

blasts disappeared in the anterior stroma. Corneal neovascularization (arrows) with SMA-positive pericytes develops. In 

a TEM image, lamina lucida/lamina densa (arrowhead) was regenerated. The stroma (s) had organized collagen fibrils 

similar to normal unwounded stroma and no myofibroblasts were detected in the anterior stroma. (G) At 1 month after 

Descemetorhexis (DMR), the posterior stroma is filled with SMA-positive myofibroblasts. The more anterior stroma in 

this section had keratocan-positive keratocytes. An intermediate layer of SMA-negative, keratocan-negative, vimentin-

positive corneal fibroblasts (and likely fibrocyte progeny) are present between the keratocyte and myofibroblast layers. 

(H) At 6 months after DMR, the corneal endothelium (arrowheads) regenerates. Most of the posterior stroma is repopu-

lated with keratocan-positive keratocytes, except adjacent to the corneal endothelium and regenerated DBM there were 

numerous keratocan-negative, SMA-negative, vimentin-positive corneal fibroblasts and a few remaining SMA-positive 

myofibroblasts. e is epithelium and s is stroma in all panels. Blue is DAPI-stained nuclei in all panels. Panels B and C 

reprinted with permission from de Oliveira et al. Exp Eye Res 2021:202;108325. Panels E and F reprinted with permission 

from Marino et al. Exp Eye Res. 2017;161:101-105. Panels G and H reprinted with permission from Sampaio LP et al. Exp 

Eye Res. 2021;213:108803. 

2.4. Major Injuries and Fibrotic Healing in the Anterior Cornea 

More severe injuries to the anterior cornea, such as chemical burns, lacerations, se-

vere trauma, microbial infections, or laser vision correction PRK for high myopia (without 

intraoperative topical mitomycin C), commonly heal with significant stromal opacity (Fig-

ure 1C, 1E, and 1F) and the generation of myofibroblasts and stromal fibrosis (Figure 6C, 

6D, 6E and 6F) [5,25,32,33]. In these more severe injuries to the anterior cornea, even if the 

epithelium closes, the EBM is not fully regenerated in a timely manner (Figure 3C), with 

defective incorporation of perlecan being the best-characterized abnormality (Figure 7). 

Therefore, TGF beta-1 and TGF beta-2 penetrate the stroma to persistent levels (Figure 5D 

and 5E) adequate to drive the development of myofibroblasts (Figure 6C, 6D, and 6E) from 

precursor corneal fibroblasts and fibrocytes [12,21,33]. 

There is a breakdown in the repair of the EBM in these corneas likely because the 

initial wave of keratocyte apoptosis and/or necrosis elicited by the injury is sufficiently 

large (Figure 6B) [15,18] that there are insufficient numbers of proximate keratocytes and 

corneal fibroblasts to coordinate the repair with the epithelium through the contribution 

of perlecan, nidogens, and collagen type IV [5,25,33]. Many of these injuries also produce 

severe anterior stromal surface irregularity that mechanically impedes EBM regeneration 

[34]. There can be other yet unrecognized factors in the cornea that inhibit the full regen-

eration of EBM, with lamina lucida and lamina densa, signaling maturity of the EBM [35]. 

Fibrosis must not be thought of only in terms of pathology. Clearly, the process serves 

an important protective function to maintain morphology in the organs where it develops, 

at least until excessive fibrosis leads to an advanced compromise of organ function. A 

good example of this principle is the corneal response to Pseudomonas aeruginosa keratitis 

(Figure 6E) [32]. If fibrosis did not rapidly develop in this quickly progressing and severe 

infection of the cornea, then perforation of the cornea and loss of the eye would occur 

much more frequently than is observed. 

Even with severe full-thickness fibrosis of the corneal stroma caused by trauma or 

infection, there can be a surprising return of transparency and function [32,36]. Typically, 

this resolution of fibrosis occurs over a period of many months to years as the EBM and 

DBM are regenerated and myofibroblasts that are deprived of their ongoing, requisite 

supply of TGF beta undergo apoptosis [7,32]. Thus, the EBM can eventually be fully re-

generated as keratocytes and/or corneal fibroblasts penetrate the fibrosis and cooperate 

with the corneal epithelium to restore a mature EBM [32,33]. Along with restoration of the 

normal epithelial barrier function (Figure 5C) [5], the mature EBM markedly diminishes 

the passage of TGF beta-1 and TGF beta-2 into the corneal stroma from the tears and cor-

neal epithelium, and triggers myofibroblast apoptosis [37]. At this point, corneal 
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fibroblasts and keratocytes repopulate that fibrotic stroma and re-establish the normal ul-

trastructure of the stroma associated with transparency by phagocytosis and reorganiza-

tion [31], and in some cases eventually return the stroma to full transparency [5,25]. Es-

sentially, the corneal fibroblasts and keratocytes clean up the disorganized ECM mess 

produced by the myofibroblasts. 

Two or more potential myofibroblast precursor cells have been reported in well-stud-

ied organs, including skin, lung, and cornea [21,38–40]. The best characterized corneal 

myofibroblast precursors are fibroblasts derived from keratocytes and bone marrow-de-

rived fibrocytes [21,22,30]. Epithelial to mesenchymal transition (EMT) and endothelial to 

mesenchymal transition (EndoMT) leading to myofibroblast development have not been 

well-characterized in the cornea. An in vitro study with corneal stromal and bone marrow 

(BM)-derived cells found that the numbers of SMA+ myofibroblasts generated from either 

keratocyte-derived precursor cells or BM-derived precursors were highest when both pre-

cursors were co-cultured in the same culture flask (juxtacrine), as when the two precursor 

cells were co-culture in different compartments of a Transwell System (paracrine) [41]. 

This suggests that the two different myofibroblasts cells potentiate the overall fibrosis re-

sponse when they are present together in the corneal stroma. A proteomic study of corneal 

fibroblast-derived myofibroblasts compared with bone marrow-derived myofibroblasts 

found that 29% of proteins were differentially expressed between these two myofibroblast 

types [42], including proteins that contribute to the structure of fibrotic tissue, such as 

collagen types III, VII, and XI. Clues to progenitor-dependent differences in myofibro-

blasts were suggested by bioinformatic analysis of the differentially expressed proteins in 

that study [42]. Thus, canonical pathways involving oxidative phosphorylation, mito-

chondrial dysfunction, and sirtuin signaling were predominant in cornea-derived myofi-

broblasts, whereas pathways involving integrin signaling, glycolysis I, and remodeling of 

epithelial adherens junctions were predominant in BM-derived myofibroblasts. The Inge-

nuity Pathway Analysis of the differentially expressed proteins in these two myofibro-

blasts were also different, suggesting molecular and cellular functional differences [42]. 

Since BM-derived myofibroblasts produced much more collagen type XI and collagen 

type III, they likely contributed greatly to structure and strength of the fibrotic tissue in 

the cornea. Alternatively, since corneal keratocyte-derived myofibroblasts produced more 

collagen type VII, they more likely modulated cytokine production by adjacent fibroblasts 

in the healing stroma [42]. Thus, myofibroblasts derived from different precursors in a 

fibrotic tissue should not be thought of as equivalent, but rather as cells with similar phe-

notypes that contribute differentially to enhance the overall fibrosis response. 
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Figure 7. Defective perlecan EBM incorporation in a PRK injured rabbit cornea that developed scarring stromal fibrosis 

and myofibroblasts. Confocal microscopy Imaris 3D constructed images of triplex IHC for laminin alpha-5, perlecan and 

nidogen-1 in an unwounded control cornea and corneas with moderate -4.5D PRK and severe -9D PRK epithelial-stromal 

injury [5]. (A) Laminin alpha-5 (green) was detected in the epithelium (e) and in the EBM (arrows) in an unwounded 

cornea. Two DAPI-negative vesicles with laminin alpha-5 (arrowheads) are present in the anterior stroma adjacent to the 

EBM. These were likely produced by keratocytes to contribute to maintenance of the EBM. Perlecan (red) was detected in 

the EBM (arrows), and in vesicles in the anterior stroma (arrowhead). Nidogen-1 (blue gray) is a major component in the 

EBM (arrows) and is present in secretory vesicles in the anterior stroma (arrowheads). (B) A cornea at 1 month after sur-

gery that had moderate epithelial-stromal injury (-4.5D PRK) and did not develop myofibroblasts or scarring stromal 

fibrosis (see Figure 1B). The laminin alpha-5, perlecan and nidogen-1 localization in the EBM are similar to that noted in 

the unwounded cornea (large arrows), except there are increased nidogen-1 (arrowheads) in the subepithelial stroma sur-

rounding stromal keratocyte/corneal fibroblast cells. Vesicles (small arrows) that are DAPI-negative are present in the 

anterior stroma and contain one or more of the EBM components. (C) In a cornea 1 month after more severe epithelial-

stromal injury (-9D PRK) there is greater stromal opacity and myofibroblasts (see Figure 1C). Laminin alpha-5 and nido-

gen-1 (arrows) EBM localization is similar to that noted in the unwounded control cornea. Perlecan, however, was not 

detected at significant levels in the EBM, even though it is present within and surrounding myofibroblasts (arrowheads) 

in the anterior stroma. Stromal nidogen-1 (arrowheads) surrounding myofibroblasts is also present at high levels in the 

anterior stroma. Blue in all panels is DAPI-stained nuclei. e is epithelium. * indicates artifactual defects in the epithelium 

which are often noted in PRK corneas that are cryo-sectioned in the first 1 to 2 months after surgery while the EBM has 

not fully regenerated. Reprinted with permission from de Oliveira et al. Exp Eye Res 2021:202;108325. 

2.5. Injuries and Fibrotic Healing in the Posterior Cornea 

The processes involved in the development of posterior corneal fibrosis involving 

DBM and the corneal endothelium (Figure 1G and 1H) [6,7] parallel those involving the 

EBM and the corneal epithelium in the anterior cornea [5,11]. Thus, injury and delayed 

regeneration of DBM leads to the penetration of high levels of TGF beta-1 and TGF beta-

2 into the posterior stroma, although the primary sources of the fibrotic growth factors 
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after posterior injury are from the aqueous humor and residual corneal endothelial cells 

[7]. Similarly, the precursor cells to myofibroblasts in the posterior cornea are fibroblasts 

derived from keratocytes and bone marrow-derived fibrocytes (Figure 6F, 6G and 6H) 

[6,7]. However, regeneration of DBM, if it occurs at all, tends to occur over a much longer 

period, measured in many months or years after injury, than regeneration of the EBM after 

its injury [7]. Thus, posterior corneal fibrosis tends to persist without corneal transplanta-

tion, especially in adult humans where there is limited endothelial proliferation in the 

absence of pharmacological manipulation [10]. 

3. Other Candidate Organs Where BM Injury Can Be Associated with Fibrosis 

3.1. Skin 

The skin BM (Figure 8A) [43] that separates the keratinized squamous epithelium 

from the underlying dermis has obvious parallels to the cornea. However, skin as an organ 

is exceedingly more complex than the cornea because of the accessory organs, such as hair 

follicles and sebaceous glands, as well as the vascularization of the dermis. This complex-

ity is likely the explanation for why studies that parallel those for corneal fibrosis, for ex-

ample after mechanical scrape injury, have not been reported for skin where unambigu-

ous identification of cell phenotypes can be problematic. Nonetheless, there are numerous 

parallels to skin fibrosis caused by traumatic and thermal injuries [44] and in the skin 

manifestations of scleroderma [45]. 

Although there is some disagreement between different studies, that are likely re-

lated to antibody differences, keratinocytes produce TGF beta-1 and TGF beta-2 [46–48]. 

Other sources of skin TGF beta likely include bone marrow-derived cells in the dermal 

blood vessels and dermis, including monocytes and macrophages [49], and dermal fibro-

blasts themselves [50]. 

Skin has many potential precursors to myofibroblasts in fibrosis due to trauma and 

burns, as well as diseases such as scleroderma. These include dermal fibroblasts [51], 

keratinocytes via EMT [52,53], adipocytes [54], as well as pericytes [55] and fibrocytes [56] 

that migrate from the dermal blood vessels. 

These parallels with the cornea, and similarities in anatomy and injuries, suggest that 

defective BM regeneration after skin injuries can have a role in dermal myofibroblast de-

velopment and skin fibrosis. It would be of interest to determine if traumatic and thermal 

skin fibrosis is associated with defective perlecan incorporation into the keratinocyte BM 

similar to the cornea [5,25]. 

3.2. Lung 

In some ways, the monolayer of alveolar epithelial type I cells overlying the alveolar 

BM (Figure 8B) and underlying interstitial space in lung alveoli is similar in organization 

to that of the corneal endothelial cells, Descemet’s membrane, and corneal stroma. Many 

toxic agents associated with idiopathic pulmonary fibrosis (IPF) (Figure 8C and 8D) and 

other fibrotic lung pathologies, such as tobacco smoke, bleomycin, paraquat, and bu-

tylated hydroxytoluene, produce chronic injury to the alveolar epithelial type I and II cells, 

and likely injury to the underlying BM [57,58]. Although there has been limited direct 

study of the ultrastructure and composition of the alveolar BM in these conditions, ultra-

structural abnormalities, breaks, and convolution of the alveolar BM were clearly noted 

in transmission electron microscopic studies of IPF and other fibrotic lung diseases [57,58]. 

Fibrosis in interstitial lung diseases has been classically identified as fibrous tissue accu-

mulation in the pulmonary interstitium within the alveolar walls bounded by the alveolar 

epithelial and capillary endothelial BMs [57]. Bowden [59] pointed out that insults that 

delayed the regeneration or interfere with the continuity between alveolar epithelial cells 

predispose to the development of pulmonary fibrosis. He also noted that delayed regen-

eration of the endothelial cells within the alveolus after some injuries, such as irradiation 

or butylated hydroxytoluene, also led to the accumulation of fibrotic myofibroblast cells 
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[59]. Alveolar epithelial cell or alveolar endothelial cell injury is likely associated with in-

jury and/or abnormal maintenance of the associated BMs which would likely alter BM 

regulation of TGF beta localization in these disorders. 

The alveolar BM and endothelial BM in lung, similar to the corneal BMs and BMs in 

other organs, are composed of laminins, nidogens, perlecan, collagen type IV, and other 

components, some of which are tissue-specific [60,61]. These studies have shown that al-

veolar epithelial type I cells and endothelial cells produce these lung BM components, but 

other lung cells may also make contributions. 

Several potential progenitors to myofibroblasts in lung fibrotic diseases have been 

supported by studies. A huge body of data was generated related to the alveolar epithelial 

type I or II cells themselves being myofibroblast progenitors via EMT in which TGF beta 

and/or other growth factors or cytokines trigger a major change in phenotype of the epi-

thelial cells to mesenchymal myofibroblasts [62–65]. Kim and coworkers [66] engineered 

mice expressing the marker beta-galactosidase (beta-gal) exclusively in lung epithelial 

cells and then transiently overexpressed active TGF beta-1 in the lungs in vivo using an 

adenoviral vector (adTGF-β1) administered intranasally versus vehicle. After 21 days, 

lung sections revealed moderate fibrosis in the adTGF-β1-treated, but not vehicle-treated, 

mice. Clusters of x-gal-positive cells were noted within areas of lung with collagen depo-

sition and some of the x-gal-positive cells were also alpha-smooth muscle actin-positive, 

supporting the EMT process occurring in vivo. Cell lineage tracing studies, however, 

raised questions about the importance of EMT in pulmonary fibrosis [67–69]. Therefore, 

EMT as a major source of myofibroblasts in pulmonary fibrosis remains controversial. 

Bone marrow-derived, blood-borne fibrocytes have been shown in several studies to have 

an important role in the generation of myofibroblasts in pulmonary fibrosis [70–73]. Al-

veolar septal fibroblasts have long been seen as likely progenitor cells to myofibroblasts 

[67,74]. One study found that pericytes were an important progenitor to myofibroblasts 

in fibrotic lungs [69], but that remains controversial [67]. Finally, there is a possibility that 

endothelial to mesenchymal transition (EndoMT) can have a role in some fibrotic lung 

diseases and; therefore, vascular endothelial cells can serve as the progenitor cells in these 

lung diseases [75]. Likely, as in the cornea, there are several progenitors to myofibroblasts 

in fibrotic lungs and these myofibroblasts may have differing functions in the fibrosis re-

sponse [42]. 

There is an old maxim in criminal and civil litigation that can be briefly summarized 

as “follow the money.” In fibrosis research, the analogous maxim is “follow the TGF beta” 

because without excessive production or activation, or anomalous localization, of TGF 

beta, it is unlikely fibrosis will develop in a tissue. In the lung, there are several potential 

sources of TGF beta that have been associated with fibrotic lung diseases, many of these 

are associated with chronic injury to the alveolar epithelium [76]. These sources include 

alveolar macrophages, neutrophils, eosinophils, endothelial cells, fibroblasts, “activated 

alveolar epithelial cells,” and even the myofibroblasts themselves once they develop in 

lung tissues [76–82]. Type II alveolar epithelial cells and interstitial fibroblasts were also 

shown to express connective tissue growth factor (CTGF), a growth factor associated with 

fibrosis in which the transcription is activated by TGF beta, in IPF [83]. Many of the myriad 

activators of latent TGF beta are present in healthy and fibrotic lung tissues and the ex-

pression and localization of these TGF beta activators is likely important in the pathophys-

iology of many fibrotic lung diseases [2,84] 

It seems likely that chronic injury to the alveolar epithelium [76] would also lead to 

damage and possibly altered composition of the associated alveolar BM, although this has 

been little studied. One study [85] found in a bleomycin model of fibrosis in hamsters that 

there was focal injury to the alveolar epithelial cells and the alveolar epithelial BM associ-

ated with acute inflammation by 6 days after bleomycin exposure. The BM damage in-

cluded denudation and thickening of the alveolar epithelial BM. By 60 days after expo-

sure, although the alveolar epithelium had regenerated, there remained BM abnormalities 

of thickening and duplication of the alveolar epithelial BM that was most prominent in 
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the fibrotic areas of the lung. No alterations in the capillary endothelial BM were noted in 

this model. Studies such as these can be especially revealing if they included time course 

experiments after injury with multiplex immunohistochemistry for BM components such 

as perlecan, collagen type IV, nidogens, and laminins, similar to studies performed in the 

cornea [5,25]. 

In vitro studies of alveolar BMs have found using rat alveolar type II cells transfected 

with the SV40-large T antigen gene, to induce extended life of the cells, that were then 

propagated on type I collagen matrix gels [86]. Only when pulmonary fibroblasts were 

present in the gel did the alveolar cells produce a thin continuous BM. These alveolar BMs 

contained the typical BM components, including the perlecan and collagen type IV mod-

ulators of TGF beta localization by BMs [26–29], as well as laminins and nidogens. In that 

study, pulmonary fibroblasts supplied soluble components to the generating BM [86], 

similar to what was found for keratocyte/corneal fibroblast contributions to regeneration 

of the epithelial BM in corneas [5,25]. Another group confirmed the importance of alveolar 

epithelial-pulmonary fibroblast interactions in the generation of the alveolar epithelial BM 

in a similar in vitro mouse model [87]. 

These similarities to BM changes in corneas suggest that the alveolar BM has a role 

in modulating alveolar macrophage or other cellular TGF beta localization into the acinar 

interstitial spaces to modulate myofibroblast development from septal fibroblasts and fi-

brocytes in conditions where there are chronic insults to acinar epithelial cells, for exam-

ple, caused by smoke, bleomycin, paraquat, butylated hydroxytoluene, and other agents. 

 

Figure 8. Organs where BMs can have a role in fibrosis [43]. (A) TEM in normal rabbit skin. The basal keratinocyte (k) and 

dermis (d) are separated by the BM with lamina lucida (arrows) and lamina densa. Note the larger and more disorganized 

fibrils in the dermis compared with corneal stroma in Figure 3b. (B) TEM in normal rabbit lung. The alveolar BM with 

lamina lucida (arrow) and underlying lamina densa separates the alveolar epithelial cell type I (AE cell type I) from the 

interstitial space. (C) IHC for SMA in normal human lung primarily stains pericytes associated with blood vessels. There 

is little staining for SMA in the normal lung parenchyma. Blue is DAPI stained nuclei. (D) In a human lung with advanced 

idiopathic pulmonary fibrosis (IPF) SMA-positive myofibroblasts are present throughout the parenchyma. Blue is DAPI 

stained nuclei. 
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4. Liver Fibrosis: Capillarization of Hepatic Sinusoids Associated with the Generation 

of Endothelial BMs 

The liver is a structurally unique organ where BMs do not have a role in normal 

physiology, but the appearance of BMs likely contributes to the pathophysiology of fibro-

sis. This is because the distinctive organization of hepatic tissue necessary for its functions 

requires direct cellular contact to perform detoxification, modification, and excretion of 

endogenous and exogenous substances, including toxins. Thus, there are no BMs associ-

ated with hepatocytes, endothelial cells, vascular channel sinusoids or the spaces of Dissé 

in normal liver (Figure 9). Hepatic stellate cells (HSCs) exist in a quiescent state within 

this complex network of extracellular matrix in the space of Dissé. HSCs, previously called 

vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells, or Ito cells, however, 

secrete laminins, proteoglycans (including perlecan) and collagens (including collagen 

type IV) to contribute to the local extracellular matrix. HSCs are normally important 

storers of vitamin A [88–90]. Nidogen-1 and nidogen-2 were also detected in precursors 

to HSCs during liver development in mice using in situ hybridization [91]. It is interesting 

that four major components of BMs are produced but no traditional BMs are detected 

using TEM in proximity to hepatocytes, endothelial cells, the vascular channels of the si-

nusoids, or the spaces of Dissé in normal liver. Presumably, this is because the makeup of 

this ECM in the space of Dissé does not include properly localized, self-polymerizing lam-

inins required to initiate BM formation [24], does not have the appropriate stoichiometry 

of BM components for BM assembly, or contains other components that actively inhibit 

BM formation. 

A recent review by Karsdal et al. [92] emphasized ECM changes that occur in liver 

fibrosis related to BM components and the interstitial matrix (IM) and how they are dif-

ferent depending on the etiology of the injury. For example, the fibrosis pattern of early-

stage chronic viral hepatitis is characterized as a periportal fibrosis with increased inter-

stitial collagens and dense peribiliary BMs [92]. Conversely, fibrosis due to alcoholic or 

nonalcoholic steatohepatitis (NASH) is characterized by pericellular accumulation of BM 

proteins and production of small amounts of collagen type III and other fibrillar collagens 

by HSCs. Increased collagen type IV is the first sign of early fibrosis in NASH [92]. 

In many chronic liver diseases, a pathological finding often noted is what is referred 

to as “capillarization of hepatic sinusoids” [93]. This includes the formation of extraneous 

BM beneath the endothelial cells of the sinusoids, the loss of the normal endothelial fen-

estrations (defenestration) (Figure 9) and the transformation of sinusoidal endothelium to 

a more vascular type of endothelium. These pathophysiological changes are thought to 

interfere with the exchange of materials between the sinusoidal blood and the hepatocytes 

[94]. Thus, in liver the generation of sinusoidal BMs in fibrosis is detrimental to liver func-

tion. Capillarization of hepatic sinusoids is non-specific and can occur with alcoholic liver 

fibrosis, autoimmune hepatitis, and primary biliary cirrhosis in humans and in animal 

models it can be induced in hepatic fibrosis models triggered by dimethylnitrosamine, 

carbon tetrachloride, and selenium [93]. Capillarization is accompanied by an increase in 

collagen type IV and collagen type XVIII content within the space of Dissé [95,96]. A sim-

ilar abnormality, that is termed “pseudocapillarization of sinusoids,” has been noted in 

livers of the elderly without fibrosis [97,98]. 

What is the ongoing source of TGF beta that drives liver fibrosis? Most etiologies for 

fibrosis, such as viral infections, autoimmune disorders, allergic diseases, and toxic expo-

sures, are associated with chronic inflammation and many investigations have supported 

macrophages as the primary source of TGF beta-1 that drives fibrosis [79,99,100]. How-

ever, this remains controversial since other cells, including Kupffer cells, liver sinusoidal 

endothelial cells, resident dendritic cells, and even hepatic stellate cells, have been shown 

to produce TGF beta-1 [101]. In one study, platelet TGF beta-1 was found to have an im-

portant role in liver fibrosis induced by carbon tetrachloride in mice [102]. It is possible 

that which cells produce the pro-fibrotic TGF beta-1 (and TGF beta-2) depends on the spe-

cific liver disorder and the stage of development of fibrosis. 
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Similarly, it remains controversial which cells give rise to myofibroblasts in liver fi-

brosis. Many studies in liver fibrosis of varying etiologies have focused on HSCs being the 

main precursor cells of myofibroblasts that populate the organ during fibrosis 

[90,99,103,104]. However, in a study that used lineage fate tracing methods, Mederacke 

and coworkers [104] concluded that while HSCs were the dominant progenitor to myofi-

broblasts regardless of the etiology of liver fibrosis, there were other precursors as well. 

Thus, there is also evidence that bone marrow-derived fibrocytes generate liver myofibro-

blasts [105,106]. There is also evidence, albeit controversial, that hepatocytes or cholangi-

ocytes via EMT [107] and sinusoidal endothelial cells via EndoMT [108] can serve as pro-

genitors to myofibroblasts. What other precursors besides HSCs contribute to fibrosis may 

depend on the specific etiology of the liver injury. Regardless of the precursor, however, 

it does not appear that traditional BMs have a role in modulating TGF beta or other pro-

fibrotic regulators in liver fibrosis. It is possible that collagen type IV, because it directly 

binds TGF beta-1 [2,27,28], as well as perlecan [26] or other molecules, can modulate liver 

TGF beta within the microenvironment of the space of Dissé, but not via traditional BMs. 

This can be similar to corneal fibroblasts producing collagen type IV in the corneal stroma 

far from the BMs to modulate TGF beta [7]. However, in the cornea, it is not known 

whether the collagen type IV detected by immunohistochemistry in the stroma far away 

from BMs after fibrotic injuries is full-length collagen type IV or rather degradation frag-

ments of collagen type IV. Collagen type IV degradation fragments, such as arresten (al-

pha-1 chain) and canstatin (alpha-2 chain), can have important functions, such as inhibi-

tion of neovascularization. 

 

Figure 9. TEM of normal liver in the rabbit. No BM is associated with hepatocytes, endothelial cells 

(e), vascular channel sinusoids or spaces of Dissé (D). The hepatocyte has processes (arrowheads) 

that extend into the space of Dissé. The sinusoids have a discontinuous, highly fenestrated endothe-

lial lining. Neither the hepatocytes nor endothelial cells have BMs that separate them from the space 

of Dissé. Mag. 30,000X. Reprinted with permission from Saikia et al. Cell and Tissue Res, 

2018;374:439-453. 

5. Conclusions 

The fibrosis response, to a wide range of injuries, is of obvious importance in virtually 

every organ where it was investigated. It seems unlikely that this overall process would 

be unique to each individual organ. Rather, it seems probable that the systems in place to 

promote fibrosis, and its resolution, would be generally utilized throughout the organism, 

except possibly in organs with specialized functions, such as the liver, that require a 
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structure free of traditional BMs. With that in mind, this author is of the opinion that the 

importance of the BMs in corneal fibrosis from traumatic, infectious, chemical, and surgi-

cal injuries, where it is most easily studied without numerous potentially confounding 

cells, is likely to be also relevant in the many other organs where fibrosis is important in 

the pathophysiological response to injuries and diseases. 
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