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Detailed methods for genetic paternity analysis 
We extracted DNA from blood samples using the Omega Bio-Tek EZ-96 Total DNA/RNA 
Isolation Kit®. All individuals at seven highly polymorphic microsatellite loci developed 
from different bird species (Table S1). For PCR reactions, we added 1 μl of extracted DNA to 
a mixture including 1.3 μl of 25 mM MgCl2, 1 μl of 10x PCR buffer (Sigma), 0.2 μl of 10 mM 
dNTPs, 0.12 μl of each 10 mM PCR primer (one of each pair labeled with a fluorescent dye), 
0.1 μl of 2.5U/μl Taq polymerase (Sigma Jumpstart®), and DNA water up to a total volume of 
10 μl per well. We used the following PCR conditions: following an initial 3 min 
denaturation at 94°C, the reaction mix went through 35 cycles of 94°C for 30 sec, X°C for 30 
sec, and 72°C for 1 min, ending with a cycle at 72°C for 5 min where X was the optimized 
annealing temperature or a touchdown procedure from 58-56°C (Table S1). After PCR, we 
created two mixtures for genotyping, consisting of 1 μl PCR products from either three or 
four loci, each labeled with a different dye (6FAM, PET, VIC, or NED), combined with 11.9 
μl formamide and 0.1 μl size standard (GeneScan-500 LIZ®) for each well. PCR products 
were separated on an ABI Prism 3730® automated sequencer, and alleles were scored using 
the program GeneMapper (Applied Biosystems) and verified by eye. 
 
To assign the paternity of each offspring, we assumed the breeding female observed at the 
nest was the genetic mother of all offspring in that nest, as has been confirmed in previous 
studies of this species (Webster et al. 2008; Baldassarre and Webster 2013). We were able to 
further validate this assumption by examining allele mismatches between the mother and 
offspring in her nest. If a given offspring were the result of brood parasitism, we would 
expect it to mismatch with the social mother at multiple loci. We never observed greater 
than two mismatches between offspring and assumed mothers and attributed these to null 
alleles or scoring errors. We assigned paternity using the program CERVUS 3.0 (Kalinowski 
et al. 2007), which determines which male in the population has the highest likelihood of 
siring a given offspring. CERVUS calculates a log likelihood score (LOD) for each male 
accounting for offspring genotype, maternal genotype, and genotype scoring errors (e.g., 
from null alleles). For each assignment, we used a “total evidence” (Prodöhl et al. 1998) 
approach to check the CERVUS assignment. In most cases, we accepted the CERVUS 
assignment if the male chosen had 0 or 1 mismatch with the nestling, but we rejected the 
CERVUS assignment and assigned paternity to a male with a lower LOD score under three 
circumstances: 1) if both males had similar LOD scores but the lower ranked male had fewer 
mismatches, 2) if both males had a single mismatch but the lower ranked male’s mismatch 
could be explained by a null allele, and 3) if the males had the same low number of 
mismatches and similar LOD scores, but independent evidence indicated the lower ranked 
male was a more likely sire (after (Webster et al. 2004)). Independent evidence that we 



considered included whether a candidate male was the social father, sired other offspring in 
the nest, exhibited a mismatch consistent with a scoring error, or was highly unlikely to have 
copulated with the female based on an unreasonably large distance between territories. 
Using this additional evidence likely improved the reliability of several assignments but was 
unlikely to affect our results because we accepted the CERVUS-assigned male in most cases 
(see below). 
 
When combined, the microsatellite loci were highly polymorphic and informative for 
paternity analysis (mean number of alleles per locus = 11.7, mean expected heterozygosity = 
0.69, Table 1). Allele frequencies did not deviate from Hardy-Weinberg expectations, but 
two loci (Mcy2 and Smm7) had an estimated null allele frequency greater than 0.05, which 
was accounted for in subsequent paternity assignments. The average probability of 
excluding a randomly chosen male as the sire was high, with a combined exclusion 
probability of 0.998. 
 
Table S1: Characteristics of microsatellite loci used for paternity analysis. Probability of 
exclusion is the probability of excluding a randomly selected, unrelated male as the sire 
given the genotype of the offspring and mother. References for primers are as follows: all 
Mcy loci from (Double et al. 1997), Msp6 from (Webster et al. 2004), Ase9 from (Richardson et 
al. 2000), and Smm7 from (Maguire et al. 2006). 
 

Locus Annealing 
temperature 

(°C) 

# 
Alleles 

Expected 
heterozygosity 

(He) 

Observed 
heterozygosity 

(Ho) 

Prob. of 
exclusion 

Null 
allele 

frequency 
Mcy1 55-58 10 0.717 0.737 0.509 -0.021 
Mcy2 61 5 0.088 0.076 0.044 0.071 
Mcy4 55-58 12 0.822 0.761 0.66 0.035 
Mcy7 61 16 0.806 0.820 0.647 0.014 
Msp6 55-58 8 0.698 0.686 0.463 0.001 
Ase9 61 11 0.788 0.766 0.62 0.015 
Smm7 61 20 0.810 0.810 0.802 0.053 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Pairwise relatedness 
 

 
Figure S1. Pairwise relatedness (r) for all known first-order relatives (i.e., mother-
offspring combinations, predicted pairwise r = 0.5) in our study population. Relatedness of 
known first-order relatives was r = 0.45 ± 0.15 (mean ± sd; range -0.08 to 0.91, n = 420 mother-
offspring combinations). 
 
 
 
 

 
Figure S2. Pairwise relatedness (r) for all social pairs in the study population across the 
entire study period (2010-2013). Relatedness of social pairs was generally low (mean ± sd = 
0.0296 ± 0.2, n = 221 pairs). Red dashed line indicates cut-off value or r ≥ 0.243. Blue dashed 
line indicates cut-off value of r ≥ 0.375 (see main text for details of cut-off values).  
 
 
  



Result of the global models examining the relationship between reproductive success and 
sperm traits  
Total Paternity Success 
Total paternity success was significantly associated with male plumage colour, the number 
of neighbours, whether or not helpers were present, whether or not a male was paired 
incestuously, and year (Table S2). Specifically, males had greater total reproductive success 
when they bred in red/black nuptial plumage and when helpers were present in the social 
group. Males also gained greater reproductive success when the number of neighbouring 
territories was higher, whereas male reproductive success was lower when the male was 
paired incestuously with the social female. Total reproductive success also differed between 
the study years.    
 
Within-pair paternity 
In our global model, we found a positive association between sperm numbers (cloacal 
protuberance volume) and within-pair paternity success in male red-backed fairy-wrens 
(Table S3).    
 
Extra-pair paternity 
In our global model, we found a significant effect of year on extra-pair paternity success in 
male red-backed fairy-wrens (Table S4).  Specifically, extra-pair paternity rates were lower 
in 2013 than 2011.  
 
Table S2. Results of the global model relating total male reproductive success (i.e., sum of all 
offspring produced) to sperm traits, male plumage colouration, and socio-ecological factors 
that may shape male mating opportunities. Significant variables in bold.  
 

Fixed effects Estimate (SE) z p 
Intercept -0.40 (0.43) -0.94 0.35 
Total sperm length -5.09 (8.92) -0.57 0.57 
Total sperm length (quadratic term) 5.18 (8.91) 0.58 0.56 
Standard deviation (sperm length) 0.02 (0.10) 0.22 0.83 
Flagellum:head ratio 0.04 (0.11) 0.36 0.72 
Cloacal protuberance volume 0.12 (0.10) 1.16 0.25 
Male plumage colour (red/black) 0.84 (0.41) 2.05 0.041 
Year (2013) 0.51 (0.24) 2.14 0.033 
Incestuously paired (Yes) -1.78 (0.78) -2.30 0.021 
Helpers present (Yes) 0.58 (0.26) 2.28 0.023 
Number of neighbours 0.25 (0.10) 0.10 0.016 

 
 
 
 
 
 



Table S3. Results of the global model relating male within-pair paternity success to sperm 
traits, male plumage colouration, and socio-ecological factors that may shape male mating 
opportunities. Significant variables in bold.  
 

Fixed effects Estimate (SE) z p 
     Intercept -1.20 (1.27) -0.95 0.34 
     Total sperm length -11.22 (35.19) -0.32 0.75 
     Total sperm length (quadratic term) 11.22 (35.21) 0.32 0.-75 
     Standard deviation (sperm length) -0.38 (0.39) -0.96 0.34 
     Flagellum:head ratio -0.68 (0.48) -1.42 0.16 
     Cloacal protuberance volume 1.06 (0.48) 2.21 0.027 
     Male plumage colour (red/black) 0.46 (1.27) 0.36 0.72 
     Year (2013) 0.89 (0.90) 0.99 0.32 
     Incestuously paired (Yes) -3.24 (2.19) -1.48 0.14 
     Helpers present (Yes) 1.04 (1.05) 0.99 0.32 
     Number of neighbours -0.13 (0.41) -0.32 0.75 
 Variance SD n 
Pair ID 5.193 2.28 76 

 
 
Table S4. Results of the global model relating male extra-pair paternity success to sperm 
traits, male plumage colouration, and socio-ecological factors that may shape male mating 
opportunities. Significant variables in bold.  
 

Fixed effects Estimate (SE) z p 
Intercept 1.71 (0.47) 3.60 0.001 
Total sperm length 13.34 (18.45) 0.72 0.47 
Total sperm length (quadratic term) -13.12 (18.40) -0.71 0.48 
Standard deviation (sperm length) 0.29 (0.24) 1.22 0.22 
Flagellum:head ratio 0.44 (0.28) 1.58 0.11 
Cloacal protuberance volume 0.32 (0.26)  1.24 0.21 
Year (2013) -1.58 (0.57) -2.75 0.006 
Helpers present (Yes) -0.53 (0.54) -0.99 0.32 
Number of neighbours -0.13 (0.27) -0.47 0.64 

 
 
 
  



Sperm morphology in the red-backed fairy-wren 
 
Table S5. Sperm morphology in the red-backed fairy-wren. Total sperm length, length of 
the different sperm components, and the within-male coefficient of variation (CVwm) in 
sperm length across all male red-backed fairy-wrens, as well as total sperm length and 
length of the different sperm components for the different phenotypic classes of males 
(red/black breeders, brown breeders, and helpers). F:H is the ratio of sperm flagellum length 
to head length.  
 

 Total sperm 
length (μm) 

Head length 
(μm) 

Midpiece length 
(μm) 

Flagellum length 
(μm) 

F:H ratio n 

All males 89.34 ± 1.94 17.06 ± 0.78 14.98 ± 0.91 72.28 ± 1.69 4.25 ± 0.21 130 
All males: 
CVwm 

2.08 4.76 6.22 2.33  130 

Red/black 
breeders 

89.44 ± 2.03 17.11 ± 0.77 15.04 ± 0.94 72.33 ± 1.79 4.24 ± 0.21 99 

Brown 
breeders 

89.36 ± 1.52 17.04 ± 0.81 14.82 ± 0.78 72.33 ± 1.37 4.27 ± 0.23 20 

Helpers 87.64 ± 1.94 16.02 ± 0.41 14.49 ± 1.16 71.63 ± 1.75 4.48 ± 0.13 5 
 
 
 
  



Sperm morphology data for 12 species in the Australian Maluridae  
 
Table S15. Total sperm length in 12 species of Australian Maluridae. Measurements based 
on data from 10 cells per male. Shown are mean ± standard deviation.  
 

Species Total sperm length 
(μm) 

Number of 
males 

Southern emu-wren (Stipiturus malachurus) 75.43 ± 3.00 7 
Striated grasswren (Amytornis striatus) 82.12 ± 2.16 8 
Purple-crowned fairy-wren (M. coronatus) 85.28 ± 2.23 5 
Splendid fairy-wren (M. splendens) 85.53 ± 1.47 23 
Superb fairy-wren (M. cyaneus) 86.76 ± 2.13 15 
Red-backed fairy-wren (M. melanocephalus) 89.34 ± 1.94 130 
White-winged fairy-wren (M. leucopterus) 87.87 ± 1.69 11 
Variegated fairy-wren (M. lamberti) 86.70 ± 1.76  25 
Purple-backed fairy-wren (M. assimilis) 86.99 ± 1.14 9 
Blue-breasted fairy-wren (M. pulcherrimus) 88.38 ± 2.07 16 
Lovely fairy-wren (M. amabilis) 90.04 ± 1.55 6 
Red-winged fairy-wren (M. elegans) 90.63 ± 1.97 15 

 
 
 
  



R code for analyses of paternity 
 
## Required libraries 
library(lme4) 
library(car) 
library(MuMIn) 
library(DHARMa) 
library(MASS) 
 
#Dataframes 
TP <- read.csv("DataframeTPCount.csv") #total paternity success as sum WPP and EPY 
TPPoff <- read.csv("DataframeTPProportion.csv") #total paternity success as proportion of 
offspring gained 
WPP <- read.csv("DataframeWPP.csv") #within-pair paternity success at clutch level 
EPP <- read.csv("DataframeEPP.csv") #extra-pair paternity success 
 
 
## TOTAL PATERNITY ## 
 
#### Relationship between total paternity (sum of WPP and EPP) and sperm traits + 
covariates 
 
globalTPINC.nbin2011.375 <- glm.nb(TP ~ scale(TSL) + scale(TSL^2) + scale(TSL_sd)+ 
scale(F_to_H_ratio) + scale(CP_Vol) + factor(Plumage) + factor(Year) + factor(Inc.375) + 
factor(helpers) + scale(Number_of_Neighbours), data=TP) 
summary(globalTPINC.nbin2011.375) 
vif(globalTPINC.nbin2011.375) 
options(na.action = "na.fail") 
 
## test to see if interaction between plumage colour and CP volume should be included in 
global model 
globalTPINC.nbin2011.375_B <- glm.nb(TP ~ scale(TSL) + scale(TSL^2) + scale(TSL_sd)+ 
scale(F_to_H_ratio) + scale(CP_Vol) + factor(Plumage) + factor(Year) + factor(Inc.375) + 
factor(helpers) + scale(Number_of_Neighbours) + factor(Plumage)*scale(CP_Vol), data=TP) 
summary(globalTPINC.nbin2011.375_B) 
anova(globalTPINC.nbin2011.375,globalTPINC.nbin2011.375_B) # interactions doesn't 
improve the model, don't include.  
AICc(globalTPINC.nbin2011.375,globalTPINC.nbin2011.375_B) 
 
##model assumptions testing for global model 
(DispTP11 <- testDispersion(globalTPINC.nbin2011.375)) 
simTP11 <- simulateResiduals(fittedModel = globalTPINC.nbin2011.375, plot = T) 
 
##model selection approach: total paternity 
DredgeTP2011.375<- dredge(globalTPINC.nbin2011.375, rank="AICc")  
head(DredgeTP2011.375, 15) 
modelsDredgeTPNEW2011.375 <- get.models(DredgeTP2011.375, subset = delta < 4) 



summary(modelsDredgeTPNEW2011.375[[1]]) 
 
write.csv(DredgeTP2011.375, file="TPcount.csv") 
 
##model assumptions testing for best model 
(DispTP11 <- testDispersion(modelsDredgeTPNEW2011.375[[1]])) 
simTP11 <- simulateResiduals(fittedModel = modelsDredgeTPNEW2011.375[[1]], plot = T) 
 
## try model with top value of CP removed 
newTP<-subset(TP, CP_Vol < 200) 
 
#model with new dataframe (minus 1 extreme CP value) 
globalTP_newTP <- glm.nb(TP ~ scale(TSL) + scale(TSL^2) + scale(TSL_sd)+ 
scale(F_to_H_ratio) + scale(CP_Vol) + factor(Plumage) + factor(Year) + factor(Inc.375) + 
factor(helpers) + scale(Number_of_Neighbours), data=newTP) 
summary(globalTP_newTP) 
vif(globalTP_newTP) 
options(na.action = "na.fail") 
 
##model assumptions testing for global model 
(DispTP11 <- testDispersion(globalTP_newTP)) 
simTP11 <- simulateResiduals(fittedModel = globalTP_newTP, plot = T) 
 
##model selection approach: total paternity 
DredgeTP_newTP<- dredge(globalTP_newTP, rank="AICc")  
head(DredgeTP_newTP, 15) 
modelsDredgeTP_newTP <- get.models(DredgeTP_newTP, subset = delta < 4) 
summary(modelsDredgeTP_newTP[[1]]) 
 
write.csv(DredgeTP_newTP, file="TPcount_modCP.csv") 
 
 
##Repeat main anlaysis with alternate r cut-off r 0.243 
globalTPINC.nbin2011.243 <- glm.nb(TP ~ scale(TSL) + scale(TSL^2) + scale(TSL_sd)+ 
scale(F_to_H_ratio) + scale(CP_Vol) + factor(Plumage) + factor(Year) + factor(Inc.243) + 
factor(helpers) + scale(Number_of_Neighbours), data=TP) 
summary(globalTPINC.nbin2011.243) 
vif(globalTPINC.nbin2011.243) 
options(na.action = "na.fail") 
 
##model selection approach: total paternity r 0.243 
DredgeTP2011.243<- dredge(globalTPINC.nbin2011.243, rank="AICc")  
head(DredgeTP2011.243, 15) 
modelsDredgeTPNEW2011.243 <- get.models(DredgeTP2011.243, subset = delta < 4) 
summary(modelsDredgeTPNEW2011.243[[1]]) 
 
write.csv(DredgeTP2011.243, file="TPcount_243.csv") 



 
 
#### Relationship between total paternity (proportion response) and sperm traits + 
covariates 
 
cbTPGloPost <- glm(cbind(TP,(Chicks_Year-TP)) ~ scale(TSL) + scale(TSL^2) + scale(TSL_sd) 
+ scale(F_to_H_ratio) + scale(CP_Vol) + factor(Year) + factor(Plumage) + factor(Inc.375) + 
factor(helpers) + scale(Number_of_Neighbours), data=TPPoff, family=binomial(link="logit")) 
summary(cbTPGloPost) 
vif(cbTPGloPost) 
options(na.action = "na.fail") 
 
#test assumptions of global model 
(Dispersion_TP_global <- testDispersion(cbTPGloPost )) 
simulationOutput_globalTP  <- simulateResiduals(fittedModel = cbTPGloPost, plot = T) 
 
# test to see if interaction between plumage colour and CP volume should be included in 
global model 
cbTPGloPost_A <- glm(cbind(TP,(Chicks_Year-TP)) ~ scale(TSL) + scale(TSL^2) + 
scale(TSL_sd) + scale(F_to_H_ratio) + scale(CP_Vol) + factor(Year) + factor(Plumage) + 
factor(Inc.375) + factor(helpers) + scale(Number_of_Neighbours) + 
factor(Plumage)*scale(CP_Vol), data=TPPoff, family=binomial(link="logit")) 
summary(cbTPGloPost_A) 
anova(cbTPGloPost,cbTPGloPost_A, test="Chisq") # interactions doesn't improve the model, 
don't include.  
 
#model selection approach 
DrTPP <- dredge(cbTPGloPost, rank="AICc") 
head(DrTPP, 15) 
MoDrTPP <- get.models(DrTPP, subset = delta < 4) 
summary(MoDrTPP[[1]]) 
r.squaredGLMM(MoDrTPP[[1]]) 
 
##export model selection outputs 
write.csv(DrTPP, file="TPPoff.csv") 
 
#test assumptions about top model 
(DiTP3 <- testDispersion(MoDrTPP[[1]])) 
SiTP3 <- simulateResiduals(fittedModel = MoDrTPP[[2]], plot = T)  
 
 
## WITHIN-PAIR PATERNITY ## 
 
#### Examining relationship between within-pair paternity and sperm traits + covariates - 
global model 
globalWP.375P <- glmer(cbind(WPY_Clutch, EPY_in_Clutch) ~  scale(TSL) + scale(TSL^2) + 
scale(TSL_sd) + scale(F_to_H_ratio) + scale(CP_Vol) + factor(Plumage) + factor(Year) + 



factor(Inc.375) + factor(helpers) + scale(Number_of_Neighbours) + (1|PairID) ,  data=WPP, 
family=binomial(link="logit"), control=glmerControl(optimizer="bobyqa", 
optCtrl=list(maxfun=100000))) 
summary(globalWP.375P) 
vif(globalWP.375P) 
options(na.action = "na.fail") 
 
#test model assumptions of the global model 
(Dispersion_WPP_global <- testDispersion(globalWP.375P )) 
simulationOutput_globalWP.375P  <- simulateResiduals(fittedModel = globalWP.375P, plot 
= T) #model is fine 
 
#Test to see if interaction between male plumage colour and CP vol should be included in 
global model 
globalWP.375P_A <- glmer(cbind(WPY_Clutch, EPY_in_Clutch) ~  scale(TSL) + scale(TSL^2) 
+ scale(TSL_sd) + scale(F_to_H_ratio) + scale(CP_Vol) + factor(Plumage) + factor(Year) + 
factor(Inc.375) + factor(helpers) + scale(Number_of_Neighbours) + 
factor(Plumage)*scale(CP_Vol) + (1|PairID) ,  data=WPP, family=binomial(link="logit"), 
control=glmerControl(optimizer="bobyqa", optCtrl=list(maxfun=100000))) 
summary(globalWP.375PA) 
anova(globalWP.375P,globalWP.375P_A) ## don't include the interaction, use more 
parsimonious model without interaction 
AICc(globalWP.375P,globalWP.375P_A) 
 
#model selection approach 
DredgeWPNEW <- dredge(globalWP.375P , rank="AICc")  
head(DredgeWPNEW, 25) 
modelsDredgeWPNEW <- get.models(DredgeWPNEW, subset = delta < 4) 
summary(modelsDredgeWPNEW[[1]]) 
r.squaredGLMM(modelsDredgeWPNEW[[2]]) 
predict1<-predict(modelsDredgeWPNEW[[1]]) 
 
WPPSDTSL$predict<-predict1 
write.csv(WPPSDTSL,file="WPPpredict.csv") 
 
##export model selection outputs 
write.csv(DredgeWPNEW, file="WPP.csv") 
write.csv(predict1,file="predictWPPtopmodel.csv") 
 
#test assumptions about top model 
(Dispersion_WPP_NEW <- testDispersion(modelsDredgeWPNEW[[1]])) 
simulationOutput_WPP_NEW <- simulateResiduals(fittedModel = 
modelsDredgeWPNEW[[1]], plot = T) 
 
 
## Repeat this analysis using 0.243 as incestuous cutoff 



globalWP.243P <- glmer(cbind(WPY_Clutch, EPY_in_Clutch) ~  scale(TSL) + scale(TSL^2) + 
scale(TSL_sd) + scale(F_to_H_ratio) + scale(CP_Vol) + factor(Plumage) + factor(Year) + 
factor(Inc.243) + factor(helpers) + scale(Number_of_Neighbours) + (1|PairID) ,  data=WPP, 
family=binomial(link="logit"), control=glmerControl(optimizer="bobyqa", 
optCtrl=list(maxfun=100000))) 
summary(globalWP.243P) 
vif(globalWP.243P) 
options(na.action = "na.fail") 
 
##model selection approach using 0.243 incestuous pairr cutoff 
DredgeWPNEW_Inc.243 <- dredge(globalWP.243P , rank="AICc")  
head(DredgeWPNEW_Inc.243, 25) 
modelsDredgeWPNEW_Inc.243 <- get.models(DredgeWPNEW_Inc.243, subset = delta < 4) 
summary(modelsDredgeWPNEW_Inc.243[[1]]) 
r.squaredGLMM(modelsDredgeWPNEW_Inc.243[[1]]) 
 
##export model selection outputs with Incestuous pairs cutoff as 0.243 
write.csv(DredgeWPNEW_Inc.243, file="WPP_Inc.243.csv") 
 
##test assumptions about top model with Incestuous pairs cutoff as 0.243 
(Dispersion_WPP_NEW <- testDispersion(modelsDredgeWPNEW_Inc.243[[1]])) 
simulationOutput_WPP_NEW <- simulateResiduals(fittedModel = 
modelsDredgeWPNEW_Inc.243[[1]], plot = T) 
 
 
## try model with top value of CP removed 
newWPP<-subset(WPP, CP_Vol < 200) 
 
globalWP_NEWWPP <- glmer(cbind(WPY_Clutch, EPY_in_Clutch) ~  scale(TSL) + 
scale(TSL^2) + scale(TSL_sd) + scale(F_to_H_ratio) + scale(CP_Vol) + factor(Plumage) + 
factor(Year) + factor(Inc.375) + factor(helpers) + scale(Number_of_Neighbours) + (1|PairID) ,  
data=newWPP, family=binomial(link="logit"), control=glmerControl(optimizer="bobyqa", 
optCtrl=list(maxfun=100000))) 
summary(globalWP_NEWWPP) 
vif(globalWP_NEWWPP) 
options(na.action = "na.fail") 
 
#test model assumptions of the new global model 
(Dispersion_WPP_global <- testDispersion(globalWP_NEWWPP)) 
simulationOutput_globalWP_NEWWPP  <- simulateResiduals(fittedModel = 
globalWP_NEWWPP, plot = T) #model is fine 
 
#model selection approach 
DredgeWPNEW_NEWWPP <- dredge(globalWP_NEWWPP , rank="AICc")  
head(DredgeWPNEW_NEWWPP, 25) 
modelsDredgeWPNEW_NEWWPP <- get.models(DredgeWPNEW_NEWWPP, subset = 
delta < 4) 



summary(modelsDredgeWPNEW_NEWWPP[[1]]) 
 
write.csv(DredgeWPNEW_NEWWPP, file="WPP_reducedCP.csv") 
 
## EXTRA-PAIR PATERNITY ## 
 
#### Relationship between extra-pair paternity and sperm traits + covariates 
GLMEPPBrightNEW1 <- glm(cbind(sumEPY, NoEPY) ~  scale(TSL) + scale(TSL^2) + 
scale(TSL_sd) + scale(F_to_H_ratio) + scale(CP_Vol) + factor(Year) + factor(helpers) + 
scale(Number_of_Neighbours),  data=EPP, family=binomial(link="logit")) 
summary(GLMEPPBrightNEW1) 
vif(GLMEPPBrightNEW1) 
options(na.action = "na.fail") 
 
#test model assumptions of the global model 
(Dispersion_EPP_global <- testDispersion(GLMEPPBrightNEW1)) 
simulationOutput_globalEPP  <- simulateResiduals(fittedModel = GLMEPPBrightNEW1, 
plot = T) #model is fine 
 
#model selection approach 
EPPDredgeBrightNew1 <- dredge(GLMEPPBrightNEW1, rank="AICc")   
head(EPPDredgeBrightNew1, 25) 
modelsEPPDredgeBrightNew1 <- get.models(EPPDredgeBrightNew1, subset = delta < 4) 
summary(modelsEPPDredgeBrightNew1[[1]]) 
r.squaredGLMM(modelsEPPDredgeBrightNew1[[1]]) 
 
##export model selection outputs 
write.csv(EPPDredgeBrightNew1, file="EPP.csv") 
 
## test model assumptions 
(Dispersion_EPP_BrightNew1 <- testDispersion(modelsEPPDredgeBrightNew1[[1]])) 
simulationOutputEPPBrightNew1 <- simulateResiduals(fittedModel = 
modelsEPPDredgeBrightNew1[[1]], plot = T) 
 
 
##Repeat EPP with incestuous pair cut-off as r > 0.243 
GLMEPPBrightNEW1.243 <- glm(cbind(sumEPY, NoEPY) ~  scale(TSL) + scale(TSL^2) + 
scale(TSL_sd) + scale(F_to_H_ratio) + scale(CP_Vol) + factor(Year) + factor(Inc.243) + 
factor(helpers) + scale(Number_of_Neighbours),  data=EPP, family=binomial(link="logit")) 
summary(GLMEPPBrightNEW1.243) 
vif(GLMEPPBrightNEW1.243) 
options(na.action = "na.fail") 
 
##model selection approach using 0.243 incestuous pair cutoff 
 
DredgeGLMEPPBrightNEW1.243 <- dredge(GLMEPPBrightNEW1.243, rank="AICc")  
head(DredgeGLMEPPBrightNEW1.243, 25) 



modelsDredgeGLMEPPBrightNEW1.243 <- get.models(DredgeGLMEPPBrightNEW1.243, 
subset = delta < 4) 
summary(modelsDredgeGLMEPPBrightNEW1.243[[8]]) 
r.squaredGLMM(modelsDredgeGLMEPPBrightNEW1.243[[1]]) 
 
##export model selection outputs 
write.csv(DredgeGLMEPPBrightNEW1.243, file="EPP_In234.csv") 
 
## test model assumptions 
(Dispersion_DredgeGLMEPPBrightNEW1.243 <- 
testDispersion(modelsDredgeGLMEPPBrightNEW1.243[[1]])) 
simulationOutputEPPBrightNew1.243 <- simulateResiduals(fittedModel = 
modelsDredgeGLMEPPBrightNEW1.243[[1]], plot = T) 
 
 
 


