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Abstract: The cause of multiple myeloma (MM) remains largely unknown. Several pieces of evidence
support the involvement of genetic and multiple environmental factors (i.e., chemical agents) in
MM onset. The inter-individual variability in the bioactivation, detoxification, and clearance of
chemical carcinogens such as asbestos, benzene, and pesticides might increase the MM risk. This
inter-individual variability can be explained by the presence of polymorphic variants in absorption,
distribution, metabolism, and excretion (ADME) genes. Despite the high relevance of this issue, few
studies have focused on the inter-individual variability in ADME genes in MM risk. To identify
new MM susceptibility loci, we performed an extended candidate gene approach by comparing
high-throughput genotyping data of 1936 markers in 231 ADME genes on 64 MM patients and 59
controls from the CEU population. Differences in genotype and allele frequencies were validated
using an internal control group of 35 non-cancer samples from the same geographic area as the
patient group. We detected an association between MM risk and ADH1B rs1229984 (OR = 3.78;
95% CI, 1.18–12.13; p = 0.0282), PPARD rs6937483 (OR = 3.27; 95% CI, 1.01–10.56; p = 0.0479), SLC28A1
rs8187737 (OR = 11.33; 95% CI, 1.43–89.59; p = 0.005), SLC28A2 rs1060896 (OR = 6.58; 95% CI,
1.42–30.43; p = 0.0072), SLC29A1 rs8187630 (OR = 3.27; 95% CI, 1.01–10.56; p = 0.0479), and ALDH3A2
rs72547554 (OR = 2.46; 95% CI, 0.64–9.40; p = 0.0293). The prognostic value of these genes in MM
was investigated in two public datasets showing that shorter overall survival was associated with
low expression of ADH1B and SLC28A1. In conclusion, our proof-of-concept findings provide novel
insights into the genetic bases of MM susceptibility.

Keywords: multiple myeloma; single nucleotide polymorphism; SNP; ADME; risk alleles; hemato-
logical malignancies; DMET Plus

1. Introduction

Multiple myeloma (MM) accounts for approximately 1% of all cancers and 10% of
all hematologic malignancies. MM remains a common and incurable disorder, although
remarkable progress in treatment has been made [1]. In 2020, based on the GLOBOCAN
database (https://gco.iarc.fr/today, accessed on 10 November 2021 ), the estimated number
of new cases diagnosed yearly in Europe was over 50,000, and almost 32,000 patients die of
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the disease. There is strong evidence that obesity, systemic inflammation, oxidative stress,
and exposure to radiation or environmental chemical agents might increase the risk of
MM [2]. Moreover, it has been also reported that inherited genetic variants significantly
contribute to MM onset, accounting for approximately 16% of cases [3].

Environmental exposure to chemicals such as dioxin, asbestos, benzene, and pesti-
cides are causally connected to MM transition from the two stages of Monoclonal Gam-
mopathy of Uncertain Significance (MGUS) and Smouldering Multiple Myeloma [4]. The
metabolism of chemical carcinogens relies on key processes such as bioactivation by phase
I drug-metabolizing enzymes, detoxification by phase II drug-metabolizing enzymes, and
elimination by transporters. The genes encoding these proteins, known as Absorption,
Distribution, Metabolism, Excretion (ADME) genes, are highly polymorphic and their role
is also well established in the metabolism of endobiotics (i.e., hormones, steroids, and bile
acids) and in pharmacogenetics, where the genetic profile of relevant ADME genes is used
to guide tailored prescription and dose adjustments [5,6].

The inter-individual variability in cancer susceptibility, including in MM, may be
partially explained by genetic variations in xenobiotic enzymes that can enhance or impair
the transformation of chemicals into active carcinogens. On this basis, there is an urgent
need of studies focused to the understanding of the effective role of chemical carcinogens
in MM risk. So far, some studies have investigated the association of single nucleotide
polymorphisms (SNPs) in ADME genes with MM risk [7,8], but no studies have explored
this relationship using an extended candidate gene approach. Therefore, the toxic role in
MM onset needs more efforts for disclosing its real impact in MM risk.

In this scenario, we simultaneously genotyped 1936 tagSNPs in 231 ADME genes
using the DMETTM SNP panel to identify unknown potential biomarkers associated with
MM susceptibility in 64 MM patients compared to 59 healthy individuals from the CEU
population to investigate the presence of differences in allele frequencies and the association
to MM onset risk. Differences in genotype and allele frequencies between cases and controls
were validated using an internal control group of 35 non-cancer samples from the same
geographic area as the patient group.

2. Materials and Methods
2.1. Sample Collection and Genotyping

A total of 64 MM patients at diagnosis were enrolled from February 2012 to June
2017 at the Medical and Translational Oncology Unit of Mater Domini Hospital of Magna
Graecia University, Catanzaro, Italy. The study was compliant with Institutional bioethical
standards and each individual provided a standard informed consent and agreed to use
his/her biological sample for research purposes.

Peripheral blood (3 mL) from each patient was collected for genomic DNA extraction
using the Perfect Pure DNA Blood kit (5 Prime) and according to the manufacture’s
instruction. Genotyping of 1936 ADME markers was performed using the DMET Plus
assay (Thermo Fisher Scientific, Waltham, MA, USA.) as previously described [9–11].
Genotypes were extracted using DMET Console software version 1.1 (Thermo Fisher
Scientific, Waltham, MA, USA). A call rate ≤ 96%, 100% of genotype concordance among the
two groups and high rate of “possible rare allele”/“no call” as exclusion criteria from further
analysis was used. Allele frequency values for the 59 CEU Hapmap samples are available
on GPL17860 dataset. The internal dataset including 35 non-cancer samples was previously
genotyped with the same platform and previously topic of two publications [12,13].

2.2. Cross-Validation Leave-One-Out Analysis

We carried out internal validation in our MM dataset by a Cross Validation (CV)-based
approach, called k-fold CV. We split the dataset into k equal partitions (or folds). The k
partitions are splitted in “test” and “training” datasets, to train and test the performance
measure of the exact selection of MM risk alleles identified by DMET-Analyzer. We used
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the first fold as the test set and the union of the other folds as the training set, and we
computed the accuracy repeating these steps ten times (K = 10).

2.3. Overall Survival Analysis

We investigated genes with p-value ≤ 0.05 to identify any correlation with patients’
prognosis. We performed overall survival (OS) analysis using the survival analysis func-
tion available on the GenomicScape online web tool (http://www.genomicspace.com,
accessed on 21 April 2021). The first dataset includes 414 untreated MM patients from
the University of Arkansas (GSE4581) analyzed by the Affymetrix GeneChip™ Human
Genome U133 Plus 2.0 Array while the second cohort includes 264 relapsed untreated
MM patients (GSE9782) from Mulligan et al. [14] analyzed by the Affymetrix GeneChip™
Human Genome U133 A/B. All probe sets represented on the GeneChip™ Human Genome
U133A/B Array were identically replicated on the GeneChip Human Genome U133A 2.0
Array. In Kaplan–Meier curves, generated using GenomicScape web tool, the optimal
cut-off for dividing expression in “high” or “low” is estimated automatically using the
Maxstat cutpoint threshold algorithm, foregone the data normalization performed using
the variance stabilizing normalization algorithm.

2.4. Statistical Analysis

Comparison of genotype frequency in the MM patients versus CEU population was
performed by Fisher’s exact test [15]. Bonferroni’s correction was applied for multiple
comparisons. Hardy-Weinberg equilibrium in the control group was tested using χ2 test.
Results of potential interest were limited to those in which the p-value was ≤0.05. Multiple
logistic regression models (over-dominant and recessive) were employed to calculate odds
ratios (ORs), 95% confidence intervals (CIs), and p-values using Med Calc v12.3.0.

In OS analysis, only statistically significant results showing a concordant trend by
probe set between the two datasets were considered. Hardy-Weinberg equilibrium was
tested for each polymorphic variant.

2.5. Pathway Enrichment Analysis

Pathway enrichment analysis (PEA) helps to obtain mechanistic awareness into gene
lists produced from genomics investigations and identifies biological pathways enriched
in a gene list. PEA includes three essential steps: (i) definition of a genes list of interest
from the disease under investigation; (ii) determination of statistically enriched pathways
performed using a BioPAX-Parser (BiP) software tool [16]; (iii) interpretation of enriched
pathways to identify the primary biological relationships among genes of interest and
enriched pathways in the dataset. To perform the enrichment analysis with BiP is necessary
to provide a list of proteins or genes of interest and select a pathway database. We used the
genes listed in Table 1 that exhibited a p-value < 0.05 computed using the DMET-Analyzer
software tool and using the Reactome pathways databases. BiP is used with the default
options: significance threshold of 0.05 for p-value, and the whole homo sapiens pathway
as the reference background. We considered a pathway significantly enriched by BiP if its
p-value is smaller than 0.05 after applying hypergeometric and multiple hypotheses testing
corrections with the FDR and Bonferroni correctors.

An enrichment result could help identify interesting pathways not previously associ-
ated with the experimental context, for which a more careful evaluation is necessary to be
validated as potential discoveries [17].

http://www.genomicspace.com
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Table 1. Summary results for SNPs associated with MM risk.

Gene
(Location)

dbSNP

MAF
MM

MAF
CEU

MAF
ID Genotype MM

(n = 64)
CEU

(n = 59)
ID

(n = 35)

p-Value
MM vs.

CEU

p-Value
MM vs.

ID

OR 95%
C.I. MM
vs. CEU

OR 95%
C.I. MM

vs. ID
Model

SLC28A2
(15q21.2)
rs1060896

C =
0.445

C =
0.250

C =
0.314

CC
AC
AA

15
27
22

4
24
31

2
18
15

0.0125 0.0072 4.21, 1.31
to 13.54

6.58, 1.42
to 30.43 Recessive

ADH1B
(4q23)

rs1229984

A =
0.195

A =
0.000

A =
0.114

GG
AG
AA

41
21
2

59
0
0

29
4
2

- 0.0282 - 3.78, 1.18
to 12.13

over-
dominant

PPARD
(6p21.31)
rs6937483

A =
0.148

A =
0.000

A =
0.057

GG
AG
AA

45
19
0

59
0
0

31
4
0

- 0.0479 -
3.27,

1.0143 to
10.56

over-
dominant

POR
(7q11.23)
rs2286824

A =
0.164

A =
0.000

A =
0.000

GG
AG
AA

43
21
0

59
0
0

35
0
0

- - - - -

ALDH3A2
(17p11.2)

rs72547554

T =
0.094

T =
0.000

T =
0.043

CC
CT
TT

52
12
0

59
0
0

32
3
0

- 0.0293 -
2.46,

0.6448 to
9.40

over-
dominant

SLC19A1
(6p21.1)

rs60881836

G =
0.148

G =
0.000

G =
0.000

GG
AG
AA

0
19
45

0
0
59

0
0

35
- - - - -

SLC29A1
(21q22.3)
rs8187630

A =
0.148

A =
0.000

A =
0.057

GG
AG
AA

45
19
0

59
0
0

31
4
0

- 0.0479 -
3.27,

1.0143 to
10.56

over-
dominant

SLC28A1
(15q25.3)
rs8187737

T =
0.125

T =
0.000

T =
0.014

CC
CT
TT

48
16
0

59
0
0

34
1
0

- 0.005 - 11.33, 1.43
to 89.59

over-
dominant

dbSNP: SNP identifier based on NCBI; ID: Internal Dataset; OR: Odds Ratio; C.I.: confidence interval.

3. Results
3.1. SNPs Associated to MM Risk

Among all SNPs in DMET Plus, 738 met our criteria. From statistical analysis, we
identified an association between MM risk and the SLC28A2 rs1060896 (p = 0.0125) while we
found that the Minor Allele Frequency (MAF) for seven variant alleles in seven genes was
undetectable in the CEU control group and over-represented in the MM group. Specifically,
the alleles A for ADH1B rs1229984, A for PPARD rs6937483, A for POR rs2286824, A
for SLC29A1 rs8187630, T for SLC28A1 rs8187737, T for ALDH3A2 rs72547554 and, G for
SLC19A1 rs60881836 were absent in CEU group. To verify possible differences in population
structure set-up, we compared MM genotype data with an internal control group. We
confirmed the association between rs1060896 and MM risk (p = 0.0072) and found that 5/7
alleles (T for ALDH3A2 rs72547554, A for SLC29A1 rs8187630, T for SLC28A1 rs8187737,
A for PPARD rs6937483, A for ADH1B rs1229984) are also present in our internal dataset,
although at a very low frequency, but significantly associated with MM risk (Table 1).
Instead, the A allele for POR rs2286824 and SLC19A1 rs60881836 remained absent and thus
excluded from further analysis. The test performance to verify the generalization power of
our model using an independent dataset has been obtained using a CV leave-one-out–based
method. Using a training set different from the test set, we estimated the accuracy of the
selected SNPs from the MM dataset reaching an accuracy of 94.99%.

3.2. Correlation with OS

To evaluate if these ADME genes might have a prognostic role in MM disease outcome,
in terms of OS, we analyzed their expression in two independent public datasets of MM
patients, GSE4581 and GSE9782, available on GenomicScape. Survival analysis showed
that in MM patient datasets shorter OS was associated with low expression of ADH1B and
SLC28A1 (Figure 1A,B).
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Figure 1. Overall survival (OS) by gene expression level. The survival analysis of 414 MM patients
from the Arkansas cohort in GSE4581 (A) and 264 MM patients in GSE9782 (B) from Mulligan et al.,
classified according to gene expression levels: high (red) or low (blue). We used days’s scale to plot
OS. P: p-value; HR: Hazard Ratio; n: number of patients.

3.3. Pathway Enrichment Results

Using the gene list and Reactome database, BiP was able to enrich a total of 14 relevant
pathways with respect to the MM. PPARD is involved in nine important pathways: “RA
biosynthesis pathway” (p = 0.0064), “The canonical retinoid cycle in rods” (p = 0.0122), “Nu-
clear Receptor transcription pathway” (p = 0.0177), “Metabolism of fat-soluble vitamins”
(p = 0.0232), “Intracellular metabolism of fatty acids regulates insulin secretion” (p = 0.0271),
“Carnitine metabolism” (p = 0.0277), “Regulation of pyruvate dehydrogenase (PDH) com-
plex” (p = 0.0344), “Phase I-Functionalization of compounds” (p = 0.0370) and “Signaling by
Retinoic Acid” (p = 0.0426). ADH1B is involved in “Ethanol oxidation” (p = 0.0027). Figure 2
shows the interaction network among the selected genes into the metabolic pathway.
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4. Discussion

The complexity of the interplay between environment and genes in cancer develop-
ment can be affected by genetic variants. Products of endobiotic/xenobiotic metabolism
can in fact impact the onset and progression of cancer by the activation of DNA damage
response and growth factor signaling pathways. Inter-individual variability in cancer sus-
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ceptibility could be partially explained by genetic polymorphisms in ADME genes that, by
altering gene expression or protein function, may affect key metabolic pathways involved
in xenobiotic biotransformation [18]. In this study, we investigated the correlation between
polymorphic variants in ADME genes and the MM risk by a high-throughput genotyping
platform. By DMET analyzer, we found differences in genotype distribution between MM
and CEU in eight SNPs. In particular, the homozygous genotype for the ancestral allele
in SLC28A2 rs1060896 showed association with MM risk, while seven variant alleles were
absent in CEU control group. To verify if the observed allele distributions were due to a
different genomic structure among the two groups, we used previously published DMET
genotype data from a group of 35 non-cancer patients. With this analysis, we confirmed
the association between rs1060896 and MM risk and verified the presence of five out of
seven variant alleles in our internal dataset at a very low frequency (T rs72547554, MAF
= 0.043; A rs8187630, MAF = 0.057; T rs8187737, MAF = 0.014; A rs6937483, MAF = 0.057;
A rs1229984, MAF = 0.114). The A allele for POR rs2286824 and G allele for SLC19A1
rs6088183 were absent, probably due to a very low population frequency. These findings
did not replicate previous genomic loci identified in several studies as related to MM risk.
A possible explanation might be the occurrence of population differences. In fact, the
risk alleles highlighted in our population have very low frequencies that have not been
reported in any database so far. However, the impact of risk alleles identified in this study
needs further evaluation and validation in an independent cohort of MM patients as well
as cross-platform replication. So far, only the functional rs1229984 in ADH1B (Alcohol
Dehydrogenase 1B (Class I), Beta Polypeptide), characterized by a G > A transition with
an amino acidic change from arginine (Arg) to histidine (His), has been reported to be
associated with cancer risk among Caucasians (increased risk, A allele MAF ≥ 0.03) and
Asians (decreased risk, A allele MAF ≥ 0.3). The His/His individuals have a 40-fold higher
oxidative activity of ethanol to toxic acetaldehyde compared to Arg/Arg individuals [19].
Acetaldehyde is an important carcinogen for its highly toxic effects due to interference
with many biological processes including DNA synthesis. In this study, the expression
of two of the investigated genes showed a significant association with OS in MM public
datasets, suggesting a potential involvement in MM progression. By analyzing the GSE4581
and GSE9782 datasets, we found a positive correlation between the high expression of
ADH1B and SLC28A1 and OS. SLC28A1, encodes for a nucleoside transporter primarily
involved in the cellular uptake of nucleosides and nucleoside analogs such as gemcitabine
and 5-fluorouracil. In pancreatic cancer, SLC28A1 was down-regulated when compared
with non-neoplastic tissues [20], and high tumor transcript levels of SLC28A1 predicted
a poor OS in pancreatic ductal adenocarcinomas patients. In addition, according to our
proof-of-concept hypothesis, we found, using a functional pathway enrichment analysis,
that the activity of the protein encoded by these genes are involved in 14 important and
potential carcinogenic pathways. In particular, the solute carrier genes (SLC28A1, SLC28A2,
SLC29A1) share four common pathways. In this context, it is important to highlight that the
genetic interaction bridging pathways often connect genes that may contribute to a specific
phenotype not always due to the effect of a single gene [21]. Several reports provided
evidence of the role of others among these genes in cancer risk. For instance, the high
expression of ALDH3A2 correlated with low-grade and longer OS in gastric carcinoma
patients [22]. The ALDH3A2 enzyme is involved in the detoxification of aldehydes gen-
erated by alcohol metabolism and lipid and fatty acids peroxidation, key steps for ATP
production. For PPARD (Peroxisome proliferator-activated receptor-δ) encoding a nuclear
transcriptional receptor, there is evidence of its up-regulation in several major human
cancers, including colorectal, pancreatic, and lung cancer. Overall, these findings, although
preliminary, provide novel information into the inherited susceptibility to MM. The inte-
gration of multi-omics data from validated approaches at different molecular levels could
provide significant understanding of the complexity of biological systems [23]. To our
knowledge, this is the first application of a broad multi-gene panel approach to investigate
the correlation of polymorphic variants in ADME genes with MM risk. However, the major
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limitations of the current study were the small sample size, the lack of validation of our
findings in an independent population, OS analysis limited to gene expression values and
not to genotype classes, and the lack of functional studies in these SNPs and the absence of
direct mechanistic biological insights. In conclusion, our proof-of-concept study provides
preliminary evidence of the involvement of these variants as genetic indicators of MM risk
and needs validation in a larger, independent group and other populations.
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