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Abstract: Oral squamous cell carcinoma (OSCC) usually originates from the precancerous lesions of
oral mucosa and accounts for approximately 90% of oral cancers. Current therapeutic approaches do
not yet meet the needs of patients, and the 5-year survival rate of patients with OSCC is only 50%.
Recent studies have revealed that the signal transducer and activator of transcription 3 (STAT3) plays
a key role in the development and progression of OSCC. STAT3 is overexpressed and constitutively
activated in OSCC cells, and promotes cancer cell proliferation and anti-apoptosis, migration and
invasion, angiogenesis, radiotherapy resistance, and immune escape, as well as stem cell self-renewal
and differentiation by regulating the transcription of its downstream target genes. Inhibitors of the
STAT3 signaling pathway have shown the promising anticancer effects in vitro and in vivo, and
STAT3 is expected to be a molecular target for the treatment of OSCC. In this review, we highlight
the oncogenic significance of STAT3 in OSCC with an emphasis on the therapeutic approaches and
effective small molecule inhibitors targeting STAT3. Finally, we also propose the potential research
directions in the expectation of developing more specific STAT3 inhibitors for OSCC treatment.
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1. Background

Oral squamous cell carcinoma (OSCC) represents the most frequent form of head
and neck squamous cell carcinoma that is the sixth most common group of cancers world-
wide [1,2]. OSCC originates from the tongue, palate, floor of mouth, alveolar ridge, buccal
mucosa, and other areas of oral cavity, and accounts for about 90% of oral malignancies [3,4].
In 2020, about 377,713 new patients were diagnosed with lip and oral cavity cancers, and its
number of deaths was around 177,757 worldwide. Most cases were discovered in Asia [5].
The risk factors for OSCC include smoking, excessive alcohol consumption, and betel
nut chewing, exposure to carcinogens, immunodeficiency, irradiation, nutrition, and ge-
netic susceptibility, as well as viral infections including human papillomavirus and herpes
simplex virus [6]. The main biologic activity of OSCC is classified as highly, moderately,
or poorly differentiated along with increased aggressiveness [7]. Histologically, OSCC
exhibits grades ranging from well-differentiated keratinizing carcinoma to undifferentiated
nonkeratinizing carcinoma, which is more apt to spread [8,9]. Patients with OSCC are
asymptomatic in the early stages, and most patients are diagnosed when OSCC further
progresses, resulting in the lower survival rate [10]. Tumor infiltration, lymph node metas-
tasis, and high rates of local recurrence are the main factors leading to death in patients
with OSCC [11]. Current treatment options for OSCC include surgery, chemotherapy,
radiotherapy, or a combination of therapies, depending on factors such as the extent of the
disease and the patient’s comorbidities [12]. However, the adverse effects of the treatment
still exist. For example, salivary gland hypofunction is a common and permanent adverse
effect of radiotherapy to the head and neck [13]. The common complications after selective
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neck dissection are spinal accessory nerve damage and shoulder dysfunction [14]. Systemic
administration of chemotherapeutic drugs emphasizes the need to avoid the systemic
undesired side effects. Targeted therapy for OSCC, which consists of immunotherapy, gene
therapy, and bionic technology, has shown some promise in preliminary clinical studies,
but further investigation is needed [15].

The signal transducer and activators of transcription (STAT) family are potential
cytoplasmic transcription factors, including STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b,
and STAT6, which can be activated in response to cytokine and growth factor stimulation to
mediate multiple intracellular signaling pathways [16]. STAT proteins are characterized by
six functionally conserved domains. The N-terminal domain (NTD) mediates the formation
of an anti-parallel dimer of un-phosphorylated STAT3; coiled-coil domain (CCD) is used
to interact with regulatory proteins that positively or negatively regulate transcriptional
activity; DNA-binding domain (DBD) can recognize specific DNA sequences of target
genes; The linker domain (LD) is involved in nuclear export and DNA binding; the SH2
domain (SH2) is the most conserved STAT domain, involved in dimer formation, and
plays a key role in signal transduction by binding to phosphorylated tyrosine residues
of the receptor; the transcriptional activation domain (TAD) is a highly variable domain
in length and sequence of STAT3, and regulates the transcriptional activation of target
genes by interacting with other transcription factors [17]. The most widely studied one
among the STAT family is STAT3, which consists of 770 amino acids and shares similar
functional domains with other STAT family members. STAT3 can transmit signals from the
cell membrane to the nucleus to activate target gene transcription and regulate a variety
of cellular physiological activities, including cell proliferation, differentiation, apoptosis,
angiogenesis, and immune system regulation [18]. Although STAT3 plays a crucial role
in normal cells, constitutive activation of STAT3 in most human malignancies drives
transcription of unscheduled genes and the transcription products subsequently promote
tumor progression [19].

Recently, researchers have found that STAT3 is overexpressed and constitutively
activated in OSCC and plays an important role in OSCC aggressiveness [20–22]. Growing
evidence also suggests that STAT3 may be a potential molecular target and biomarker of
OSCC, and STAT3 inhibitors have shown efficacy in inhibiting OSCC tumor growth and
metastasis [23,24]. Thorough understanding of the roles of STAT3 in OSCC will facilitate
the development of STAT3-targeted therapeutics. In this review, we focus on the protumor
role of STAT3 in OSCC, and summarize the therapeutic strategies and representative small
molecule inhibitors targeting STAT3. Finally, we outline more approaches to target STAT3
founded in other cancers, which may propose potential directions for further research to
develop more specific STAT3 inhibitors for OSCC treatment.

2. The STAT3 Signaling Pathway

STAT3 is tightly regulated by negative modulators to maintain an inactive state in
an unstimulated cell [25]. These negative modulators include members of the protein
inhibitor of activated STAT (PIAS), suppressor of cytokine signaling (SOCS) family, cellular
phosphatases (SHP1, SHP2, PTPN1, PTPN2, PTPRD, PTPRT, and DUSP22), as well as
ubiquitin enzymes. The control of endogenous negative regulators can maintain the STAT3
signal as balanced and stable to perform physiological functions in normal cells [19]. The
classical STAT3 signaling pathway is activated by the binding of cytokines or growth factors
to their corresponding cell surface receptors. Extracellular ligands bind to cell surface
receptors to form dimers, which then recruit and further activate Janus tyrosine kinase
(JAK) [26,27]. Cytoplasmic tyrosine residues of the receptor are phosphorylated by activated
JAKs to further recruit STAT3 to the phosphorylated tyrosine residues of the cytoplasmic
receptor by interacting with the SH2 domain of STAT3. STAT3 is phosphorylated at
tyrosine-705. Then, phosphorylated STAT3 (p-STAT3) monomers form homodimers via
interactions between phosphorylated tyrosine-705 and the SH2 domain. STAT3 dimers
further translocate to the nucleus and bind to DNA enhancer regions in a sequence-specific
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manner. This induces transcription of target genes critical for physiological and pathological
functions [25,28]. Moreover, non-receptor tyrosine kinases such as Src and Abl can also
lead to constitutive activation of STAT3 [29].

In the classical STAT3 signaling pathway, the p-STAT3 dimer is able to bind to the
corresponding site on DNA and initiates nuclear transcription. Indeed, STAT3 is also
localized in mitochondria as a monomer. Mitochondrial STAT3 (MitoSTAT3) can regu-
late complexes I and II to play a role of modulator for mitochondrial respiration [27,30].
MitoSTAT3 was shown to increase the activities of complex II, ATP synthase (complex
V), and lactate dehydrogenase to maintain the glycolytic and oxidative phosphorylation,
which contributed to the RAS-dependent oncogenic transformation of mouse embryonic
fibroblasts, and inhibition of MitoSTAT3 stopped tumor growth [31,32]. MitoSTAT3’s im-
proved bioenergetics may speed up early neoplastic lesions [33,34]. Unexpected STAT3
localization to the endoplasmic reticulum (ER) has also been discovered. STAT3-mediated
IP3R3 downregulation in the ER was a major factor in anti-apoptotic effects of breast cancer
cell lines [35]. These results suggest that a further non-canonical function played by con-
stitutively phosphorylated STAT3 at its S727 residue promotes the growth of cancer and
inhibits apoptosis, but the mechanism remains to be clarified [31,35,36]. The characteristics
of activated STAT3 have been described above; however, it has also been discovered that
inactivated STAT3 has bioactive properties. Unphosphorylated STAT3 monomers or dimers
recognized specific DNA structures, which was significant for chromatin organization [37].
After IL-6 treatment, STAT3-mediated change of chromatin structure was significantly
increased, which played a role in inflammation-mediated cancers [26]. However, the
oncogenic role of unphosphorylated STAT3 needs further investigation.

3. The STAT3 Signaling Pathway in OSCC

Studies have shown that overactivation of STAT3 in many types of tumors may depend
on the following mechanisms: excessive stimulation caused by overexpressed cytokines
and growth factors such as interleukin-6 (IL-6), interleukin-10 (IL-10), epidermal growth
factor (EGF) as well as fibroblast growth factor (FGF); hyperactivation of receptors for
cytokines or growth factors; elevated activity of cytoplasmic non-receptor tyrosine kinases,
such as Src and Abl kinase; loss of negative regulation for STAT3 caused by inactivation
or decreased expression of endogenous negative regulators, e.g., PIAS, SOCS, and PTPs.
These mechanisms can induce uncontrolled cell growth, malignant cell transformation,
angiogenesis, metastasis, invasion, and immune escape [38]. Importantly, STAT3 is overex-
pressed and constitutively activated in OSCC, which is highly related to OSCC initiation
and progression (as shown in Figure 1). For example, a recent study verified that STAT3
was a direct target of mir-125b, and circPVT1 and LncRNA MALAT1 may promote OSCC
cell growth by sponging mir-125b and increasing STAT3 expression [39,40]. In addition,
endogenous negative regulators such as PTPN4, SOCS5 and SOCS6 were decreased in
OSCC cells, which contributed to the upregulation of p-STAT3. The upregulated p-STAT3
promoted the OSCC progression [41,42]. Emerging research demonstrates the critical role of
STAT3 in OSCC [20,24,43–50]; we herein present a comprehensive overview of its oncogenic
functions in this section.
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Figure 1. Activation of STAT3 signaling promotes growth, metastasis, chemoresistance, immune 
suppression and angiogenesis in OSCC. The cytokines or growth factors bind to the corresponding 
receptors on the cell membrane, which further prompts STAT3 activation and subsequent regulates 
transcriptional activity. The whole process is divided into three steps as follows: (1) protein phos-
phorylation by specific kinases [20,27,28], (2) dimerization promoted by phosphorylation [52], (3) 
activation of gene expression by the phosphorylated dimer [53,54]. Finally, transcription and trans-
lation of the target gene regulate cell proliferation and anti-apoptosis, migration and invasion, 
chemoradiotherapy resistance and angiogenesis, as well as immune suppression in OSCC [23,55,56]. 
Reproduced/adopted in modified form from [57]. 
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large (Bcl-xL) [23,58–60]. In OSCC, STAT3 directly bound to the c-Myc promoter and pro-
moted its transcription [61,62]; this can be blocked by silencing upstream musashi RNA-
binding protein 1 (MSI1) of STAT3 signaling [63]. LncRNA P4713 promoted OSCC cell 
proliferation via activating the JAK/STAT3/cyclinD1 pathway. After downregulation the 
expression level of P471, STAT3 was found to translocate from nucleus to cytoplasm ac-
companied by a decrease in phosphorylation levels, which attenuated tumor cell prolifer-
ation and migration capacity [64]. Porphyromonas gingivalis and Fusobacterium nucleatum 
were responsible for the upregulation of cyclin D1 via IL-6/STAT3 dependent-mechanism 
to drive the OSCC growth [65]. MiR-769-5p restrained the Bcl-2 protein level and in-
creased the protein levels of Bcl-2 associated X protein (Bax) and cleaved-caspase 3 by 
inhibiting JAK1/STAT3 activity, suggesting the important role of STAT3 in promoting the 
OSCC growth [66]. Furthermore, STAT3 can promote the transcription of HNF1A-AS1 in 
OSCC cells, HNF1A-AS1 in turn activated the Notch signaling pathway to promote OSCC 
cell proliferation. Conversely, depletion of HNF1A-AS1 induced apoptosis and cell cycle 
arrest [67]. 

Figure 1. Activation of STAT3 signaling promotes growth, metastasis, chemoresistance, immune
suppression and angiogenesis in OSCC. The cytokines or growth factors bind to the corresponding
receptors on the cell membrane, which further prompts STAT3 activation and subsequent regu-
lates transcriptional activity. The whole process is divided into three steps as follows: (1) protein
phosphorylation by specific kinases [19,26,27], (2) dimerization promoted by phosphorylation [51],
(3) activation of gene expression by the phosphorylated dimer [52,53]. Finally, transcription and
translation of the target gene regulate cell proliferation and anti-apoptosis, migration and invasion,
chemoradiotherapy resistance and angiogenesis, as well as immune suppression in OSCC [22,54,55].
Reproduced/adopted in modified form from [56].

3.1. Role of STAT3 in OSCC Cell Proliferation and Anti-Apoptosis

Several studies have demonstrated that STAT3 promotes cell proliferation and inhibits
apoptosis in OSCC by increasing the expression of target genes, including survivin, Mcl-1,
c-Myc, Glut5, cyclin D1, B-cell lymphoma-2 (Bcl-2), and B-cell lymphoma extra -large
(Bcl-xL) [22,57–59]. In OSCC, STAT3 directly bound to the c-Myc promoter and promoted
its transcription [60,61]; this can be blocked by silencing upstream musashi RNA-binding
protein 1 (MSI1) of STAT3 signaling [62]. LncRNA P4713 promoted OSCC cell proliferation
via activating the JAK/STAT3/cyclinD1 pathway. After downregulation the expression
level of P471, STAT3 was found to translocate from nucleus to cytoplasm accompanied by a
decrease in phosphorylation levels, which attenuated tumor cell proliferation and migration
capacity [63]. Porphyromonas gingivalis and Fusobacterium nucleatum were responsible for
the upregulation of cyclin D1 via IL-6/STAT3 dependent-mechanism to drive the OSCC
growth [64]. MiR-769-5p restrained the Bcl-2 protein level and increased the protein levels
of Bcl-2 associated X protein (Bax) and cleaved-caspase 3 by inhibiting JAK1/STAT3 activity,
suggesting the important role of STAT3 in promoting the OSCC growth [65]. Furthermore,
STAT3 can promote the transcription of HNF1A-AS1 in OSCC cells, HNF1A-AS1 in turn
activated the Notch signaling pathway to promote OSCC cell proliferation. Conversely,
depletion of HNF1A-AS1 induced apoptosis and cell cycle arrest [66].
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3.2. Role of STAT3 in OSCC Cell Migration and Invasion

Epithelial–mesenchymal transition (EMT) is an important biological mechanism under-
lying the metastasis of primary tumors [67]. During the EMT, the characteristic of epithelial
cells will convert from epithelial cells highly expressing epithelial markers (E-cadherin)
to mesenchymal cells acquiring the mesenchymal markers (N-cadherin and Vimentin).
This transition can promote OSCC metastasis by enhancing migration and invasion [41,68].
A recent study unveiled that the enhanced JAK2/STAT3 pathway caused the EMT of
OSCC cells, and EMT could be inhibited by the JAK2 inhibitor AG490 [69]. The acti-
vated JAK2/STAT3 signaling pathway decreased E-cadherin expression and increased
N-cadherin and E-box binding zinc finger protein 2 (ZEB2) expression in OSCC cells, which
induced OSCC growth and metastasis [70]. Furthermore, the role of STAT3 in promoting
OSCC cell migration and invasion was also linked to the upregulated expression of matrix
metalloproteinase 9 (MMP-9), MMP-7, E-box binding zinc finger protein 1 (ZEB1) [66,71,72].
For example, interleukin-22 (IL-22) and IL-6 were reported to promote the migration and
invasion of OSCC cells by activating the JAK/STAT3/MMP-9 signaling pathway [66,72,73].
Moreover, the cytokine-inducible Src homology 2-containing protein (CISH) and SOCS1
increased metastasis of OSCC through promoting the activation of STAT3 [74,75].

Consistent with the above findings, the inhibition of the JAK2/STAT3 may significantly
suppress p-STAT3-induced migration and invasion of OSCC cells. Terminal differentiation-
induced non-coding RNA (TINCR) suppressed migration of OSCC by highly reducing
the expression of JAK2, p-JAK2, STAT3, and p-STAT3 [76]. Aldehyde dehydrogenase 3A1
(ALDH3A1) and miR-144-3p acted as OSCC metastasis suppressors and inhibited EMT via
downregulating the STAT3 signaling pathway in OSCC [77,78].

3.3. Role of STAT3 in Angiogenesis of OSCC

The pro-angiogenic role of STAT3 has been partially attributed to the upregulation
of IL-8, MMP-9, vascular endothelial growth factor (VEGF), angiopoietin 2 (Angpt2), and
hypoxia-inducible factor 1-alpha (HIF-1α) via p-STAT3 transactivation [79–81]. Recent
studies demonstrated that CCL4 increased VEGF-C and Angpt2 production via activating
the JAK2/STAT3 signaling pathways in OSCC cells, which was implicated in cell lymph
angiogenesis and angiogenesis in OSCC [80,81]. In addition, PA28γ stimulated OSCC
tumor angiogenesis in an IL-6/CCL2/STAT3 axis-dependent manner [82]. Conversely,
humanized anti-Interleukin-6 receptor antibody Tocilizumab can bind to the IL-6-binding
site of human IL-6R and competitively inhibits IL-6 signaling. A drastic reduction in STAT3
phosphorylation induced by Tocilizumab downregulated the expression of VEGF, IL-8, and
MMP-9, which decreased microvessel density and vessel diameter in the OSCC xenograft
model [79]. Diosmin also suppressed the abnormal expression of VEGF and HIF-1a to
obstruct angiogenesis of buccal pouch carcinogenesis through preventing phosphorylation
of JAK1/STAT3 [83].

3.4. Role of STAT3 in Chemoresistance of OSCC

It has been observed that blocking STAT3 signaling enhances the anticancer activ-
ity of chemotherapies in OSCC, thus endorsing a critical role of STAT3 in regulating the
chemosensitivity of OSCC [84]. Overexpression and constitutive activation of the STAT3
signaling pathway have been shown to confer chemoresistance on OSCC cells. For example,
cancer stem cell-derived extracellular vesicles (CSC-EVs) promoted chemoresistance, stem-
ness, and the metastatic potential of oral cancer cells by enhancing PI3K/mTOR/STAT3
signaling [85]. To the best of our knowledge, several recent studies have revealed the
mechanisms underlying STAT3-mediated chemoresistance in OSCC cell lines. Activation
of STAT3 and AKT-mediated GSK3β inactivation upregulated Mcl-1 expression, which
enhanced TPF resistance in OSCC [86]. Cisplatin treatment upregulated the programmed
death ligand 2 (PD-L2) and drug efflux transporter ABCG2 expression in OSCC cell lines
via STAT1/3 activation [87]. Indeed, the chemoresistance of cancer cells has been reported
to depend on ABC transporter activity.
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3.5. Role of STAT3 in Immune Suppression

Previous work suggested that STAT3 was a powerful regulator of tumor immunosup-
pression, and activation of the JAK2/STAT3/PD-L1 signaling axis played a crucial role
in the immune escape of osteosarcoma and cervical cancer [88,89]. In OSCC cells, STAT3
also regulated the expression of PD-L1 [90]. Protein kinase D3 (PKD3) was a key kinase
mediating the activation of STAT3. Elevated PKD3 expression promoted PD-L1 expres-
sion via activating STAT3 in OSCC [91]. STAT3-mediated PD-L1 upregulation affected
the proliferation and functional characteristics of T cells [92]. STAT3 was also activated
in tumor-associated immune cells to induce the expression of immune suppression re-
lated genes and contribute to immunosuppression in OSCC tumor microenvironment
(TME) [93,94].

3.6. Role of STAT3 in OSCC Stem Cell Phenotypes

Recently, reports have shown that the JAK2/STAT3 signaling pathway also plays a
critical role in the EMT and stemness of OSCC. For example, C-C chemokine receptor
7 (CCR7) and its ligand chemokine ligand 21 (CCL21) were reported to be abnormally
abundant in OSCC tissues, and CCR7 expression was correlated with EMT and the stemness
of OSCC. The treatment with JAK2 inhibitor AG490 could reduce the promotive effects of
CCL21 on OSCC cells colony formation and sphere formation [21]. Moreover, blocking the
activation of the Jak/Stat3 pathway significantly suppressed the colony forming, invasion,
migration, microsphere forming, and xenograft forming abilities of OSCC cells [95]. Overall,
these results demonstrated that the JAK/STAT3 signaling pathway may contribute to the
stemness of OSCC cells.

3.7. Role of STAT3 in Autophagy of OSCC Cells

STAT3 phosphorylation status is capable of influencing autophagy in OSCC cells.
Compound 59, an AMPK activator, inhibited JAK/STAT3 signaling, arrested cells in the G1
phase and promoted autophagy. These findings supported the potential of compound 59
for the treatment of OSCC patients through the suppression of STAT3 pathway [96]. Icaritin
significantly inhibited the level of p-STAT3 in a dose- and time-dependent manners, and
further suppressed proliferation, promoted apoptosis and autophagy [97]. However, more
research is needed to understand the mechanism by which STAT3 affects OSCC autophagy.

3.8. Role of STAT3 in Radiosensitivity of OSCC Cells

Recently, increasingly more studies have shown STAT3 to contribute to radioresis-
tance. Matsuoka et al. found that the IL-6/STAT3 pathway was relevant in resistance to
radiation [98], and overexpression of STAT3 reduced the radiosensitivity of OSCC cells [99].
Yu et al. showed that the expression of Pre-B-cell leukaemia homeobox 1 (PBX1) was
abnormally high in OSCC, and knockdown of PBX1 substantially enhanced sensitivity to
radiation in OSCC cells by inhibiting STAT3 expression [100]. These studies suggested
that STAT3 was not only involved in tumorigenesis and tumor development, but also
lead to radioresistance. STAT3 is emerging as a promising target for radio-sensitization
of cancer radiotherapy. The mechanism underlying STAT3-mediated radioresistance was
related to the suppression of apoptosis and DNA damage induced by STAT3 signaling after
radiotherapy [101]. STAT3 enhanced the transcription of apoptosis regulator Mcl-1 and cell
cycle regulator cyclin D2 (CCND2) to decrease the sensitivity of cancer cells to radiation,
according to more research on the glioma [102], as well as colorectal cancer [103].

3.9. Role of STAT3 in Immune Cells within the OSCC TME

TME is a highly complex and heterogenous ecosystem consisting of tumor infiltrating
cancer cells, immune cells, and other cells. STAT3 is not only activated in cancer cells, but
also becomes hyperactivated in immune cells within the OSCC TME. Some studies have
suggested that activation of the JAK2/STAT signaling pathway impaired the antitumor
activity of immune cells. For example, radiation treatment of head and neck cancer induced
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STAT3 signaling to enhance the abundance and function of regulatory T (Treg) cells and
resistance to radiation therapy. STAT3 inhibition was beneficial in patients receiving
radiation therapy [104]. IL-6-induced p-STAT3 increased PD-L1 and IL-10 expression in
myeloid-derived suppressor cells (MDSCs), which impeded proliferation and activation
of T cells and promoted Th17 cells differentiation in OSCC [94], and p-STAT3 inhibition
(JSI-124) could alleviate immune suppression [42]. In addition, activation of STAT3 helped
the immunosuppressive polarization of tumor-associated macrophages, which contributed
to the tumor development [105]. On the contrary, overproduction of SOCS3 in dendritic
cells can inhibit JAK2/STAT3 activation, as well as the differentiation and immune activity
of dendritic cells, leading to their impaired antitumor effects [106]. The inconsistent role of
STAT3 signaling in immune cells may be related to the difference in mechanism of action.

4. Targeting STAT3 for OSCC Prevention and Therapy

Abundant evidence has suggested that STAT3 may be a promising molecular target for
OSCC treatment [107–109]. Targeting a druggable site on STAT3 or inhibiting the function of
other proteins involved in the STAT3-dependent signaling cascade can directly or indirectly
limit STAT3 signaling [28]. In this section, we discuss the current STAT3-targeting strategies
(as shown in Figure 2) for treating and preventing OSCC, as well as the challenges in
developing more specific and effective STAT3 inhibitors.
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Figure 2. Inhibiting STAT3 signaling at multiple levels for OSCC treatment. Currently, the majority
of STAT3 inhibitors have been developed to target different sites in the STAT3 pathway: (1) tar-
geting the upstream regulators of STAT3 [110,111], (2) binding to the SH2 domain of STAT3 and
inhibiting its activation [112], (3) inhibiting STAT3 phosphorylation [113], (4) nuclear-targeted siRNA
delivery for STAT3 gene silencing [114,115], (5) regulating downstream targets of STAT3 [116–118].
Reproduced/adopted in modified form from [56].

4.1. Target Upstream Regulators of STAT3

Various STAT3 inhibitors have been developed and shown some efficacy in OSCC
in vitro and in vivo, which are showed in Table 1. A majority of STAT3 inhibitors have
been identified to target the upstream regulators of STAT3 signaling. STAT3 is widely
expressed and is transiently activated in response to EGF and IL-6. Therefore, small
molecules and natural products that were able to inhibit IL-6 secretion and production,
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e.g., the highly pure neem leaf extract SCNE [119], magnolol [120], honokiol [107,108],
and 2-O-Methylmagnolol [121], showed significant inhibitory effects on STAT3 signaling
in OSCC. However, most of them also inhibited other signaling pathways in cancer cells
and indicated a low level of specificity in targeting the STAT3 signaling pathway. As
STAT3 is downstream to several cytokine and growth factor receptors and their associated
JAKs, inhibiting JAKs by small molecular inhibitors represents a promising therapeutic
option in OSCC. JAK2 inhibitors, including Licochalcone C [122] licochalcone D [123]
and licochalcone H [124] were found to inhibit OSCC cell viability and induce apoptosis
through tightly interacting with ATP-binding site of JAK2 and inhibiting the JAK2/STAT3
signaling pathway. In addition, all-trans retinoic acid (ATRA) showed great potential in
cancer treatment through inhibition of p-STAT3 and p-JAK2 [125]. In recent years, Roxyl-
ZR [126] and Alkannin [127] presented antitumor activities by hindering JAK1/STAT3
pathways in OSCC pathogenesis.

Table 1. Summary of STAT3 inhibitors and their mechanisms of action for OSCC treatment.

Inhibitors Mechanisms of Action In Vitro Activity In Vivo Activity References

Target upstream regulators of STAT3

SCNE Inhibits IL-6/STAT3
signaling pathway

Inhibits cell proliferation and
migration and reduces MMP
activity (SCC4, CAL27, HSC3)

Suppresses tumor
growth [119]

MM1 Inhibits IL-6/STAT3
signaling pathway

Suppresses invasion and
migration (SAS, OECM1)

Suppresses tumor
growth [121]

Honokiol Inhibits IL-6/STAT3
signaling pathway

Suppresses cell migration, induces
apoptosis, and sensitizes cells to
chemotherapy (SAS, OECM1)

Suppresses tumor
growth [107,108]

Magnolol Inhibits IL-6/STAT3
signaling pathway

Downregulates the self-renewal
and metastasis potential of
OSCC-CSCs (SAS, GNM)

NR [120]

Diosmin Inhibits IL-6/JAK1/STAT3
signaling pathway NR Suppresses tumor

growth [83]

Curcumin Inhibits EGFR/STAT3
signaling pathway

Inhibits proliferation and invasion
(SCC25) NR [128]

Alkannin Inhibit JAK1/STAT3
signaling pathway

Restrains cell growth, migration
and invasion, and facilitates
apoptosis (KB)

Suppresses tumor
growth [127]

Roxyl-ZR Inhibits JAK1/STAT3
signaling pathway

Inhibits metabolism, clonogenicity,
proliferation, migration and
invasion (UM1, TSCCA)

Suppresses tumor
growth [126]

All-trans retinoic
acid

Inhibits JAK2/STAT3
signaling pathway

Inhibits proliferation and induces
Apoptosis (CAL27, DOK) NR [125]

Licochalcone H Inhibits JAK2/STAT3
signaling pathway

Inhibits cell growth and induces
apoptosis (HN22, HSC4) NR [124]

Licochalcone D Inhibits JAK2/STAT3
signaling pathway

Inhibits the cell growth and colony
formation (HN22, HSC4)

Suppresses tumor
growth [123]

Compound 59 Inhibits JAK2/STAT3
signaling pathway

Induces autophagy and apoptosis
(SCC2095, SCC4) NR [96]

β-Elemene Inhibits JAK2/STAT3
signaling pathway

Inhibits proliferation and induces
apoptosis (Tca8113)

Suppresses tumor
growth [129]

Icaritin Inhibits JAK2/STAT3
signaling pathway

Induces autophagy and apoptosis
(CAL27, SCC9)

Suppresses tumor
growth [97]

Trichodermin Inhibits STAT3 signaling
pathway

Inhibits proliferation, migration
and invasion (Ca922, HSC3)

Suppresses tumor
growth

[130]

MPT0B098 Stabilize SOCS3 Inhibits growth and induces
apoptosis (OECM1)

NR [84]

GC7 Inhibits eIF5A2/STAT3
signaling pathway

Sensitizes OSCC cells to cisplatin
(CAL27, HN4, HN30, Tca8113)

NR [131]
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Table 1. Cont.

Inhibitors Mechanisms of Action In Vitro Activity In Vivo Activity References

Bovine
Lactoferrin

Stabilize SOCS3 Inducts apoptosis, and suppresses
Proliferation (HSC3)

NR [132]

Licochalcone C Inhibits JAK2/STAT3
signaling pathway

Induces apoptosis (HN22, HSC4) NR [122]

Betulinic acid Inhibits STAT3 signaling
pathway

Inhibits cell proliferation (KB, SAS) Suppresses tumor
growth

[133,134]

Koetjapic acid Inhibits STAT3 signaling
pathway

Inhibits proliferation, invasion,
angiogenesis, and metastasis (SAS)

NR [134]

Isoorientin Blocking
Wnt/β-catenin/STAT3 axis

Attenuates OSCC cell stemness
and EMT potential (SAS, SCC25)

Suppresses tumor
growth

[135]

Metformin
Inhibits mTOR/HIF-
1α/PKM2/STAT3
pathway

Inhibits proliferation, migration
and invasion (CAL27)

Suppresses tumor
growth

[136]

Inhibits STAT3/TWIST
pathway

Inhibits invasion and migration
(HSC3, HSC6)

NR [137]

Strategy 2: Directly bind to STAT3 and inhibit its activation
4-HPR Binds to STAT3 and inhibits

its phosphorylation
Inhibits proliferation (JSCC1,
JSCC2, JSCC3)

Suppresses tumor
growth

[138]

Stattic Binds to SH2 domain of
STAT3 and inhibits
phosphorylation

Inhibits invasion and migration
(SCC15, SCC25)

Suppresses tumor
metastasis

[109,139]

Strategy 3: Inhibit STAT3 phosphorylation
Aspirin Inhibits STAT3

phosphorylation
Induces the cell cycle arrest and
apoptosis, and suppresses cell
migration and invasion (Tca8113,
CAL27)

NR [140]

Nitidine chloride Inhibits STAT3
phosphorylation

Induces apoptosis, and suppresses
proliferation

Suppresses tumor
growth

[141,142]

Niclosamide Inhibits STAT3
phosphorylation

Suppresses proliferation,
migration and invasion (HSC3,
HSC4, WSU-HN6, Tca83)

NR [110]

Bupivacaine Inhibits STAT3
phosphorylation

Promotes apoptosis (CAL27) Suppresses tumor
growth

[143]

WP1066 Inhibits STAT3
phosphorylation

Suppresses proliferation,
migration and invasion (TSCCA,
Tca8113)

Suppresses tumor
growth

[144]

Anoctamin1 Inhibits STAT3
phosphorylation

Reduces cell proliferation and
migration (CAL27)

NR [145]

NR, not reported.

Targeting the intrinsic STAT3 inhibitors, such as SOCS and PTPs, has been considered
as a potential strategy for repressing STAT3 signaling pathway. For example, Bovine
lactoferrin attenuated the growth of OSCC through increasing SOCS3 activation and
then enhanced SOCS3-mediated STAT3 dephosphorylation and inactivation [132]. A
microtubule inhibitor MPT0B098 suppressed the JAK2/STAT3 signaling pathway through
modulation of SOCS3 stability in OSCC, which lead to sensitization of OSCC cells to
MPT0B098 cytotoxicity [84]. Moreover, inactivated eIF5A2 induced by N1-guanyl-1,7-
diaminoheptane (GC7) increased cisplatin chemosensitivity in OSCC cells via inhibition of
the STAT3 signaling pathway [131]. Metformin also suppressed the invasion and migration
of OSCC through the inhibition of PKM2/STAT3 [136,137]. Although many small molecule
agents targeting the upstream regulators exhibited potential antitumor effects through
the inhibition of STAT3, other off-target pathways were also activated. Therefore, more
careful and thorough pre-clinical investigations must be implemented to prevent potential
harmful effects.
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4.2. Directly Bind to STAT3 and Inhibit Its Activation

STAT3 inhibitors have been developed to interact with the STAT3 domains, with a
major focus on the SH2 domain and the DBD. For instance, N-4-hydroxyphenylretinamide
(4-HPR) was highly bound at STAT3’s dimerization site and c-Abl and c-Src ATP-binding
kinase sites to suppress cancer-promoting pathways including STAT3 phosphorylation,
STAT3-DNA binding, and production of the trans-signaling enabling sIL-6R [138]. The
STAT3 inhibitor compound (Stattic) was an SH2-domain inhibitor discovered by a high-
throughput chemical library screen [109], and Stattic significantly attenuated EZH2 ex-
pression and local tumor invasion and outgrowth via targeting STAT3 [139]. However,
STAT3 SH2-domain inhibitors moved slowly into clinical medicine due to high homology
of the SH2 domain between STAT3 and other family members as well as high concentra-
tions required for disruption of protein–protein interactions, which increased off-target
toxicities [146].

4.3. Inhibit STAT3 Phosphorylation

Other STAT3 inhibitors were found to inhibit STAT3 phosphorylation, whereas they
have not been investigated for the binding ability with STAT3 and ability to regulate
upstream regulators of STAT3. For example, Niclosamide inhibited the migration and
invasion in OSCC cells through the downregulation of p-STAT3 at Tyr705 [110]. Nitidine
chloride acted as an apoptosis inducer in OSCC cells via inhibiting the phosphorylation of
STAT3 and transcription of target genes [141,142]. Aspirin and anoctamin1 also suppressed
the phosphorylation of STAT3 [140,145]. However, the mechanism of phosphorylation
suppression needs to be further studied.

4.4. Nuclear-Targeted siRNA Delivery for STAT3 Gene Silencing

The STAT3 inhibitors we introduced above face many problems in their application.
For example, how to target cancer cells or immune cells to improve the efficacy; the
low cell permeability also prevents the inhibitors from being fully utilized; and the toxic
side effects caused by off-target effects need to be addressed. Specificity and selectivity
of these inhibitors of STAT3 have been questioned. Currently, a growing number of
preclinical and clinical studies showed that antisense oligonucleotide (ASO)-induced STAT3
silence became a promising approach for lymphoma and lung cancer therapy. However,
ASOs targeting STAT3 may cause thrombocytopenia, and toxicity limitations hindered the
development of drugs [111,112]. In addition, STAT family members share a high degree
of structural similarity with each other, which may induce the silence of other family
members [147]. Moreover, transcription factors in different cell types usually regulate
different gene networks and cellular functions, so how to target the specific cells is also
crucial for the development of ideal therapeutic agents. The latest study suggested that
ASO targeting STAT6 encapsulated in engineered exosome (exoASO-STAT6) was able to
selectively silence STAT6 expression in macrophages [148]. This result may provide an
inspiration to develop novel siRNA and antisense technology, which can specifically target
STAT3 in tumor cells.

4.5. Regulate Downstream Targets of STAT3

As mentioned above, inhibitors targeting STAT3 or its upstream regulators may cause
off-target effects, which are connected to the following factors: cell membranal or intra-
cellular signals may deliver in a network, not in a single track; structural conservation of
STAT family members; and diversity of STAT3 target genes. These underscore the need
to develop inhibitors to regulate downstream targets of STAT3. Precise obstruction of
STAT3 downstream signals could help prevent the unintended consequences of general
STAT3 inhibition. For example, STAT3 has been reported to act as a transcription factor
for Nicotinamide N-methyltransferase (NNMT), and upregulated NNMT in OSCC can
contribute to proliferation and invasiveness [149,150]. Newly discovered NNMT inhibitors
may be further proposed for OSCC treatment [113–115]. In addition, STAT3 was involved
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in the positive regulation of Sox4, Mcl-1, and so on. Genetic (siRNA) or pharmacological
(Triptolide) inhibition of those targets suppressed OSCC growth in vivo [86,118]. Above
all, the targeted molecules usually participate in complex signaling pathways. Although
some STAT3 inhibitors have entered clinical trials in human OSCC or other malignancy
(as shown in Table 2), future study should fully understand the role of STAT3 signaling in
OSCC progression, which will aid in the discovery of more specific targeted therapeutics.

Table 2. Summary of STAT3 inhibitors in clinical trials.

Inhibitors Target NCT Number Conditions Phase Reference

STAT3 DECOY STAT3 NCT00696176 Head and neck cancer Phase I [151]
Pyrimethamine STAT3 NCT01066663 Chronic lymphocytic leukemia Phase II [152]
Tipifarnib STAT3 NCT00049114 IIB-IIIC breast cancer Phase II [153]

OPB-31121 STAT3
NCT00657176 Solid tumor Phase I [154]
NCT00955812 Solid tumor Phase I [155]

Danvatirsen STAT3 NCT02549651 Relapsed or refractory diffuse large B-cell
lymphoma Phase I [156]

MSC-1 (AZD0171) STAT3 NCT03490669 Advanced solid tumors Phase I [157]
OPB-51602 STAT3 NCT01184807 Solid malignancies Phase I [158]
AZD9150 STAT3 NCT01563302 Lymphoma Phase I [112]
WP1066 STAT3 NCT02977780 Recurrent malignant glioma Phase I [159]
Erlotinib EGFR NCT00779389 Head and neck cancer Phase I [160]
Napabucasin STAT3 NCT01830621 Advanced colorectal cancer Phase III [161]
Napabucasin STAT3 NCT02753127) Metastatic colorectal cancer Phase I [162]

OPB-111077 STAT3
NCT01942083 Advanced hepatocellular carcinoma Phase I [163]
NCT01711034 Advanced cancer Phase I [164]

Ruxolitinib JAK1/2

NCT02041429 HER2-negative metastatic breast cancer Phase I [165]
NCT02145637 Non-small cell lung cancer Phase I [166]
NCT02015208 Chronic lymphocytic leukemia Phase II [167]
NCT02066532 Metastatic HER2 positive breast cancer Phase I II [168]

NCT00674479 Postmyeloproliferative neoplasm acute
myeloid leukemia Phase II [169]

NCT01702064 Chronic myeloid leukemia Phase I [170]
AZD1480 JAK2 NCT01112397 Solid tumor Phase I [171]

CEP-701 JAK2 NCT00494585 Primary or post-polycythemia vera/essential
thrombocythemia myelofibrosis Phase II [172]

Afatinib EGFR NCT02145637 EGFR mutant NSCLC Phase I [166]
Nilotinib EGFR NCT01168050 KIT-Altered Melanoma Phase II [173]
nilotinib EGFR NCT01061177 Chronic myeloid leukemia Phase III [174]

5. Conclusions

Although some progress has been made in the treatment of OSCC, its prognosis
remains poor, with a 5-year survival rate of nearly 50% [10]. A comprehensive under-
standing of the genetic and molecular disorders of OSCC is critical for early diagnosis,
appropriate treatment, and improved prognosis of patients with OSCC. The STAT3 onco-
gene has been reported to be overexpressed and constitutively activated in OSCC, and
is associated with the poor survival outcomes [23,58]. STAT3 drives proliferation and
anti-apoptosis, migration and invasion, chemoradiotherapy resistance and angiogenesis,
as well as immune evasion of OSCC cells, which highlights the enormous therapeutic
potential of STAT3 inhibitors.

Interestingly, contrary to its accepted tumor-promoting role, a fraction of research has
shown an opposite role of STAT3 in cancer cells. It was observed that STAT3 knockdown
promoted the growth of MDA-MB-231 cell-derived xenograft tumors [175]. Another
finding also supported the role of STAT3 activation as a marker of favorable outcome
in ER-positive/HER2-positive breast cancer patients [176]. These results imply that the
oncogenic role of STAT3 in tumors might be context specific. STAT3 may be a negative
regulator of certain cancer types, and therapies targeting STAT3 may therefore need to
consider the origin of the tumor type.



Cells 2022, 11, 3131 12 of 20

Many STAT3-targeted therapies have been successfully developed and have shown
efficacy in preclinical models of OSCC in vitro and in vivo. However, cancers including
OSCC are multifaceted heterogeneous diseases [177]. OSCC has been reported to harbor
multiple genetic alterations, which contribute to its initiation and progression. Therefore,
STAT3 inhibition combined with other targeted therapies may be more effective for OSCC.
Furthermore, many small molecule agents with potential therapeutic effects for OSCC
should be further studied with a view to achieving precise drug delivery, avoiding drug
side effects, and translating research findings into clinical applications. In summary, it
is essential to have a comprehensive understanding of STAT3 and develop the effective
approaches to inhibit the STAT3 signaling pathway with high selectivity and specificity for
the treatment of OSCC.
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