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Abstract: Background: Platelets can support cancer progression via the release of microparticles and
microvesicles that enhance the migratory behaviour of recipient cancer cells. We recently showed that
platelet-derived extracellular vesicles (PEVs) stimulate migration and invasiveness in highly metastatic
MDA-MB-231 cells by stimulating the phosphorylation of p38 MAPK and the myosin light chain
2 (MLC2). Herein, we assessed whether the pro-migratory effect of PEVs involves the remodelling
of the Ca2+ handling machinery, which drives MDA-MB-231 cell motility. Methods: PEVs were
isolated from human blood platelets, and Fura-2/AM Ca2+ imaging, RT-qPCR, and immunoblotting
were exploited to assess their effect on intracellular Ca2+ dynamics and Ca2+-dependent migratory
processes in MDA-MB-231 cells. Results: Pretreating MDA-MB-231 cells with PEVs for 24 h caused an
increase in Ca2+ release from the endoplasmic reticulum (ER) due to the up-regulation of SERCA2B
and InsP3R1/InsP3R2 mRNAs and proteins. The consequent enhancement of ER Ca2+ depletion led
to a significant increase in store-operated Ca2+ entry. The larger Ca2+ mobilization from the ER was
required to potentiate serum-induced migration by recruiting p38 MAPK and MLC2. Conclusions:
PEVs stimulate migration in the highly metastatic MDA-MB-231 breast cancer cell line by inducing a
partial remodelling of the Ca2+ handling machinery.

Keywords: platelets; extracellular vesicles; breast cancer; migration; Ca2+ signalling; SERCA2B; InsP3

receptors; myosin light chain 2; p38 mitogen-activated protein kinase

1. Introduction

Breast cancer represents the most widespread cancer in women and accounted for
about 685.000 deaths in 2020. This death toll has been forecasted to rise to 7 million by
2040 [1]. Triple negative breast cancer (TNBC) is featured by the absence of the human
epidermal growth factor receptor 2 (HER2), estrogen receptor, and progesterone receptor.
Therefore, TNBC is barely sensitive to anti-HER2 and hormonal therapies, with poor
survival rates [2]. Accordingly, TNBC presents high aggressiveness and short median time
to relapse due to its ability to leave the primary tumour site and spread to distant organs,
thereby causing patient death [3]. Understanding the cellular and molecular mechanisms
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that stimulate TNBC cells to migrate and colonize their new niches is indispensable when
it comes to designing alternative treatments for TNBC patients.

Platelet-derived extracellular vesicles (PEVs) are gaining growing interest as mediators
of platelet function in different physiological and pathological contexts, from haemostasis
to cardiovascular diseases [4,5]. In the last two decades, PEVs have also been recognized as
critical players in the complex interplay occurring between blood platelets and cancer [6].
Exosomes and plasma membrane-derived vesicles are the two main classes of PEVs released
by platelets into the bloodstream [4]. Platelet exosomes (also known as small PEVs) are
stored in intracellular multivesicular bodies and released during cell secretion. Conversely,
membrane-derived vesicles derive from the plasma membrane and are now typically
defined as medium-large PEVs, but they were previously referred to as platelet-derived
microparticles (PMPs) and platelet-derived microvesicles (PMVs) [7].

Medium-large PEVs (henceforth PEVs for brevity) have been widely studied in the
frame of the platelet–cancer crosstalk. Their levels in the circulation are increased in oncolog-
ical patients bearing diverse types of cancer, including cutaneous malignant melanoma [8],
colorectal carcinoma [9], lung cancer [10], and breast cancer [11]. Moreover, PEVs were
found to mediate intercellular communication by delivering bioactive compounds, thus
initiating phenotypic and functional changes in recipient cells. These observations boosted
research on the role played by these PEVs in cancer aiming to unravel their contribution in
the progression of the disease but also to determine their potential use as early diagnostic
markers and novel drug delivery tools [12,13]. PEVs are now known to directly regulate
cancer cells as well as the cellular components of the tumour-microenvironment (TME).
In this context, most studies have hinted at PEVs as crucial drivers of cancer progression,
although a few investigations have discussed their anti-cancer functions [6,14,15].

We showed that thrombin-induced PEVs are internalized by different breast cancer cell
lines, thereby exerting cell-specific reactions [16]. In particular, the TNBC MDA-MB-231 cell
line efficiently internalizes PEVs, and this event potentiates cell migration and invasiveness.
In agreement with these observations, long-term (up to 24 h) exposure to PEVs stimulates
specific signalling pathways, such as p38 mitogen-activated protein kinase (p38 MAPK),
myosin light chain-2 (MLC2), and Rho-associated protein kinase (ROCK) [16], that drive
cancer cell motility and spreading [17–20]. Nevertheless, the molecular mechanism(s)
whereby a prolonged exposure to PEVs promote(s) migration in MDA-MB-231 cells is still
unclear. The remodelling of the Ca2+ handling machinery supports several cancer hall-
marks, including tissue invasion and metastasis [21–25]. An increase in intracellular Ca2+

concentration ([Ca2+]i) in MDA-MB-231 cells can be elicited by inositol-1,4,5-trisphosphate
(InsP3) [26], which gates three subtypes of InsP3 receptors (InsP3R1, InsP3R2, and InsP3R3)
to release Ca2+ from the endoplasmic reticulum (ER) [22]. InsP3-induced Ca2+ mobilization,
in turn, causes a strong reduction in ER Ca2+ concentration, which leads to the activa-
tion of a Ca2+ entry pathway on the plasma membrane, known as store-operated Ca2+

entry (SOCE) [27–29]. In MDA-MB-231 cells, SOCE is mediated by the physical associ-
ation between Stromal Interaction Molecule 1 (STIM1), which functions as a sensor of
ER Ca2+ concentration and is activated by a drop in intraluminal Ca2+ levels, and Orai1,
which forms the Ca2+-permeable channel on the plasma membrane [24,27,30,31]. The
interaction between InsP3-induced ER Ca2+ mobilization and SOCE finely shapes the in-
tracellular Ca2+ signals that increase the migration capacity of this highly invasive breast
cancer cell line [24,26,31,32]. An increase in the expression of genes encoding for several
InsP3R isoforms can stimulate multiple cancer hallmarks, including proliferation, migra-
tion, invasion, and apoptosis resistance [33,34]. Similarly, SOCE up-regulation, because of
the over-expression of STIM and/or Orai1 proteins, can result in the activation of many
pro-oncogenic signalling pathways in neoplastic cells [22,29,35]. Furthermore, the over-
expression of several members of the Transient Receptor Potential (TRP) superfamily of
non-selective cation channels can also support neoplastic transformation in virtually all
cancer cell types [22,36].
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Intriguingly, the signalling pathways recruited downstream of PEV stimulation,
e.g., p38 MAPK and MLC2, can be activated following an elevation in [Ca2+]i [16,18].
Herein, we thus sought to assess whether long-term exposure to PEVs stimulates MDA-
MB-231 cell migration through the remodelling of the Ca2+ handling machinery. By using
a variety of approaches, we showed that PEVs cause a remarkable elevation in InsP3-
induced ER Ca2+ release by increasing Sarco-Endoplasmic Ca2+-ATPase 2B (SERCA2B) and
InsP3R1/InsP3R2 transcript and protein expression. The larger depletion in ER Ca2+ con-
tent, in turn, leads to enhanced SOCE activation. In agreement with this observation, serum
elicited larger intracellular Ca2+ signals and potentiated migration in MDA-MB-231 cells
exposed to PEVs through the Ca2+-dependent recruitment of p38 MAPK and MLC2. Our
evidence indicates that InsP3Rs rather than SOCE are required to drive MDA-MB-231 cell
migration. These data shed novel light on the signalling pathways whereby PEVs can
stimulate the metastatic spreading of TNBC cells and hint at the Ca2+ toolkit as a promising
target to prevent the detrimental interaction between PEVs and these highly aggressive
breast cancer cells.

2. Materials and Methods
2.1. Cancer Cell Culture

The triple negative breast cancer line, MDA-MB-231, was provided by Professor
Livia Visai (Department of Molecular Medicine, University of Pavia). Cancer cells were
periodically checked to verify the absence of bacterial contamination and were maintained
in DMEM supplemented with 10% foetal bovine serum (FBS), 2 mM L-glutamine, 100 U/mL
penicillin, and 100 µg/mL streptomycin, split every two days, and used for the experiments
within 10 passages. The count of vital cells was determined by Trypan Blue staining and
phase contrast microscopy analysis.

2.2. PEV Isolation

Human blood platelets were purified from healthy donors as recently described [16].
Upon the washing procedure, platelets were resuspended at a concentration of 3 × 108/mL
in HEPES buffer (10 mM HEPES, 137 mM NaCl, 2.9 mM KCl, and 12 mM NaHCO3, pH 7.4)
supplemented with 1 mM CaCl2, 0.5 mM MgCl2 and 5.5 mM glucose. To induce the release
of PEVs, platelets were stimulated with the physiological agonist thrombin (0.2 U/mL) for
30 min at 37 ◦C under constant stirring. Platelets were pelleted by low-speed centrifugation
(750× g, 20 min) and the supernatant was then centrifuged at 18,500× g for 90 min at
10 ◦C to collect medium-large PEVs, which were finally resuspended in HEPES buffer. The
protein content of the different preparations of PEVs was determined by BCA assay.

2.3. [Ca2+]i Measurements

As described elsewhere, Ca2+ imaging was used to measure intracellular Ca2+ signals
in PEV-treated cancer cells [16,37]. MDA-MB-231 cells were loaded with 4 µM Fura-2/AM
(1 mM stock in DMSO) in physiological salt solution (PSS) (150 mM NaCl, 6 mM KCl,
1.5 mM CaCl2, 1 mM MgCl2, 10 mM Glucose, 10 mM HEPES, pH 7.4) for 30 min at 37 ◦C
and 5% CO2. After washing in PSS, the coverslip was fixed to the bottom of a Petri dish
and the cells were either left untreated or treated with 30 µg/mL thrombin-induced PEVs.
The cells were observed by an upright epifluorescence Axiolab microscope (Carl Zeiss,
Oberkochen, Germany) equipped with a Zeiss ×40 Achroplan objective (water-immersion,
2.0 mm working distance, 0.9 numerical aperture). The cells were excited alternately at
340 and 380 nm, and the emitted light was detected at 510 nm. Custom software, working
in the LINUX environment, was used to drive the camera (Extended-ISIS Camera, Photonic
Science, Millham, UK) and the filter wheel, and to measure and plot on-line the fluorescence
from rectangular “regions of interest” (ROI) enclosing 20–30 single cells. [Ca2+]i was
monitored by measuring, for each ROI, the ratio of the mean fluorescence emitted at 510 nm
when exciting alternatively at 340 and 380 nm [ratio (F340/F380)]. An increase in [Ca2+]i
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causes an increase in the ratio [38,39]. Ratio measurements were performed and plotted
on-line every 3 s. The experiments were performed at room temperature (22 ◦C).

The resting Ca2+ entry was evaluated by exploiting the Mn2+-quenching technique.
Mn2+ has been shown to quench Fura-2/AM fluorescence. Since Mn2+ and Ca2+ share
common entry pathways in the plasma membrane, Fura-2/AM quenching by Mn2+ is
regarded as an index of divalent cation influx [31,40,41]. Experiments were carried out
at the 360 nm wavelength, the isosbestic wavelength for Fura-2/AM, and in Ca2+-free
medium supplemented with 0.5 mM EGTA, as previously described [40,42]. This avoids
Ca2+ competition for Mn2+ entry and therefore enhances Mn2+ quenching. The basal [Ca2+]i
was evaluated by using the Grynkiewicz equation, as shown elsewhere [35,43].

2.4. Cell Migration Assay

The effect of PEVs on the migration of MDA-MB-231 cells was evaluated using Falcon
cell culture inserts (8 µm pore size) positioned in a 24-well plate, as shown in [16]. Cancer
cells were serum starved for 6 h and then resuspended in DMEM with the addition of
0.5% FBS. Cells were either left untreated or treated with PEVs, supplemented or not with
2-Aminoethyl diphenyl borate (2-APB; 50 µM) or YM-58483 (also known as BTP-2; 20 µM),
and then transferred inside the inserts. DMEM containing 10% FBS was added to the lower
chamber. After 24 h, cells that moved through the porous membrane were stained with
0.5% crystal violet and counted at 10× microscope magnification with an Olympus BX51
microscope (Olympus Corporation, Tokyo, Japan).

2.5. Real-Time Quantitative Reverse Transcription PCR (qRT-PCR)

The total RNA was isolated from PEVs as well as PEV-treated and untreated MDA-
MB-231 cells using Trizol reagent (Thermo Fisher Scientific, Waltham, MA, USA) according
to the manufacturer’s instructions. For RNA extraction from PEVs, 20 µg of RNA grade
glycogen (Thermo Fisher Scientific) was added in the precipitation step [44]. After DNAse
treatment (Turbo DNA-free™ kit, Thermo Fisher Scientific), RNA was quantified with
a BioPhotometer D30 (Eppendorf, Hamburg, Germany). cDNA was synthetised from
200 ng of MDA-MB-231 RNA and 100 ng of PEV RNA using the iScript cDNA Synthesis
Kit (BioRad, Hercules, CA, USA). Gene expression analyses were performed in triplicate
with specific primers (Table S1) and the SsoFast™ EvaGreen® Supermix (BioRad) using a
CFX Connect Real-Time System (BioRad) using the following program: an initial step at
95 ◦C for 30 s, 40 cycles of 5 s at 95 ◦C, and 5 s at 58 ◦C. Fluorescence measurements were
taken at the end of each elongation step. The PCR mixture consisted of 10 µL SsoFast™
EvaGreen® Supermix, 7 µL nuclease-free water, 1 µL cDNA, and 1 µL of each forward and
reverse primer. Melting curve analysis was performed to ensure that single amplicons were
obtained for each target gene after each qRT-PCR and primer efficiencies were determined
using at least five different cDNA concentrations. Primers were designed on an exon-intron
junction using the NCBI Primer tool [45]. Gene expression was evaluated using the ∆∆Ct
method [46,47]. The genes actin beta and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) were used as endogenous references for normalizing target mRNA. Data are
presented as means ± standard error (SE) from three biological replicates. Results were
analysed using the GraphPad Prism 5 software (version 5.01; GraphPad Software, San
Diego, CA, USA) and the significance was determined using the unpaired Student’s t-test.
p-values < 0.05 were considered significant.

2.6. SDS-PAGE and Immunoblotting

MDA-MB-231 cells were grown in 35 mm Petri dish, incubated with PEVs for 24 h,
and lysed with Lysis Buffer (50 mM Tris–HCl, 150 mM NaCl, 1% Nonidet P-40, 1 mM
EDTA, 0.25% deoxycholic acid, 0.1% SDS, pH 7.4, 1 mM PMSF, 5 µg/mL leupeptin, and
5 µg/mL aprotinin). Protein expression and phosphorylation were analysed by SDS-
PAGE followed by immunoblotting, as previously described [48]. Membrane staining was
performed using the different antibodies diluted 1:1000 in TBS (20 mM Tris, 500 mM NaCl,
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pH 7.5) containing 0.5% BSA and 0.1% Tween-20 in combination with the appropriate
HRP-conjugated secondary antibodies (1:2000 in PBS plus 0.1% Tween-20). Quantification
of the band intensity was performed by computer-assisted densitometric scanning using
Quantity One–4.6.8 software (BioRad).

2.7. Statistical Analysis

All the reported figures are representative of three different experiments. As to the
Ca2+ data, the amplitude of Ca2+ release in response to extracellular stimulation was
measured as the difference between the ratio at the peak of intracellular Ca2+ mobilization
and the mean ratio of 1 min baseline before the peak. The magnitude of SOCE evoked by
extracellular stimulation upon Ca2+ restoration to the bath was measured as the difference
between the ratio at the peak of extracellular Ca2+ entry and the mean ratio of 1 in baseline
before Ca2+ re-addition. The rate of Mn2+ influx was evaluated by measuring the slope of
the fluorescence intensity curve at 400 s after Mn2+ addition [40,42]. Pooled data are given
as mean ± SEM, while the number of cells analysed is indicated above the corresponding
histogram bars (number of responding cells/total number of analysed cells).

For immunoblotting and cell migration analyses, all reported figures are representative
of at least three different experiments and the quantitative data are reported as mean ± SD.
Data from immunoblotting scanning were normalised considering the intensity of the
band of interest in the sample not incubated with PEVs as one arbitrary unit (A. U.).
For cell migration analyses, data are expressed as number of migrated cells per field at
10× microscope magnification.

Comparisons between two groups were done using the Student’s t-test, whereas
multiple comparisons were performed using One-Way Analysis of Variance (ANOVA) with
the Bonferroni post-hoc test. p-values less than 0.05 were considered statistically significant.
Data were analysed using the GraphPad Prism (Version 5.01) software.

3. Results

3.1. Long-Term Exposure to PEVs Increases ER Ca2+ Mobilization and SOCE Activation in
MDA-MB-231 Cells

The dose-response relationship showed in a previous study from our group demon-
strated that 30 µg/mL represents the PEV dose that is more efficiently internalized and is
more effective at inducing migration in MDA-MB-231 cells [16,49]. The long-term effect
of PEVs on intracellular Ca2+ dynamics was therefore evaluated in MDA-MB-231 cells
maintained or not (control, Ctrl) in the presence of 30 µg/mL PEVs for 24 h and loaded with
the Ca2+-sensitive fluorophore, Fura-2/AM. Preliminary recordings revealed that PEVs did
not affect either the basal [Ca2+]i (Figure S1A) or the modest constitutive Ca2+ entry that
has previously been reported in MDA-MB-231 cells (Figure S1B,C) [50]. Next, we exploited
the Ca2+ add-back protocol to evaluate whether long-term exposure to PEVs influences
ER Ca2+ mobilization and SOCE activation. As described elsewhere [27,28,30,37,50,51],
this manoeuvre consists in stimulating the cells with cyclopiazonic acid (CPA), a selective
inhibitor of SERCA, in the absence of extracellular Ca2+ (0Ca2+) to cause passive ER Ca2+

efflux through Ca2+-permeable leakage channels. Subsequently, 1.8 mM Ca2+ is restituted
to external Ca2+ to monitor SOCE through Orai1 channels that have previously been ac-
tivated by STIM1 upon the depletion of the ER Ca2+ store. Figure 1A,B show that CPA
(10 µM) caused a transient increase in [Ca2+]i under 0Ca2+ conditions, which reflects ER
Ca2+ releasing ability in the absence (Ctrl) and presence of PEVs. PEVs caused a significant
(p < 0.05) elevation in CPA-evoked ER Ca2+ mobilization (Figure 1C). The following restitu-
tion of extracellular Ca2+ induced a second increase in [Ca2+]i (Figure 1A,B), which was
entirely due to SOCE through Orai1 channels [27,28,30,50]. Statistical analysis revealed
that long-term exposure to PEVs also increased SOCE in MDA-MB-231 cells (Figure 1D).
Altogether, these findings indicate that PEVs induce a remarkable remodelling of the Ca2+

handling machinery in highly aggressive breast cancer MDA-MB-231 cells by enhancing
both ER Ca2+ release and SOCE.
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Likewise, the restoration of extracellular Ca2+ induced an enhanced increase in [Ca2+]i that is indica-
tive of a greater SOCE. (C). Mean ± SEM of the CPA-dependent intracellular Ca2+ mobilization in 
control and PEV-treated cells. **** indicate p < 0.0001. (D). Mean ± SEM of the CPA-dependent SOCE 
amplitude in control and PEV-treated cells. **** indicate p < 0.0001. 
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Figure 1. Long-term exposure of MDA-MB-231 cells to PEVs increases ER Ca2+ mobilization and
SOCE activation. (A). Control (Ctrl) cells were challenged with CPA (10 µM), a selective SERCA
inhibitor, in the absence of extracellular Ca2+ (0Ca2+). This manoeuvre caused a transient increase
in [Ca2+]i due to the depletion of the intracellular ER Ca2+ store. The restoration of extracellular
Ca2+ induced a second increase in [Ca2+]i, which is representative of SOCE. (B). Cells treated for
24 h with PEVs (30 µg/mL) showed a higher Ca2+ transient when stimulated with CPA under 0Ca2+

conditions. Likewise, the restoration of extracellular Ca2+ induced an enhanced increase in [Ca2+]i

that is indicative of a greater SOCE. (C). Mean ± SEM of the CPA-dependent intracellular Ca2+

mobilization in control and PEV-treated cells. **** indicate p < 0.0001. (D). Mean ± SEM of the
CPA-dependent SOCE amplitude in control and PEV-treated cells. **** indicate p < 0.0001.

3.2. Long-Term Exposure to PEVs Increases InsP3-Induced ER Ca2+ Release and InsP3-Sensitive
SOCE

The migratory mechanism in MDA-MB-231 cells exposed to chemotactic cues involves
an initial phase of Ca2+ release from the ER through InsP3Rs followed by SOCE activa-
tion [26,30,31,52,53]. Adenosine triphosphate (ATP) represents an autocrine/paracrine mes-
senger that has long been used to evaluate InsP3-dependent Ca2+ signals in multiple types
of cancer cells [23,40,53,54], including MDA-MB-231 cells [55,56]. ATP binds to Gq-coupled
P2Y receptors, thereby stimulating phospholipase Cβ (PLCβ) to cleave phosphatidylinositol-
4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and InsP3 [23,40,54,57]. Preliminary
experiments confirmed that ATP-evoked intracellular Ca2+ release was mediated by InsP3Rs
(Figure S2). The Ca2+ add-back protocol confirmed that both phases of the Ca2+ response to
ATP (100 µM), i.e., intracellular Ca2+ release through InsP3Rs and SOCE, were significantly
enhanced in MDA-MB-231 pre-treated with PEVs for 24 h when compared to untreated
(Ctrl) cells (Figure 2A–C). As described elsewhere [37,40,57], the agonist was removed from
the perfusate 100 s before the re-addition of extracellular Ca2+ to prevent the activation
of second messengers-operated channels and ionotropic P2X receptors. To circumvent
the Gq-protein-PLCβ-InsP3 signalling pathway, InsP3Rs were directly activated with a
membrane-permeant esterified form of InsP3, known as InsP3-BM (1 µM) [58]. The Ca2+

add-back protocol showed that InsP3-BM-evoked ER Ca2+ mobilization and SOCE were
significantly larger in MDA-MB-231 pre-treated with PEVs for 24 h when compared to
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untreated (Ctrl) cells. Overall, these findings provide further support to the notion that long-
term exposure to PEVs potentiates InsP3-dependent Ca2+ signals in MDA-MB-231 cells.
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mobilization and SOCE. (A). ATP (100 µM) evoked a transient increase in [Ca2+]i under 0Ca2+

conditions in control (Ctrl) cells. ATP was then removed from the recording bath, while extracellular
Ca2+ was restored to the solution to measure SOCE. (B). The treatment of MDA-MB-231 cells with
PEVs (30 µg/mL, 24 h) increased ATP-induced endogenous Ca2+ mobilization and SOCE activation.
(C). Mean ± SEM of ATP-induced intracellular Ca2+ release and SOCE in control (Ctrl) and PEV-
treated cells. * indicates p < 0.05 and *** indicates p < 0.001. (D). InsP3-BM, a membrane-permeant
esterified form of InsP3, induced a small increase in [Ca2+]i under 0Ca2+ conditions in control (Ctrl)
cells. Restoration of extracellular Ca2+, in the absence of the agonist, caused a second bump in
[Ca2+]i that was indicative of SOCE activation. (E). The treatment of MDA-MB-231 cells with PEVs
(30 µg/mL, 24 h) caused an enhancement in intracellular Ca2+ mobilization and SOCE in MDA-
MB-231 cells stimulated with InsP3-BM. (F). Mean ± SEM of InsP3-BM-induced endogenous Ca2+

mobilization and SOCE in control (Ctrl) and PEV-treated cells. **** indicates p < 0.0001 and * indicates
p < 0.05.

3.3. Molecular Characterization of the Ca2+ Handling Machinery in MDA-MB-231 Cells Exposed
to PEVs

In order to gain further insights into the molecular mechanisms whereby PEVs increase
InsP3-induced ER Ca2+ mobilization and SOCE activity, we carried out a thorough RT-
qPCR analysis of mRNAs isolated from MDA-MB-231 cells exposed or not (Ctrl) to PEVs
(30 µg/mL; 24 h). Figure 3 shows a significant increase in the expression levels of the
transcripts encoding for SERCA2B (Figure 3A), i.e., the major SERCA isoform in MDA-MB-
231 cells [59], and for InsP3R1 (Figure 3B) and InsP3R2 (Figure 3C), which mediate ER Ca2+

release [26]. Conversely, there was no change in the expression of the transcripts encoding
for InsP3R3 (Figure 3D) and for all the molecular components of the SOCE machinery in
MDA-MB-231 cells, i.e., STIM1 (Figure 3E) and Orai1 (Figure 3F) [24,27,30,31]. Notably,
RT-qPCR analysis of PEV transcripts did not reveal detectable levels of any of these mRNAs
(data not shown), thereby showing that SERCA2B, InsP3R1, and InsP3R2 transcripts are
not directly transferred to MDA-MB-231 cells from PEVs (mean Ct values ± SD of 37.5 ± 1,
38.5 ± 1, 38.2 ± 1.1, 34.9 ± 1.4, 34.8 ± 1, 37.3 ± 1.4, and 36.6 ± 1.3 for SERCA2B, InsP3R1,
InsP3R3, Orai1, SERCA3, InsP3R2, and STIM1, respectively).
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Figure 3. Long-term exposure to PEVs enhances the expression of SERCA2B, InsP3R1 and InsP3R2 
transcripts. RT-qPCR was performed on the transcripts encoding for SERCA2B (A), InsP3R1 (B), 
InsP3R2 (C), InsP3R3 (D), STIM1 (E), and Orai1 (F) and harvested from MDA-MB-231 cells treated 
with 30 μg/mL for 24 h as compared to untreated (Ctrl) cells. Results were normalized with the level 
of the GAPDH control. * indicates p < 0.05, *** indicate p < 0.001. 

Next, western blot analysis of SERCA2B, InsP3Rs, STIM1, and Orai1 protein expres-
sion was performed by exploiting affinity-antibodies, as illustrated in [37,40,53]. Im-
munoblots revealed a major band of ≈115 kDa for SERCA2B (Figure 4A, left panel) and a 
large band over 250 kDa, deriving from the sum of the 313/260/250 kDa bands correspond-
ing to InsP3R1, InsP3R2, and InsP3R3 (Figure 4B, left panel), as previously shown in [53]. 
Furthermore, two major bands of ≈86 and ≈35 kDa were detected for, respectively, STIM1 
(Figure 4C, left panel) and Orai1 (Figure 4D, left panel). Densitometric analysis confirmed 
that SERCA2B (Figure 4A, right panel) and InsP3R (Figure 4B, right panel) proteins were 
significantly up-regulated in MDA-MB-231 cells exposed to PEVs (30 μg/mL; 24 h). Con-
versely, and in agreement with the qRT-PCR data, there was no significant difference in 
the expression level of STIM1 (Figure 4C, right panel) and Orai1 proteins (Figure 4D, right 
panel). Overall, these findings strongly suggest that the increase in the amount of ER Ca2+ 
that is releasable through InsP3Rs is due to the overexpression of SERCA2B and InsP3R 
proteins. Since there is no difference in the expression levels of its underlying constituents, 
i.e., STIM1 and Orai1, the increase in SOCE is likely to reflect the larger drop in ER Ca2+ 
concentration following agonist stimulation of MDA-MB-231 cells pre-exposed to PEVs 
[60–62]. 

Figure 3. Long-term exposure to PEVs enhances the expression of SERCA2B, InsP3R1 and InsP3R2
transcripts. RT-qPCR was performed on the transcripts encoding for SERCA2B (A), InsP3R1
(B), InsP3R2 (C), InsP3R3 (D), STIM1 (E), and Orai1 (F) and harvested from MDA-MB-231 cells
treated with 30 µg/mL for 24 h as compared to untreated (Ctrl) cells. Results were normalized with
the level of the GAPDH control. * indicates p < 0.05, *** indicate p < 0.001.

Next, western blot analysis of SERCA2B, InsP3Rs, STIM1, and Orai1 protein expression
was performed by exploiting affinity-antibodies, as illustrated in [37,40,53]. Immunoblots
revealed a major band of ≈115 kDa for SERCA2B (Figure 4A, left panel) and a large band
over 250 kDa, deriving from the sum of the 313/260/250 kDa bands corresponding to
InsP3R1, InsP3R2, and InsP3R3 (Figure 4B, left panel), as previously shown in [53]. Fur-
thermore, two major bands of ≈86 and ≈35 kDa were detected for, respectively, STIM1
(Figure 4C, left panel) and Orai1 (Figure 4D, left panel). Densitometric analysis confirmed
that SERCA2B (Figure 4A, right panel) and InsP3R (Figure 4B, right panel) proteins were
significantly up-regulated in MDA-MB-231 cells exposed to PEVs (30 µg/mL; 24 h). Con-
versely, and in agreement with the qRT-PCR data, there was no significant difference in
the expression level of STIM1 (Figure 4C, right panel) and Orai1 proteins (Figure 4D, right
panel). Overall, these findings strongly suggest that the increase in the amount of ER
Ca2+ that is releasable through InsP3Rs is due to the overexpression of SERCA2B and
InsP3R proteins. Since there is no difference in the expression levels of its underlying
constituents, i.e., STIM1 and Orai1, the increase in SOCE is likely to reflect the larger drop
in ER Ca2+ concentration following agonist stimulation of MDA-MB-231 cells pre-exposed
to PEVs [60–62].

3.4. Serum-Induced Intracellular Ca2+ Signals Are Larger in MDA-MB-231 Cells Exposed to
PEVs

It has long been known that FBS stimulates the migration in cancer cells through
an increase in [Ca2+]i [26,30,31,52,53]. FBS consists of a mixture of growth factors that
bind to specific tyrosine kinase receptors (TKRs) that are coupled to PLCγ and stimulate
InsP3-production and InsP3-dependent Ca2+ signalling. A recent report from our group
showed that 24 h treatment with PEVs potentiated serum-evoked migration in MDA-MB-
231 cells [16]. Therefore, we reasoned that the increase in the chemotactic response to
FBS could be associated to an elevation in the underlying increase in [Ca2+]i. The Ca2+

add-back protocol confirmed that, upon long-term exposure to PEVs (30 µg/mL; 24 h),
MDA-MB-231 cells displayed a remarkable increase in serum-evoked intracellular Ca2+
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release and SOCE activation when compared to non-treated (Ctrl) cells (Figure 5A–C). The
increase in extracellular Ca2+ entry was further confirmed by measuring the area under
the curve (AUC) corresponding to the increase in [Ca2+]i evoked by the re-addition of
extracellular Ca2+ (Figure S3). Pharmacological characterization revealed for the first time
that serum-evoked intracellular Ca2+ release was mediated by ER Ca2+ release through
InsP3Rs in MDA-MB-231 cells. Indeed, the intracellular Ca2+ response to 20% FBS was
dramatically reduced by each of the following manoeuvres [16,37,40,63]: (1) blockade of
PLCγ activity with the specific aminosteroid, U73122 (10 µM); (2) specific inhibition of
InsP3Rs with 2-APB (50 µM) (Figure 5D,F); and (3) depletion of the ER Ca2+ store with CPA
(30 µM) (Figure 5E,F).

In agreement with previous reports on other cancer cell types [40,52], serum-evoked
SOCE (Figure 6A) was dampened by blocking Orai1 channels with either Pyr6 (10 µM)
(Figure 6B,D) or BTP-2 (20 µM) (Figure 6C,D) in MDA-MB-231 cells. Taken together, these
findings show that long-term exposure to PEVs leads to an increase in InsP3-induced ER
Ca2+ mobilization and SOCE that could potentiate the pro-migratory Ca2+ response to
serum stimulation.
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Figure 4. The treatment of MDA-MB-231 cells with PEVs increases the protein expression of SERCA2B
and InsP3Rs. Representative immunoblots of SERCA2B and InsP3Rs are reported in (A,B), respec-
tively, where GAPDH is for equal loading control (left panel). Quantification of the results performed
by densitometric scanning is reported in the right panels as fold increase (A.U.) of protein expres-
sion over basal (control, Ctrl). Results are the mean ± SD of three different experiments. * indicates
p < 0.05. Conversely, long term exposure of MDA-MB-231 cells to PEVs do not cause differences in the
expression level of STIM1 and Orai1. The left panels of (C,D) show the representative immunoblots
of STIM1 and Orai1, respectively, while the right panels show band quantifications reported as fold
increase (A.U.) of protein expression over basal (Ctrl). Results are the mean ± SD of three different
experiments.
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Figure 5. Long-term exposure to PEVs enhances FBS-induced ER Ca2+ mobilization and SOCE. 
(A). A transient increase in [Ca2+]i was evoked by 20% FBS under 0Ca2+ conditions in control (Ctrl) 
cells. FBS was then removed from the recording bath, while extracellular Ca2+ was restored to the 
perfusate to measure SOCE. (B). Pre-treatment of MDA-MB-231 cells with PEVs (30 μg/mL, 24 h) 
increased the endogenous Ca2+ mobilization and the SOCE induced by 20% FBS. (C). Mean ± SEM 
of 20% FBS-induced intracellular Ca2+ release and SOCE in control and treated cells. **** indicate p 
< 0.0001 and * indicates p < 0.05. (D). The Ca2+ response to 20% FBS, under 0Ca2+ conditions, was 
inhibited by U73122 (10 μM, 30 min), a selective PLC blocker. Moreover, the Ca2+ signal was inhib-
ited by blocking InsP3Rs with 2-APB (50 μM, 30 min). (E). Emptying the ER with CPA (30 μM, 20 
min) prevented (not shown) or significantly reduced an FBS-induced increase in [Ca2+]i. (F). Mean ± 
SEM of the amplitude of 20% FBS-evoked Ca2+ peak under the designated treatments. *** indicate p 
< 0.001. 

In agreement with previous reports on other cancer cell types [40,52], serum-evoked 
SOCE (Figure 6A) was dampened by blocking Orai1 channels with either Pyr6 (10 μM) 
(Figure 6B,D) or BTP-2 (20 μM) (Figure 6C,D) in MDA-MB-231 cells. Taken together, these 
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rum stimulation. 

Figure 5. Long-term exposure to PEVs enhances FBS-induced ER Ca2+ mobilization and SOCE. (A). A
transient increase in [Ca2+]i was evoked by 20% FBS under 0Ca2+ conditions in control (Ctrl) cells.
FBS was then removed from the recording bath, while extracellular Ca2+ was restored to the perfusate
to measure SOCE. (B). Pre-treatment of MDA-MB-231 cells with PEVs (30 µg/mL, 24 h) increased
the endogenous Ca2+ mobilization and the SOCE induced by 20% FBS. (C). Mean ± SEM of 20%
FBS-induced intracellular Ca2+ release and SOCE in control and treated cells. **** indicate p < 0.0001
and * indicates p < 0.05. (D). The Ca2+ response to 20% FBS, under 0Ca2+ conditions, was inhibited by
U73122 (10 µM, 30 min), a selective PLC blocker. Moreover, the Ca2+ signal was inhibited by blocking
InsP3Rs with 2-APB (50 µM, 30 min). (E). Emptying the ER with CPA (30 µM, 20 min) prevented
(not shown) or significantly reduced an FBS-induced increase in [Ca2+]i. (F). Mean ± SEM of the
amplitude of 20% FBS-evoked Ca2+ peak under the designated treatments. *** indicate p < 0.001.
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Figure 6. The Ca2+ response to FBS is sustained by SOCE in control MDA-MB-231 cells. (A). An 
intracellular Ca2+ response was induced by 20% FBS under 0Ca2+ conditions. Restoration of extracel-
lular Ca2+, in the absence of the agonist, induced a second increase in [Ca2+]i, which was indicative 
of SOCE. (B). Extracellular Ca2+ entry evoked by 20% FBS was suppressed or significantly reduced 
by blocking Orai1 with Pyr6 (10 μM, 10 min). (C). Extracellular Ca2+ entry evoked by 20% FBS was 
suppressed or significantly reduced by blocking Orai1 with BTP-2 (20 μM, 10 min). (D). Mean ± 
SEM of the amplitude of Ca2+ peak in cells under the designated treatments. **** indicate p < 0.0001. 

3.5. PEVs Potentiate Serum-Dependent Migration through the Ca2+-Dependent Recruitment of 
p38 MAPK and MLC2 in MDA-MB-231 Cells 

To assess whether the partial remodelling of the Ca2+ handling machinery potentiates 
serum-induced migration upon pretreatment with PEVs, we evaluated MDA-MB-231 mo-
tility in the absence (Ctrl) and presence of specific InsP3R and SOCE inhibitors. The phar-
macological blockade of InsP3Rs with 2-APB (50 μM) significantly inhibited serum-migra-
tion in MDA-MB-231 cells pre-treated with PEVs (30 μg/mL, 24 h), whereas this process 
was not affected by SOCE inhibition with BTP-2 (20 μM) (Figure 7A,B). Next, we assessed 
whether a serum-evoked increase in [Ca2+]i is required to boost p38 MAPK and MLC2 
activation in the presence of PEVs (30 μg/mL, 24 h). We confirmed that PEVs potentiated 
p38 MAPK and MLC2 phosphorylation (Figure 7C–F), while they did not hyper-activate 
the Ca2+-sensitive Pyk2 (Figure S4). We then examined the phosphorylation of p38 MAPK 
and MLC2 in the absence (Ctrl) and presence of 2-APB and BTP-2. Unlike migration, PEV-
dependent increase in p38 MAPK and MLC2 phosphorylation was sensitive both to 
InsP3R inhibition with 2-APB (50 μM) and to SOCE blockade with BTP-2 (20 μM) (Figure 
7C–F). These findings demonstrate that InsP3Rs, rather than SOCE, support PEV-depend-
ent migration in MDA-MB-231, although they can both induce p38 MAPK and MLC2 
phosphorylation. 

Figure 6. The Ca2+ response to FBS is sustained by SOCE in control MDA-MB-231 cells. (A). An
intracellular Ca2+ response was induced by 20% FBS under 0Ca2+ conditions. Restoration of extracel-
lular Ca2+, in the absence of the agonist, induced a second increase in [Ca2+]i, which was indicative
of SOCE. (B). Extracellular Ca2+ entry evoked by 20% FBS was suppressed or significantly reduced
by blocking Orai1 with Pyr6 (10 µM, 10 min). (C). Extracellular Ca2+ entry evoked by 20% FBS was
suppressed or significantly reduced by blocking Orai1 with BTP-2 (20 µM, 10 min). (D). Mean ± SEM
of the amplitude of Ca2+ peak in cells under the designated treatments. **** indicate p < 0.0001.
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3.5. PEVs Potentiate Serum-Dependent Migration through the Ca2+-Dependent Recruitment of
p38 MAPK and MLC2 in MDA-MB-231 Cells

To assess whether the partial remodelling of the Ca2+ handling machinery potentiates
serum-induced migration upon pretreatment with PEVs, we evaluated MDA-MB-231 motil-
ity in the absence (Ctrl) and presence of specific InsP3R and SOCE inhibitors. The pharma-
cological blockade of InsP3Rs with 2-APB (50 µM) significantly inhibited serum-migration
in MDA-MB-231 cells pre-treated with PEVs (30 µg/mL, 24 h), whereas this process was not
affected by SOCE inhibition with BTP-2 (20 µM) (Figure 7A,B). Next, we assessed whether
a serum-evoked increase in [Ca2+]i is required to boost p38 MAPK and MLC2 activation in
the presence of PEVs (30 µg/mL, 24 h). We confirmed that PEVs potentiated p38 MAPK and
MLC2 phosphorylation (Figure 7C–F), while they did not hyper-activate the Ca2+-sensitive
Pyk2 (Figure S4). We then examined the phosphorylation of p38 MAPK and MLC2 in
the absence (Ctrl) and presence of 2-APB and BTP-2. Unlike migration, PEV-dependent
increase in p38 MAPK and MLC2 phosphorylation was sensitive both to InsP3R inhibition
with 2-APB (50 µM) and to SOCE blockade with BTP-2 (20 µM) (Figure 7C–F). These
findings demonstrate that InsP3Rs, rather than SOCE, support PEV-dependent migration
in MDA-MB-231, although they can both induce p38 MAPK and MLC2 phosphorylation.

Cells 2022, 11, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 7. Pharmacological blockade of InsP3Rs with 2-APB significantly inhibited migration in 
MDA-MB-231 cells treated with PEVs. (A). MDA-MB-231 cells were incubated with PEVs (30 
μg/mL, 24 h) or left untreated (none) before being treated with 2-APB (50 μM) and BTP-2 (20 μM) 
and then transferred into cell culture inserts. The cells migrated through the porous membrane were 
stained and counted. Representative images of migrated stained cells are reported. The quantifica-
tion of the results is shown in (B) as the mean ± SD of three experiments. ** p < 0.01 and *** p < 0.005. 
Phosphorylation of p38MAPK (C,D) and MLC2 (E,F) in MDA-MB-231 cells incubated with PEVs 
(30 μg/mL, 24 h) and then treated with 2-APB (50 μM) and BTP-2 (20 μM). Representative immunob-
lots are reported in (C,E) for phospho-p38MAPK and phospho-MLC2, respectively, where GAPDH 
staining is for equal loading control. The quantification of the results is shown in (D) for phospho-
p38MAPK and in (F) for phospho-MLC2 as the mean ± SD of three experiments. * indicates p < 0.05, 
** indicate p < 0.01 and *** indicate p < 0.005. 

4. Discussion 
Circulating platelets can contribute to cancer progression by releasing PEVs that fa-

cilitate (by shrouding disseminated tumour cells from recognition by NK cells) or stimu-
late cancer cell spreading from the primary site [6,13]. Multiple pieces of evidence support 
the notion that PEVs promote cancer cell invasiveness by mediating the transfer of plate-
let-derived instructive cues, consisting either in signalling proteins or genetic material, to 
the target cells [6,13,64]. The relationship between breast cancer and platelets is complex 
and is yet to be fully unravelled. Nevertheless, PEVs have also been shown to directly 
engage signal transduction pathways, such as Src, focal adhesion kinases (FAKs), p38 
MAPK, and MLC2, which stimulate migration in the TNBC MDA-MB-231 cell line [16,65]. 
In accord, MDA-MB-231 cells can induce platelet activation and aggregation [49,66], 
thereby leading to the release of robust amounts of PEVs that, in turn, increase cancer cell 
migration and invasion [16]. Intriguingly, an increase in [Ca2+]i may occur upstream of p38 
MAPK and MLC2 recruitment [16,18] and can modulate p38 MAPK and MLC2 phosphor-
ylation [67–69]. It has long been known that a complex remodelling of Ca2+ handling ma-
chinery supports several cancer hallmarks, including migration and invasion [21,22,70]. 

Figure 7. Pharmacological blockade of InsP3Rs with 2-APB significantly inhibited migration in
MDA-MB-231 cells treated with PEVs. (A). MDA-MB-231 cells were incubated with PEVs (30 µg/mL,
24 h) or left untreated (none) before being treated with 2-APB (50 µM) and BTP-2 (20 µM) and then
transferred into cell culture inserts. The cells migrated through the porous membrane were stained
and counted. Representative images of migrated stained cells are reported. The quantification of the
results is shown in (B) as the mean ± SD of three experiments. ** p < 0.01 and *** p < 0.005. Phospho-
rylation of p38MAPK (C,D) and MLC2 (E,F) in MDA-MB-231 cells incubated with PEVs (30 µg/mL,
24 h) and then treated with 2-APB (50 µM) and BTP-2 (20 µM). Representative immunoblots are
reported in (C,E) for phospho-p38MAPK and phospho-MLC2, respectively, where GAPDH staining
is for equal loading control. The quantification of the results is shown in (D) for phospho-p38MAPK
and in (F) for phospho-MLC2 as the mean ± SD of three experiments. * indicates p < 0.05, ** indicate
p < 0.01 and *** indicate p < 0.005.
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4. Discussion

Circulating platelets can contribute to cancer progression by releasing PEVs that facili-
tate (by shrouding disseminated tumour cells from recognition by NK cells) or stimulate
cancer cell spreading from the primary site [6,13]. Multiple pieces of evidence support the
notion that PEVs promote cancer cell invasiveness by mediating the transfer of platelet-
derived instructive cues, consisting either in signalling proteins or genetic material, to the
target cells [6,13,64]. The relationship between breast cancer and platelets is complex and is
yet to be fully unravelled. Nevertheless, PEVs have also been shown to directly engage
signal transduction pathways, such as Src, focal adhesion kinases (FAKs), p38 MAPK, and
MLC2, which stimulate migration in the TNBC MDA-MB-231 cell line [16,65]. In accord,
MDA-MB-231 cells can induce platelet activation and aggregation [49,66], thereby leading to
the release of robust amounts of PEVs that, in turn, increase cancer cell migration and inva-
sion [16]. Intriguingly, an increase in [Ca2+]i may occur upstream of p38 MAPK and MLC2
recruitment [16,18] and can modulate p38 MAPK and MLC2 phosphorylation [67–69]. It
has long been known that a complex remodelling of Ca2+ handling machinery supports sev-
eral cancer hallmarks, including migration and invasion [21,22,70]. Therefore, we sought
to investigate whether the long-term exposure of the highly invasive MDA-MB-231 cells to
PEVs potentiates migration by rewiring their Ca2+ transport system.

4.1. PEVs Induce Remodelling of the Ca2+ Handling Machinery in MDA-MB-231 Cells

A sustained increase in [Ca2+]i is required to trigger the release of PEVs from the
plasma membrane of activated platelets [4]. Preliminary reports suggested that PEVs
can, in turn, also influence intracellular Ca2+ dynamics in target cells. For instance, a
recent investigation showed that PEVs elicit intracellular Ca2+ oscillations in aortic vascular
smooth muscle cells, thereby promoting migration and neointimal hyperplasia in a rat
model of vascular injury [71]. Furthermore, we documented that 30 µg/mL PEVs induced a
robust increase in [Ca2+]i in MDA-MB-231 cells, with this being initiated by InsP3-induced
ER Ca2+ release and maintained by SOCE activation [16]. Nevertheless, MDA-MB-231 cells
displayed enhanced migration and invasiveness upon 24 h incubation with PEVs [16].
Therefore, the immediate Ca2+ response to PEVs is unlikely to engage the Ca2+-dependent
molecular machinery that potentiates migration during the late stages of PEV stimulation.
These pieces of evidence prompted us to assess whether long-term exposure to PEVs
stimulates the p38 MAPK and MLC2 signalling pathways and potentiates MDA-MB-
231 cell migration through remodelling the Ca2+ handling machinery.

4.1.1. PEV-Dependent Increase in InsP3-Induced ER Ca2+ Release Is Associated to
SERCA2B and InsP3R Up-Regulation

Pre-treatment with PEVs did not change either the resting [Ca2+]i or the basal plasma
membrane permeability to Ca2+, which is mediated by a yet-to-be-identified Ca2+-permeable
route in MDA-MB-231 cells, while it is mediated by Orai1 channels in low-migrating MCF-
7 cells [41]. Since PEVs did not affect resting Ca2+ influx in MDA-MB-231 cells, we did not
further investigate its molecular structure.

The Ca2+ response of breast cancer cells to chemotactic cues is triggered by InsP3-
induced Ca2+ release from the ER and sustained over time by SOCE [24,26,32]. The Ca2+

add-back protocol represents the most common strategy to evaluate both the amount of
ER Ca2+ that can be released through InsP3Rs and the extent of SOCE activation in can-
cer cells, including MDA-MB-231 cells [27,28,30,37,50]. We found that, in the absence of
extracellular Ca2+, CPA-evoked intracellular Ca2+ release was significantly increased in
MDA-MB-231 cells exposed to PEVs when compared to untreated cells. The amount of
Ca2+ introduced into the cytosol via ER Ca2+ leakage channels upon SERCA inhibition with
CPA or thapsigargin is recognized as a reliable indicator of the releasable ER Ca2+ pool.
In accord, this protocol has been widely exploited to evaluate the differences in ER Ca2+

content in primary vs. metastatic cancer cells [40] and in cancer cells exposed to different
pharmacological or genetic treatments [26,30,54,57,72,73]. Molecular analysis showed that
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long-term exposure to PEVs caused an increase in the transcript and protein levels of
SERCA2B, which represents the most abundant SERCA isoform in MDA-MB-231 cells [59].
Therefore, the increase in SERCA2B expression might be responsible for the increase in
the ER Ca2+ load unmasked by CPA-evoked intracellular Ca2+ mobilization. Similarly, the
increase in SERCA2B expression underlies the larger Ca2+ releasing ability of colorectal
cancer cells lacking the oncogenic K-Ras isoform, K-RasG13D [54]. The increase in ER Ca2+

content in PEV-treated MDA-MB-231 cells is associated to an increase in InsP3R1 and
InsP3R2 transcript and protein expression. The Ca2+ add-back protocol confirmed that both
physiological (with ATP) and pharmacological (with InsP3-BM) stimulation of InsP3Rs
resulted in a significant elevation in InsP3-dependent ER Ca2+ mobilization in MDA-MB-
231 cells exposed to PEVs. An increase in InsP3R1 expression may contribute to multiple
oncological processes, including apoptosis resistance in prostate cancer [74], autophagy
induction in clear cell renal cell carcinoma [75], and proliferation, invasion, and migration in
osteosarcoma [76]. Similarly, InsP3R2 regulates migration in non-small cell lung cancer [77],
maintains the self-renewal ability of liver cancer stem cells [78], and prevents apoptosis in
B-cell lymphoma and chronic lymphocytic leukemia [79]. Interestingly, both InsP3R1 and
InsP3R2 proteins drive migration in MDA-MB-231 cells [26], whereas InsP3R1 has also been
shown to promote proliferation [80]. Therefore, the combined overexpression of SERCA2B
and InsP3R1/InsP3R2 proteins nicely correlates with the increased ER Ca2+ content and
higher level of InsP3-induced ER Ca2+ mobilization induced by long-term exposure to PEVs
and could potentiate migration in MDA-MB-231 cells [16]. PEVs can transfer specific cargo
molecules, such as mRNA, DNA, cytokines, and membrane receptors or enzymes, to recipi-
ent cells and thereby increase the capability of invasive behaviour in cancer cells [3,6,13].
Nonetheless, we could not find detectable levels of SERCA2B and InsP3R1/InsP3R2 tran-
scripts in the mRNA content of PEVs. Therefore, we can conclude that long-term exposure
to PEVs stimulates the partial remodelling of the Ca2+ handling machinery in MDA-MB-231
cells by boosting the expression of genes encoding for SERCA2B, InsP3R1, and InsP3R2.

4.1.2. PEV-Induced SOCE Potentiation Does Not Involve STIM1 and ORA1 Up-Regulation

The larger ER Ca2+ release could also lead to an increase in SOCE activation even
though the expression of its underlying molecular components, i.e., STIM1 and Orai1, is
not altered by PEVs [60–62], as shown in the present investigation. Although some studies
have provided evidence against a straightforward relationship between the extent of ER
Ca2+ depletion and SOCE amplitude [81,82], other investigations have clearly shown a
roughly linear relationship between the magnitude of InsP3-induced ER Ca2+ release and
SOCE activation [60–62,83,84]. In agreement with these observations, SOCE amplitude in
MDA-MB-231 cells treated with PEVs was always significantly larger than in untreated cells
whatever the stimulus inducing ER Ca2+ release, i.e., CPA, ATP, or InsP3-BM. Interestingly,
SOCE has also been shown to drive metastasis and invasion in MDA-MB-231 cells [24,30,31].
Therefore, the overall remodelling of intracellular Ca2+ dynamics, i.e., the enhancement of
InsP3-induced ER Ca2+ release and SOCE activation, is predicted to stimulate migration in
PEV-treated MDA-MB-231.

4.2. PEV-Dependent Increase in InsP3-Induced Ca2+ Release Potentiates Migration in
MDA-MB-231 Cells: The Role of p38 MAPK and MLC2 Signalling Pathways

An increase in [Ca2+]i has long been known to mediate the pro-migratory effect of
serum on cancer cells [26,30,31,52,53]. In line with this evidence, early work showed that
PLCγ1 is recruited by serum to stimulate motility and adhesion [85] and that genetic si-
lencing of Orai1 prevents serum-induced migration in MDA-MB-231 cells [31]. Herein, we
provided the first characterization of the molecular mechanisms whereby serum triggers an
increase in [Ca2+]i in this highly migrating breast cancer cell line. Pharmacological manipu-
lation confirmed that serum-evoked intracellular Ca2+ release in MDA-MB-231 cells was
inhibited by interfering with PLC activity with U73122 by inhibiting InsP3Rs with 2-APB
and by depleting the ER Ca2+ pool with CPA. Furthermore, serum-evoked extracellular
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Ca2+ entry was dampened by BTP-2 and Pyr6, two highly specific inhibitors of Orai1. These
findings concur with the involvement of InsP3Rs and SOCE in the Ca2+ signal evoked by
serum in MDA-MB-231 cells, as also documented in other types of cancer cells [40,53,86],
including low-migrating MCF-7 breast cancer cells [87]. As expected by the preliminary
characterization with CPA, ATP, and InsP3-BM, both phases of serum-evoked intracellular
Ca2+ signals (i.e., ER Ca2+ mobilization and SOCE) were significantly increased upon
exposure to PEVs. Previous work has shown that both InsP3Rs and SOCE drive migration
in highly migrating MDA-MB-231 breast cancer cells [24,26,32]. Therefore, the potentiation
of serum-evoked intracellular Ca2+ signals could contribute to the enhanced migration
rate that we recently reported in MDA-MB-231 cells exposed to PEVs [16]. In agreement
with this hypothesis, blocking InsP3Rs with 2-APB significantly reduced serum-induced
migration, a finding that is entirely consistent with the reported involvement InsP3R1 and
InsP3R2 in MDA-MB-231 cell migration [26]. Surprisingly, inhibiting SOCE with BTP-2 did
not affect motility in PEV-treated MDA-MB-231 cells. Nevertheless, both 2-APB and BTP-2
prevented serum-induced MLC2 and p38 MAPK phosphorylation, which drives cancer
cell migration [17–20]. These data confirm our recent evidence that the long-term exposure
to PEVs potentiates p38 MAPK and MLC2 phosphorylation in MDA-MB-231 cells [16]
and further shows that the recruitment of these signalling pathways requires an increase
in [Ca2+]i. Under the same conditions, we failed to detect any effect with regard to PEVs
on the activation of the Ca2+-sensitive focal adhesion kinase Pyk2, whose role in driving
the breast cancer metastatic outgrowth was previously documented [16]. The seeming
discrepancy between the divergent effects of 2-APB and BTP-2 on p38 MAPK and MLC2
phosphorylation and cell motility could reflect some degree of redundancy between multi-
ple Ca2+ sources which can engage the same Ca2+-dependent effectors [88–90]. However,
the phosphorylation cascades triggered by SOCE do not seem to play a major role in
MDA-MB-231 cell migration, which is instead finely tuned by the p38 MAPK and MLC2
pathways engaged by InsP3Rs. Alternatively, InsP3-induced ER Ca2+ release could recruit
additional Ca2+-dependent effectors of cell motility that are not coupled to SOCE and
remain to be identified. Future work is mandatory to assess this issue, but InsP3-induced
ER Ca2+ release is clearly required to potentiate p38 MAPK and MLC2 phosphorylation
and to stimulate migration in PEV-treated MDA-MB-231 cells.

5. Conclusions

Herein, we provide the first evidence that long-term exposure to PEVs induces a
remarkable alteration in the Ca2+ transport system in the highly aggressive TNBC cell
line, MDA-MB-231, thereby leading to an increase in InsP3-induced Ca2+ release and
SOCE amplitude. In particular, the larger Ca2+ mobilization from the ER is required to
potentiate serum-induced migration through the recruitment of p38 MAPK and MLC2.
These findings lay the foundation for targeting the Ca2+ handling machinery not only to
prevent breast cancer cell stimulation by pro-oncogenic chemical mediators and physical
signals [23,24,29,37,55,56] but also by PEVs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cells11193120/s1, Figure S1: Long-term exposure of MDA-MB-231 cells with
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mobilization supports ATP-induced intracellular Ca2+ release in MDA-MB-231 cells; Figure S3: Further
evidence that long-term exposure of MDA-MB-231 cells with PEVs increases FBS-induced extracellular
Ca2+ entry. Figure S4: Long-term exposure of MDA-MB-231 cells with PEVs did not increase Pyk2
phosphorylation; Table S1: Primers used for real time qPCRs.
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