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Abstract: Radiation-induced skin wound/dermatitis is one of the common side effects of radiother-

apy or interventional radiobiology. Gingiva-derived mesenchymal stem cells (GMSCs) were indi-

cated to have therapeutic potentials in skin diseases. However, stem cells are prone to spread and 

difficult to stay in the skin for a long time, limiting their curative effects and application. This study 

investigated the therapeutic efficacy of Nap-GDFDFpDY (pY-Gel) self-assembled peptide hydrogel-

encapsulated GMSCs to treat 137Cs γ-radiation-induced skin wounds in mice. The effects were eval-

uated by skin damage score, hind limb extension measurement and histological and immunohisto-

chemical analysis. In vivo studies showed that pY-Gel self-assembled peptide hydrogel-encapsu-

lated GMSCs could effectively improve wound healing in irradiated skin tissues. In addition, it was 

found that GMSCs conditioned medium (CM) could promote the proliferation, migration and DNA 

damage repair ability of skin cells after irradiation in human keratinocyte cell line HaCaT and nor-

mal human dermal fibroblasts (HFF). Mechanistically, GMSCs-CM can promote the expression of 

epidermal growth factor receptor (EGFR), signal transducers and activators of transcription 3 

(STAT3) and matrix metalloproteinases (MMPs), suggesting that activation of the EGFR/STAT3 sig-

naling pathway may be involved in the repair of skin cells after exposure to radiations. In conclu-

sion, pY-Gel self-assembled peptide hydrogel-encapsulated GMSCs have a beneficial therapeutic 

effect on radiation-induced cutaneous injury and may serve as a basis of novel cells therapeutic 

approach. 
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1. Introduction 

Ionizing radiation (IR) is widely used in medical and industrial fields. Although ex-

posure to extreme radiation is rare, accidents like the Chernobyl and Fukushima nuclear 

power plants are still possible [1]. Accidental or therapeutic exposure to high-dose IR can 

cause severe damage to living tissues. Tissues that proliferate at a higher rate and are 

adequately oxygenated are more susceptible to the effects of radiation including on organ 

systems, such as the hematopoietic, gastrointestinal and skin systems [2,3]. The skin is a 

continuously renewing organ system containing rapidly proliferating and maturing cells 

[4,5]. Therefore, the skin is highly susceptible to radiation damage [2,6]. Cutaneous radi-

ation injury (CRI) occurs in about 95% of patients receiving radiation therapy for cancer 

[7,8]. CRI can significantly reduce the quality of life in patients after radiotherapy. Despite 

substantial improvements in radiological technology, radiation-induced skin damage is 

still a cause of concern. The lack of drugs to treat severe radiation-induced skin injuries 

has prompted further research into the development of better treatment options. In recent 

years, cell-based therapies have become a promising approach for the treatment of chronic 
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difficult-to-heal wounds. Mesenchymal stem cells (MSCs) have been proven to be the 

frontier of therapeutic strategy development for various diseases [3]. 

MSCs are multipotent stem cells found in multiple tissues, such as bone marrow, 

adipose tissue, dermis, brain and spleen [9,10]. Studies have determined that MSCs 

achieve their regenerative potential in skin trauma by promoting immunosuppression 

[11,12], angiogenesis [13,14], anti-apoptosis [15], differentiation [16,17] and proliferation 

[18], as well as alleviating fibrosis and hypertrophic scars [19–21]. MSCs per se are not the 

only elements used in these studies; MSC-derived products have shown paracrine bene-

ficial effects to present a therapeutic effect for wound healing and the regeneration of tis-

sue [22]. It has been reported that MSC-derived extracellular vesicles have immunosup-

pressive and immunomodulatory properties, as well as the ability to activate the angio-

genesis, proliferation, migration and differentiation of endothelial cells, fibroblasts and 

keratinocytes, which are accelerated by paracrine activity in chronic skin ulcers, healing 

and decreasing scar formation, and have positive effects [23]. MSCs have been found in 

various injury models with a strong regenerative ability and seem to be a potential treat-

ment for radiation-induced skin injury [3]. The gingiva is a unique soft tissue that serves 

as a biological mucosal barrier covering the oral side of the maxilla and mandible. Unlike 

scar formation in the skin, wound healing in the gingival and oral mucosa is characterized 

by reducing inflammation significantly, rapid epithelial regeneration and scarless fetal 

healing [24,25]. Gingiva-derived MSCs (GMSCs) have a unique origin from the neural 

crest and show the ability of self-renewal, multipotent differentiation and immune regu-

lation in vitro and in vivo [26,27]. A growing body of evidence shows that GMSCs have 

stable phenotypes and can maintain a normal karyotype and telomerase activity in long-

term culture. In addition, GMSCs are derived from healthy or hyperplastic and (or) in-

flamed gingiva tissues in humans, and they are not carcinogenic [28,29]. Recent studies 

showed that GMSC-derived exosomes contain many cytokines to facilitate wound healing 

in the gingiva [30]. As gingival tissue is abundant and readily available, GMSCs may be 

superior to bone marrow mesenchymal stem cells in cell therapy for regenerative medi-

cine [28]. Thus, GMSCs could also play a key role in the treatment of radiation-induced 

skin injuries. 

Hydrogel biomaterials have been widely used in tissue engineering to provide an 

extracellular microenvironment for tendon regeneration by GMSCs [31]. Moreover, it has 

been reported that the encapsulated MSCs remain viable within the hydrogel, accelerating 

wound healing via enhancing angiogenesis and suppressing local proinflammatory cyto-

kines [32]. Nap-GDFDFDY (Y-Gel) is a molecular hydrogel of co-assembled peptide gel 

and protein, which can optimize the humoral immune response of mice through various 

routes of administration. It has good biocompatibilities against mice immune cells, such 

as mononuclear macrophages and spleen cells, a prerequisite for biomaterials in biomed-

ical applications [33,34]. Phosphorylated Y-Gel can form the supramolecular hydrogel 

Nap-GDFDFpDY (pY-Gel) in the presence of Ca2+, which is biodegradable and biocom-

patible in vivo, could not only prevent the rapid diffusion of antigens from injection sites, 

but also adhere well to tissue [35,36], which seems to be an advantageous characteristic 

for wound healing. It might be another promising scaffolding material for the encapsula-

tion of stem cells that effectively delivers patient-derived dental-derived MSCs. 

In this study, the skin of C57BL/6J mice was exposed to 137Cs γ-ray source to establish 

a mouse model of radiation-induced skin damage. After subcutaneous injections of pY-

Gel self-assembling peptide hydrogels for GMSCs, we evaluated the therapeutic effects 

on radiation-induced skin injury in mice and further investigated the possible mechanism 

by in vitro cell experiments. 
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2. Materials and Methods 

2.1. Cell Culture and Preparation of Conditioned Medium 

HaCaT and HFF cells were kindly provided by Stem Cell Bank, the Chinese Academy 

of Sciences. HaCaT was cultured in RPMI 1640 (HyClone, Logan, UT, USA) supplemented 

with 10% fetal bovine serum (FBS; Gibco, Carlsbad, CA, USA). HFF was cultured in 

DMEM (HyClone, Logan, UT, USA) supplemented with 10% fetal bovine serum (FBS; 

Gibco, Carlsbad, CA, USA). GMSCs were kindly donated by Beijing Taisheng Biotechnol-

ogy Co. Ltd. (Beijing, China). GMSCs were cultured in α-MEM (HyClone, Logan, UT, 

USA) supplemented with 10% fetal bovine serum (FBS; Gibco, Carlsbad, CA, USA). To 

avoid changes in cell behavior due to prolonged culture time, only GMSCs at passages 

P3-P6 were used in this study. 

GMSCs were cultured to 80% confluency in 10% FBS complete medium. Then, the 

medium was replaced by fresh culture medium, and the cells were cultured for another 

48 h at 37 °C under 5% CO2. The supernatants of the GMSCs were collected and then 

passed through 0.45 μm micrometer filters to obtain conditioned medium. All conditioned 

mediums were subpackaged and stored at −80 °C. 

2.2. Animals and Radiation-Induced Skin Injury Model 

Male C57BL/6J mice were purchased from Beijing Vital River Laboratory Animal 

Technology Co. Ltd. (Beijing, China). All mice had ad libitum access to food and water 

and were kept in specific-pathogen-free (SPF) animal rooms at the laboratory animal cen-

ter of the Institute of Radiation Medicine, Chinese Academy of Medical Science. Age-

matched 6- to 8-week-old male mice from the same background were used in all experi-

ments. All animal experiments were reviewed and approved by the Animal Ethical and 

Welfare Committee (AEWC). 

The mice were randomly divided into five groups the day before exposure to IR. The 

mice were anesthetized and the left hind limb skin was exposed to 50 Gy of 137Cs γ-ray at 

a dose rate of 0.890 Gy/min using a Nordion Gammacell 40 whole animal irradiator (BEST 

Theratronics Ltd., Ottawa, ON, Canada). 

2.3. Nap-GDFDFpDY (pY-Gel) Self-Assembling Peptide Hydrogels 

The pY-Gel was provided by Dr. Liu Jianfeng (Chinese Academy of Medical Sciences 

and Institute of Radiation Medicine of Peking Union Medical College, Tianjin, China). pY-

Gel powder was dissolved in PBS at 3 mg/mL, mixed well, pH was adjusted to 7.3–7.4, 

alkaline phosphatase 1 U/100 μL was added and the pY-Gel supramolecular hydrogel was 

placed on ice for later use. 

2.4. Transplantation of GMSCs in Living Mice and Wound Assessment 

In all groups, an identical dose of GMSCs (5 × 105 GMSCs/mouse) was used through-

out this study. The mice used in the in vivo GMSCs transplantation experiment were di-

vided into five groups (n = 5 for each group), namely NO-IR, IR+ PBS, IR+ pY-Gel, IR+ 

GMSCs and IR+ pY-Gel+ GMSCs. The GMSCs were encapsulated into the pY-Gel and then 

injected into the injury sites with four injections per mouse at 24 h after exposed to IR. 

Radiation-induced skin reactions were assessed by double-blind scoring after expo-

sure to IR. The degree of cutaneous toxicity was evaluated every two days, based on the 

skin score criteria of a 5-point scoring system [37]. The irradiated area of each mouse was 

photographed with a digital camera every five days. Limb extension was measured at 

baseline 30 days after IR. Briefly, the maximum extension of the irradiated (left) and non-

irradiated (right) limbs of the mice were measured [38]. Then, the ratio of the extension of 

the irradiated side to the stretching of the non-irradiated side was calculated, with a value 

of one representing equivalent extension.  
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2.5. Histological Examination 

The mice were euthanized 30 days after exposure to IR. The skin was fixed in a for-

maldehyde solution (# 50-00-0; Damao Chemical Reagent Factory, Tianjin, China) and pre-

pared for histological analysis. Samples were dehydrated, embedded in paraffin, cut into 

5 μm micrometer slices using a microtome and mounted on glass slides. Samples were 

stained with hematoxylin and eosin (H&E; # G1080 and # G1100; Solarbio, Beijing, China) 

and Masson’s Trichrome (# G1345; Solarbio). Images were captured using a Zeiss Axio 

Lab.A1 upright microscope (Carl Zeiss MicroImaging GmbH, Jena, Germany). 

To detect the tissue proliferation marker Ki67, sections were also immunostained. 

Briefly, sections were incubated with rabbit anti-Ki67 primary antibody (ab15580; Abcam, 

Cambridge, UK). Slides were subsequently stained with biotinylated goat anti-rabbit sec-

ondary antibody (# PV-9000; ZSGB-BIO, Beijing, China). Reaction sites were visualized 

with DAB (ab64238; Abcam), and the slides were counterstained with hematoxylin. The 

number of Ki67-positive cells was assessed by random selection of a field of view per 

sample using a Zeiss Axio Lab.A1 upright microscope. 

2.6. Western Blot Analysis 

Cells or tissues were lysed in RIPA buffer (# R0010; Solarbio) with PMSF (# P0100; 

Solarbio) and protease inhibitors (04693132001; Roche AG, Basel, Switzerland), and pro-

teins were quantified using a bicinchoninic acid (BCA) Protein Assay Kit (# P0010; Be-

yotime Institute of Biotechnology, Shanghai, China). For Western blotting of lysate pro-

teins, 20 μg of proteins were separated by 8 or 10% sodium dodecyl sulfate–polyacryla-

mide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene fluoride (PVDF) 

membranes (IPVH00010; Merck Millipore KGaA, Darmstadt, Germany). The membranes 

were blocked with 5% Difco Skim Milk (232100; BD Biosciences, San Jose, CA, USA) for 2 

h, followed by overnight incubation with the corresponding primary antibodies. Subse-

quently, the membranes were incubated at room temperature for 1 h with a horseradish 

peroxidase (HRP)-conjugated secondary antibody. Immunoreactive proteins were de-

tected using SuperSignal West Pico PLUS Chemiluminescent Substrate (34580; Thermo 

Fisher Scientific Inc., Waltham, MA, USA) and ChemiDoc™ MP Imaging System (Bio-Rad 

Laboratories, Hercules, CA, USA). The primary antibodies used were as follows: β-tubu-

lin, GAPDH (ProteinTech Group Inc, Rosemont, IL, USA), cyclin A (Santa Cruz Biotech-

nology, Santa Cruz, CA, USA), STAT3, pSTAT3, c-Myc, Ki67 (Abcam), EGFR, pEGFR and 

γH2AX (Cell Signaling Technology Inc., Danvers, MA, USA). 

2.7. Quantitative Real-Time PCR Analysis 

Total RNA was extracted using TRIzol reagent (15596018; Invitrogen, Carlsbad, CA, 

USA), and the concentration and quality of the RNA were determined by spectrophotom-

etry using a NanoDrop 8000 spectrophotometer (Thermo Fisher Scientific Inc.). cDNA 

synthesis was performed using the PrimeScript™ RT Master Mix (Perfect Real Time; Cat# 

RR036A, Takara Bio Inc., Otsu, Japan) following the manufacturer’s protocol. The real-

time PCR was performed using a BlasTaq™ 2× qPCR MasterMix (G891; Applied Biologi-

cal Materials (abm) Inc., Richmond, BC, Canada), according to the manufacturer’s proto-

col. All data were normalized to the control using GAPDH as an internal control. The 

primers for the qPCR are listed in Table S1. 

2.8. Proliferation Assay 

Cells were seeded in 96-well plates at a density of 5 × 103 cells/well in triplicate and 

incubated at 37 °C. These cells were treated with fresh medium supplemented with 

GMSCs-CM in the ratio 1: 1 and exposed to irradiation 4 and 8 Gy immediately, followed 

by incubation for 24, 48 and 72 h, respectively. Cell proliferation was evaluated using the 

Cell Counting Kit-8 (CCK-8; # MA0218; Meilunbio, Dalian, China) assay. Briefly, 10 μL of 
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CCK-8 reagent was added to each well, and plate was incubated for 2 h. Absorbance read-

ings were measured at 450 nm on a Synergy HT microplate spectrophotometer (BioTek 

Instruments Inc., Winooski, VT, USA). 

2.9. Colony Formation Assay 

HaCaT cells were seeded in 6-well plates in triplicate at a density of 1000 cells/well, 

treated with fresh medium supplemented with GMSCs-CM in the ratio 1: 1 and exposed 

to the indicated doses of 137Cs γ-radiation (0.890 Gy/min) 1, 2 and 4 Gy immediately. The 

cells were then incubated for about 10 days, changing the medium every 3 days. Finally, 

the cells were stained with crystal violet (# C8470; Solarbio), and colonies containing more 

than 50 cells were counted. 

2.10. Scratch Wound Healing Assay 

Cell migration was assessed by a wound healing assay. HaCaT cells were grown in 

6-well plates until they reached a confluence of around 90–100%. A scratch was made in 

the cell monolayer in middle of the well with a sterilized 10 μm microliter disposable pi-

pette tip, and a photograph was taken. These cells were treated with serum-free medium 

supplemented with GMSCs-CM in the ratio 1: 1 and immediately exposed to IR 8 Gy; 

images of the scratched area were captured 12 h later. The area between the two edges of 

the wound was measured using the Image J software (National Institutes of Health (NIH), 

Bethesda MD, USA). The closed area of the wound was calculated using the following 

formula: migration area (%) = (S0–Sn)/S0 × 100, where S0 denotes the initial wound area and 

Sn denotes the remaining wound area at the measurement point. 

2.11. Transwell Migration Assay 

Cells were suspended in serum-free medium and seeded at 6 × 104 cells/well into the 

upper chambers of Transwell 24-well plates (3422; Corning Inc., Corning, NY, USA) with 

8 μm micrometer pore membranes. Then, complete fresh medium supplemented with or 

without GMSCs-CM was added to the lower chambers in the ratio is 1: 1, irradiating 8 Gy 

immediately. The cells were incubated at 37 °C for 12 h, and non-migrating cells were 

removed with cotton swabs. Migrated cells of the lower surface were stained with 0.5% 

crystal violet for 15 min. Then, stained cells were visualized under a microscope and man-

ually counted. 

2.12. Immunofluorescence and Quantitative Analysis of Individual Cells 

Cells were cultured on glass coverslips and treated with fresh medium supplemented 

with GMSCs-CM in the ratio 1: 1 before exposure to IR 8 Gy. Cells were fixed with 4% 

paraformaldehyde (# P1110; Solarbio) for 15 min and permeabilized with 0.3% Triton-X 

100 (# T8200; Solarbio), and non-specific binding was blocked with 1% Albumin Bovine V 

(A8020; Solarbio) in PBS for 1 h at room temperature. Fixed cells were incubated with the 

corresponding primary antibodies at 4 °C overnight, followed by 1 h at room temperature 

with the appropriate secondary antibody. Then, nuclei were stained with Vectashield 

Mounting Medium with DAPI (H-1200; Vector Laboratories, Burlingame, CA, USA). Im-

ages were captured using an EVOS fluorescent microscope (Advanced Microscopy Group 

(AMG), Bothell, WA, USA) and processed using Adobe Photoshop CS6 (Adobe Inc., San 

Jose, CA, USA). The numbers of foci in individual cells were counted, and the data were 

plotted using the GraphPad Prism 8 software (GraphPad Software Inc., San Diego, CA, 

USA). The primary antibody used was γ-H2AX (05-636; Merck Millipore KGaA). Second-

ary antibody used was Cy3-conjugated goat anti-mouse IgG (H+L) (SA00009-1; Pro-

teinTech Group Inc.).  
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2.13. Cell Cycle Analysis 

The cell cycle distribution was analyzed after treating the cells with fresh medium 

supplemented with GMSCs-CM in the ratio 1: 1 and followed by exposure to IR 8 Gy 

immediately. Cells were fixed with cold 70% ethanol for 2 h at 4 °C. Afterwards, cells were 

stained with propidium iodide (PI) staining buffer (50 μg/mL PI, 4 mM sodium citrate 

buffer and 10 μg/mL RNase A) and incubated at 37 °C for 15 min in the dark. At least 

10,000 cells per condition were counted by flow cytometry. The relative distribution of 

cells over the different cell cycle phases was analyzed using the FlowJo 7.6 software (Tree 

Star Inc., Ashland, OR, USA). 

2.14. RNA Interference 

After cells were grown to 50–60% confluence, HaCaT cells were transfected with 

small interfering RNAs (siRNAs) (GenePharma Co., Ltd., Shanghai, China) using Lipofec-

tamine™ RNAiMAX Transfection Reagent (13778150; Invitrogen), following the manu-

facturer’s instructions. Forty-eight hours after transfection, cells were treated with fresh 

medium supplemented with or without GMSCs-CM in the ratio 1: 1 and immediately ex-

posed to IR, 4 Gy and 8 Gy. The siRNAs for RNA interference are listed in Table S2. 

2.15. Statistical Analysis 

All data are expressed as the mean ± standard deviation. Statistical comparisons were 

made by analysis of variance (ANOVA), for multiple comparisons, and Student’s t-test 

for two sample comparisons, using the SPSS 25.0 software (IBM Corporation, Armonk, 

NY, USA). ns, not significant p > 0.05, * p < 0.05, ** p < 0.01 and *** p < 0.001 were used in 

this study to show statistical significance. 

3. Results 

3.1. Stem Cell Encapsulation by Nap-GDFDFpDY (pY-Gel) Self-Assembling Peptide Hydrogels 

We expanded the isolated primary GMSCs to the P3-P6 generation in vitro and found 

that the cells were all fusiform with abundant cytoplasm and good refractive properties 

(Supplementary Figure S1A–D). A translucent hydrogel was formed by adding alkaline 

phosphatase to pY-Gel (Supplementary Figure S1E–G), and GMSCs (5 × 105 cells/100 μL) were 

encapsulated in it (Supplementary Figure S1H). After successfully encapsulating GMSCs 

with the pY-Gel, the encapsulated GMSCs were injected into mice (100 μL/mouse, divided 

into four injection sites). 

3.2. Evaluation of Healing Quality of the CRI 

In this study, to determine whether GMSCs can be used alone or in combination with 

other therapies to promote the repair of CRI, a mouse model of CRI (137Cs γ-ray, 50 Gy) 

was established. The treatment was performed within 24 h of the exposure to IR, and the 

mice were sacrificed 30 days after exposure to IR to obtain tissues for analysis. The flow 

chart of the experimental procedure is as shown in Figure 1A. 
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Figure 1. Serial response of mice treated with pY−Gel and GMSCs. (A) The flow chart of the devel-

opment and treatment of a mouse model of CRI. (B) Representative images of the left hind limb 5–

30 days post-irradiation. (C) A 5-point scoring system was used to double-blindly evaluate the de-

gree of skin damage every two days. (D) Assessment of hind limb extension. n = 5 animals. Data are 

expressed as the mean ± standard deviation. Statistical comparisons were made by ANOVA for 

multiple comparisons. ns, not significant p > 0.05, ** p < 0.01 and *** p < 0.001. 

Erythema, alopecia and edema gradually appeared in the left hind limb skin of mice 

5 to 10 days after irradiation; exudation, ulceration and necrosis gradually appeared in 

10–15 days; the CRI score was the highest at 22 ± 2 days (Figure 1B,C). The results revealed 

that the mice in the pY-Gel+ GMSCs group exhibited the least skin damage, the latest peak 

of damage and the shortest skin damage repair time. To assess the degree of skin tissue 

fibrosis in the mice, we measured the passive leg elongation of mice 30 days after exposure 

to IR. The results showed that the passive leg elongation of the mice in the IR group was 

shorter than that of the mice in the control group, but the degree of shortening was con-

siderably alleviated by the treatment with pY-Gel + GMSCs (Figure 1D). The results indi-

cate that the pY-Gel self-assembling peptide hydrogels for GMSCs have a certain thera-

peutic effect on CRI in mice, delay the appearance of skin damage, reduce the degree of 

damage and promote skin damage repair. 

In the irradiated group, H&E staining of the skin tissues showed thickened epider-

mis, irregular cell arrangement, parakeratosis, occasional epidermis absence, lack of skin 
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appendages in the dermis and numerous inflammatory cell infiltrations (Figure 2A in a). 

In addition, we also found occasional excessive proliferation of sebaceous glands in the 

dermis, and the cytoplasm was filled with lipid droplets (Figure 2A in b). In contrast, in 

the pY-Gel+ GMSCs group, the thickening of the epidermal layer was reduced and a rel-

atively regular cell arrangement was observed. Moreover, there were more and more reg-

ular skin appendages in the dermis, inflammatory cell infiltrations were relatively rare 

and the skin histological features tended to be normal (Figure 2A). In addition, we have 

verified in skin tissue and cells that the expression of IL6, IL1β and TNFα was reduced 

with treatment, suggesting that inflammatory response is decreased (Supplementary Fig-

ure S2). We also performed Masson trichrome staining and measured the skin thickness 

to determine the ratio of epidermis/dermis. The results showed that more collagen fibers 

deposited in the skin tissue of the mice in the irradiated group than in the non-irradiated 

group. Instead, in the pY-Gel+ GMSCs group, the deposition of collagen fibers was signif-

icantly reduced. In addition, the measurements of the skin thickness and the ratio of epi-

dermis/dermis revealed that the skin tissue of the mice were significantly thickened after 

exposure to IR. In contrast, the skin thickness of mice treated with pY-Gel + GMSCs tended 

to be normal. The measurement of the ratio of epidermis/dermis suggested that the skin 

thickening was mainly distributed in the epidermis, and the skin of the mice in the pY-

Gel+ GMSCs group tended to show normal epidermal thickness (Figure 2B–D). These re-

sults showed that exposure to IR can cause skin tissue damage in mice, and pY-Gel self-

assembling peptide hydrogels for GMSCs can effectively reduce the degree of radiation-

induced skin fibrosis and improve the healing quality. 
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Figure 2. Evaluation of the healing quality of CRI. (A) H&E staining images of limb lesions in mice 

with radiation injury at 30 days post-treatment. The white arrows point to the sebaceous glands in 

the dermis. (B) Masson’s trichrome staining of wound sections. The black arrows indicate the skin 
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thickness. (C,D) Skin thickness is measured from the dermal–subcutaneous interface to the outer 

surface of the epidermis and the ratio of epidermis/dermis. (E,F) Representative immunohistochem-

ical images and quantitation of Ki67 in skin epidermis from non-irradiated mice and irradiated mice 

30 days after irradiation. Scale bars, 100 μm. n = 5. Data are expressed as the mean ± standard devi-

ation. Statistical comparisons were made by ANOVA for multiple comparisons. ns, not significant 

p > 0.05, ** p < 0.01 and *** p < 0.001. 

We also performed Ki67 staining of epidermal cells by immunohistochemistry. The 

results showed that the proportion of Ki67-positive cells in the epidermal layer of the skin 

of the irradiated mice was significantly reduced compared with that in the non-irradiated 

group. In contrast, the pY-Gel+ GMSCs group could partially mitigate the reduction in 

Ki67-positive cells (Figure 2E,F). Accordingly, these results showed that exposure to IR 

can decrease the normal proliferation capacity of epidermal cells in the skin tissues. Treat-

ment of CRI with pY-Gel self-assembling peptide hydrogels for GMSCs can partially re-

store the proliferation capacity of epidermal cells and improve wound healing. 

3.3. GMSCs Promote the Proliferation and Migration of Skin Cells 

Recent studies have shown that MSCs can secrete various pro-proliferation, anti-in-

flammatory and pro-angiogenic factors or chemokines to promote the survival and pro-

liferation of skin cells, thereby accelerating wound repair [16–18]. To evaluate if the 

GMSC’s effect seen in vivo was related to factors secreted from the cells, we decided to 

perform in vitro assays using GMSCs-CM. The irradiation doses used in the assays were 

established based on previous studies [37,39]. First, we measured the proliferation capac-

ity of skin cells using the CCK-8 assay. The results showed that the proliferation capacity 

of HaCaT cells was significantly reduced after exposure to IR of 4 and 8 Gy for 24, 48 or 

72 h, respectively. Instead, compared with the control group, the cell proliferation capacity 

of the cells in the GMSCs-CM group was increased (Figure 3A,B). Similar results were 

obtained with HFF cells (Figure 3C,D). In addition, we also tested the colony formation 

ability of HaCaT cells. The results revealed that the colony formation rate of HaCaT cells 

was significantly reduced after exposure to IR in a dose-dependent manner. On the other 

hand, compared with the control group, GMSCs-CM promoted cell colony formation (Fig-

ure 3E,F). The above experimental results indicated that GMSCS-CM promoted the pro-

liferation of skin cells. 
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Figure 3. GMSCs promote the proliferation and migration of skin cells. (A,B) CCK-8 assay of HaCaT 

cell proliferation. (C,D) CCK-8 assay of HFF cell proliferation. (E,F) HaCaT cells were exposed to 

the indicated IR dose of 0, 1, 2 or 4 Gy and cultured for 10 days. Colonies with more than 50 cells 

were counted. (G) GMSCs-CM promoted HaCaT cells migration according to the analysis by the 

scratch wound assay. Scale bars, 1000 μm. (H) Quantitative analysis of the cell migration rates in 

(G). (I,J) The migration ability of HFF cells treated with GMSCs-CM was measured by the Transwell 

assay. Representative results from one of three independent experiments are shown. Data are ex-

pressed as the mean ± standard deviation. Statistical comparisons were made by a two-sample Stu-

dent’s t-test, using the SPSS 25.0 software (IBM Corporation, Armonk, NY, USA). * p < 0.05, ** p < 

0.01 and *** p < 0.001. 

The migration of epidermal keratinocytes is an important step in skin wound healing 

[40]. Thus, we hypothesized that GMSCs might induce cell migration, while promoting 

the proliferation of skin cells. The results showed that GMSCs-CM treatment significantly 

increased the migration rate of HaCaT cells. Specifically, GMSCs-CM treatment enhanced 

cell motility (Figure 3G,H). Transwell migration assay further confirmed that GMSCs-CM 

treatment promoted the migration ability of HFF cells (Figure 3I,J). The above experi-

mental results demonstrated that GMSCS-CM can promote the migration of skin cells. 

3.4. GMSCs Enhance the Ability of Skin Cells to Repair DNA Damage 

IR directly or indirectly causes severe DNA damage, leading to chromosomal aber-

rations and genomic instability, ultimately resulting in the loss of cell function and death 

[41,42]. Several studies have shown that the formation of γH2AX foci plays an important 

role in the protein recruitment and signal transduction cascade of the DNA damage re-

sponse [43]. Therefore, formation of γH2AX foci was used as a DNA damage marker to 

evaluate the influence of GMSCs-CM on the repair of IR-induced DNA damage in HaCaT 

cells. We performed immunofluorescence analysis experiments to detect γH2AX foci at 1, 

12 and 24 h after HaCaT cells were exposed to 8 Gy radiation. Statistical analysis was 

performed by counting the γH2AX foci in each cell and counting cells with γH2AX foci ≥ 

15 as positive cells. The results revealed no significant difference in the mean number of 

intracellular γH2AX foci between the control and GMSCs-CM treatment groups at 1 h 

after IR. However, at 12 and 24 h after IR, the average γH2AX foci in the control group 

were significantly higher than that in the GMSCS-CM group. Counting the positive cells 

produced the same results (Figure 4A,B). The above experimental results indicated that 

IR induces DNA damage in HaCaT cells, and GMSCS-CM treatment enhances their ability 

to repair IR-induced DNA damage. 

The DNA repair pathway can restore DNA integrity when the cell cycle is blocked, 

and cell cycle regulation may be the most important determinant of the sensitivity to IR 

[44]. Studies have shown that the G2 phase arrest in cells may provide time for the repair 

process, which is essential to ensure cell survival after sublethal DNA damage [45,46]. The 

flow cytometric analysis of cell cycle distribution showed that at 24 and 48 h after 8 Gy of 

IR, the ratio of cells in the G2/M phase was higher than that in the non-irradiated group. 

Moreover, the proportion of cells in the G2/M phase in the GMSCS-CM treatment group 

after exposure to IR was significantly higher than that in the control group (Figure 4C–F). 

We also used cyclin A as a G2/M phase cell cycle marker in the Western blot analysis. The 

results showed that the level of cyclin A protein in the GMSCs-CM-treated cells was sig-

nificantly higher than that in the GMSCs-CM untreated group, whether to irradiate or not 

(Figure 4G). Similarly, the transcription level of cyclin A (CCNA) in the GMSCS-CM-

treated cells was also significantly upregulated (Figure 4H). These results indicated that 

GMSCS-CM induces G2/M phase cell cycle arrest in HaCaT cells after exposure to IR and 

enhances the ability of repair of IR-induced DNA damage. 



Cells 2022, 11, 3089 13 of 22 
 

 

 

Figure 4. GMSCs enhance the ability of skin cells to repair DNA damage. (A,B) Skin cells exposed 

to 8 Gy. The γH2AX foci were counted at 1, 12 and 24 h post-irradiation. (C–F) Flow cytometry 

histograms showing cell cycle progression of skin cells at 24 and 48 h post-irradiation (C,E). Propor-

tions of cells in each phase of the cell cycle of skin cells at 24 and 48 h post-irradiation (D,F). (G) 

Western blot analysis of cyclin A protein expression in skin cells exposed to 8 Gy. (H) Measurement 

of the expression of the CCNA by qPCR analysis. Representative results from one of three inde-

pendent experiments are shown. Data are expressed as the mean ± standard deviation. Statistical 
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comparisons were made by a two-sample Student’s t-test, using the SPSS 25.0 software (IBM Cor-

poration, Armonk, NY, USA). ns, not significant p > 0.05, ** p < 0.01 and *** p < 0.001. 

3.5. GMSCs Regulate IR-Induced Activation of the EGFR/STAT3 Signaling Pathway 

Epidermal growth factor receptor (EGFR) signaling plays a role in all aspects of skin 

physiology and pathology [47,48]. It has been shown to be essential for the proliferation, 

migration and survival of keratinocytes to maintain normal skin homeostasis or restore 

epidermal integrity after injury [49]. EGFR signaling is usually limited to the basal layer 

of the epidermis, where the proliferating cells are located [49]. Signal transducers and ac-

tivators of transcription 3 (STAT3) are effectors of EGFR signal transduction, previously 

confirmed to be related to skin remodeling [50]. In addition, other studies have shown 

that EGFR mediates the migration of keratinocytes, and its activation can induce the phos-

phorylation of STAT3, which is also involved in the migration and proliferation of 

keratinocytes [51,52]. 

We hypothesized that GMSCs-CM promotes skin cell repair by regulating the acti-

vation of EGFR and STAT3. Western blot analysis was used to evaluate the effect of the 

activation of the EGFR/STAT3 pathway after exposure of skin cells to IR. The results re-

vealed that the protein levels of pEGFR, EGFR, pSTAT3 and c-Myc increased gradually 

after exposure to IR, and the trend was consistent and time-dependent. The protein levels 

decreased significantly 24 h after IR, and the trend was the same, but exposure to IR had 

no significant effect on the total protein level of STAT3 (Figure 5A and Supplementary 

Figure S3A). Together, these results showed that exposure to IR can induce the activation 

of the EGFR/STAT3 pathway in skin cells. Thus, we verified whether GMSCs-CM regu-

lates the IR-induced activation of the EGFR/STAT3 signaling pathway in skin cells. The 

results revealed that the protein levels of pEGFR, EGFR, pSTAT3 and c-Myc were in-

creased in HaCaT cells after exposure to IR and significantly elevated in the GMSCS-CM-

treated HaCaT cells compared with the untreated control HaCaT cells (Figure 5B,C and 

Supplementary Figures S3B,C). Furthermore, the expression level of Myc in the GMSCs-

CM-treated HaCaT cells was also significantly increased compared with the untreated 

control cells (Figure 5D). We also tested the effects of GMSCs-CM treatment on the ex-

pression of downstream target genes of EGFR/STAT3 in HaCaT cells after exposure to IR. 

Matrix metalloproteinases (MMPs) are related to angiogenesis and cell migration mecha-

nisms and are known to be an important part of epithelial repair [53]. Our results revealed 

significantly increased expression levels of the target genes MMP1, MMP3, MMP9 and 

MMP10 (Figure 5E–H) in the GMSCs-CM-treated cells compared with the untreated con-

trol cells. These results suggest that GMSCS-CM regulates the IR-induced activation of the 

EGFR/STAT3 signaling pathway in skin cells. We further verified whether GMSCs regu-

late the IR-induced activation of the EGFR/STAT3 signaling pathway in skin tissue. The 

results showed that the protein levels of pEGFR, EGFR, pSTAT3 and c-Myc were in-

creased in irradiated skin tissues compared with the non-irradiated tissues. Compared 

with the other groups, the phosphorylated protein levels in the pY-Gel+ GMSCs group 

were significantly increased (Figure 5I and Supplementary Figure S3D). These results in-

dicated that treatment with pY-Gel-encapsulated GMSCs regulates the IR-induced activa-

tion of the EGFR/STAT3 signaling pathway in skin tissues. 
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Figure 5. GMSCs regulate IR-induced activation of the EGFR/STAT3 signaling pathway. (A) pEG-

FRTyr1068, EGFR, pSTAT3Y705, STAT3 and c-Myc expression levels in IR-treated skin cells for the indi-

cated times. (B,C) pEGFRTyr1173, pEGFRTyr1068, pEGFRTyr1045, EGFR, pSTAT3Y705, STAT3 and c-Myc ex-

pression levels in GMSCs-CM-treated skin cells for 6 h after 4 and 8 Gy irradiation. (D) Measure-

ment of the expression of Myc by qPCR analysis at 6 h after 4 and 8 Gy irradiation. (E–H) Measure-

ment of the expression of MMP1, MMP3, MMP9 and MMP10 by qPCR analysis at 6 h after 4 and 8 

Gy irradiation. (I) pEGFR, EGFR, pSTAT3Y705, STAT3 and c-Myc expression levels in pY-Gel+ 

GMSCs-treated skin tissues for 30 days after 50 Gy irradiation. Representative results from one of 

three independent experiments are shown. Data are expressed as the mean ± standard deviation. 

Statistical comparisons were made by two-sample Student’s t-test, using the SPSS 25.0 software 

(IBM Corporation, Armonk, NY, USA). * p < 0.05, ** p < 0.01 and *** p < 0.001. 
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3.6. GMSCs Affect Cell Radiosensitivity by Regulating the EGFR/STAT3 Signaling Pathway 

It has been shown that inhibition of EGFR and STAT3 phosphorylation suppresses 

keratinocyte proliferation and migration [52]. To further examine whether GMSCs pro-

mote the proliferation and migration of skin cells through the activation of the 

EGFR/STAT3 signaling pathway, we used three kinds of siRNAs, designated as #1, #2 and 

#3, to knock down EGFR expression in HaCaT cells and measured the EGFR protein level 

by Western blot analysis (Supplementary Figure S4A). We randomly selected siEGFR#2 

for the subsequent experiments. The results revealed that the cell proliferation capacity of 

the siEGFR group decreased, and GMSCs-CM treatment had no significant effect on cell 

proliferation in the siEGFR group (Figure 6A and Supplementary Figures S4B). The 

scratch test results showed that the cell migration capacity of the cells in the siEGFR group 

was decreased, and the GMSCS-CM treatment had no significant effect on the cell migra-

tion capacity of the siEGFR group (Figure 6B,C). These results demonstrated that EGFR 

knockdown reduced the proliferation and migration capacity of HaCaT cells, and the abil-

ity of GMSCS-CM to promote the proliferation and migration of HaCaT cells disappeared. 

In other words, GMSCS-CM promotes the proliferation and migration of skin cells 

through the activation of EGFR. 

 

Figure 6. GMSCS-CM promoted the proliferation and migration of skin cells through the induction 

of phosphorylation and activation of EGFR/ STAT3. (A) CCK-8 assay of HaCaT cell proliferation 
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following knockdown of EGFR. (B,C) Evaluation of the migration ability of HaCaT cell following 

knockdown of EGFR by the scratch wound assay. (D) CCK-8 analysis of HaCaT cell proliferation 

following knockdown of STAT3. (E) Quantitative analysis of the migration rates. Scale bars, 1000 

μm. Representative results from one of three independent experiments are shown. Data are ex-

pressed as the mean ± standard deviation. Statistical comparisons were made by two-sample Stu-

dent’s t-test, using the SPSS 25.0 software (IBM Corporation, Armonk, NY, USA). ns, not significant 

p > 0.05, * p < 0.05, ** p < 0.01 and *** p < 0.001. 

Additionally, it has also been shown that interference with STAT3 expression in epider-

mal keratinocytes impairs the wound healing process [54]. We knocked down STAT3 in the 

same way and verified (Supplementary Figure S4C). The results showed that the proliferation 

capacity of cells in the siSTAT3 group was reduced, and the GMSCS-CM treatment had no 

significant effect on the proliferation capacity of the cells in the siSTAT3 group (Figures 6D 

and Supplementary Figure S4D). The scratch test results showed that the cell migration 

ability of the siSTAT3 group was reduced, and the GMSCS-CM treatment had no signifi-

cant effect on the migration ability of the cells in the siSTAT3 group (Figure 6E and Sup-

plementary Figure S4E). These results suggested that STAT3 knockdown reduced the pro-

liferation and migration ability of HaCaT cells and impaired the ability of GMSCS-CM to 

promote cell proliferation and migration. In other words, GMSCS-CM promoted the pro-

liferation and migration of skin cells by activating STAT3. 

4. Discussion 

Since radiation-induced skin wounds/dermatitis is one of the leading factors that 

threaten the physical and mental health of patients and cause an economic burden [1], the 

research and development of an ideal treatment method is both important and urgent. In 

the present study, we effectively used a combination of Nap-GDFDFpDY (pY-Gel) self-

assembling peptide hydrogel-encapsulated GMSCs to promote skin defect healing in a 

mouse model of radiation skin injury. 

Previous studies showed that the application of mesenchymal stem cells (MSCs)-

laden hydrogels promotes improved wound healing [55]. Among odontogenic MSCs, 

GMSCs are readily obtained from the oral cavity and can usually be obtained from dis-

carded biological samples [31]. Several studies have shown that GMSCs can accelerate 

skin wound healing by enhancing re-epithelialization, collagen deposition, angiogenesis, 

inhibiting the production of inflammatory cytokines and increasing anti-inflammatory cy-

tokines [56]. These findings indicate that GMSCs play a key role in skin wound healing. 

However, to the best of our knowledge, the ability of GMSCs to repair radiation-induced 

skin damage has not been reported. Cell-laden hydrogels are widely used in tissue engi-

neering and regenerative medicine [55,57]. As such, this study used a self-assembled pol-

ypeptide supramolecular hydrogel as the carrier of GMSCs to treat radiation-induced skin 

injury. 

Wound healing is a dynamic process which involves a coordinated effort by multiple 

biological pathways. MSCs therapy can influence each of these stages of tissue repair, im-

proving wound healing [22]. More recently, methods to enhance the effectiveness of MSCs 

by the use of hydrogel scaffolds have also been tested in treating skin damage and have 

shown great promise [55,58]. Our in vivo study showed that the severity of the radiation 

skin damage in the pY-Gel+ GMSCs group was reduced, and the skin wound repair ability 

was enhanced compared with that in other irradiated mice. In addition, the skin histolog-

ical analysis of mice showed that the radiation-induced skin fibrosis was significantly re-

duced in the pY-Gel+ GMSCs group, and the tissue structure of the skin tended to be nor-

mal. These results indicate that the treatment with pY-Gel self-assembling peptide hydro-

gels for GMSCs has positive effects on re-epithelialization and remodeling. At the same 

time, we also found that the treatment with pY-Gel self-assembling peptide hydrogels for 

GMSCs partially restores the proliferation capacity of epidermal cells, which have a posi-
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tive impact on wound healing. All these factors can promote the healing of radiation-in-

duced skin damage. Since the healing effect on the pY-Gel+ GMSCs group was faster than 

that on the pY-Gel and GMSCs treatment groups, we hypothesized that these results had 

two major implications. First, GMSCs could promote the healing of radiation-induced 

skin wounds. Second, pY-Gel provided a suitable environment for GMSCs to exert their 

biological effects. Considering the availability of GMSCs and their ability to repair skin 

damage, GMSCs are unique and promising candidates for skin tissue engineering in the 

appropriate microenvironment. These results indicate that the pY-Gel self-assembling 

peptide hydrogels for GMSCs intervention may be a promising option for the treatment 

of radiation-induced skin injury. 

Although stem cell-based therapies have shown beneficial effects on wound healing 

and tissue regeneration, it has been reported that the predominant mechanism by which 

stem cells repair tissue is paracrine action [22,59]. Some studies showed that conditioned 

mediums contained high concentrations of growth factors and cytokines associated with 

angiogenesis and endothelial cell migration [60,61]. Increasing evidence supports that 

MSCs-CM significantly accelerated wound closure and enhanced the wound healing 

quality [62]. As such, we chose to use GMSCs-CM for in vitro studies. It has been reported 

that MSCs-CM effectively improves wound healing quality by secreted factors that pro-

moted HUVEC proliferation, regeneration of sebaceous glands and angiogenesis [62]. An-

other study also demonstrated that MSCs-CM could promote wound repair and skin re-

generation via improvement of cellular behaviors of fibroblasts in the microenvironment 

[63]. Our results showed that GMSCs-CM promotes the proliferation and migration of 

skin cells. In addition, analysis of cell cycle arrest, which provides sufficient time for DNA 

damage repair, thus maintaining the stability of the cell genome [64], revealed several 

interesting findings. We found, through cell cycle and immunofluorescence assays, that 

skin cells treated with GMSCS-CM were arrested in the G2/M phase after irradiation. As 

a result, the ability to repair DNA damage was enhanced. This suggests that GMSCs-CM 

may secrete various factors to stimulate fibroblasts and keratinocyte proliferation, migra-

tion and DNA damage repair to enhance injured skin regeneration and functional recov-

ery. 

Since EGFR and STAT3 are involved in the migration and proliferation of keratino-

cytes [42], stimulating EGFR can lead to the phosphorylation, and thus activation, of 

STAT3 [52]. In this study, we found that exposure to IR could activate the EGFR/STAT3 

signaling pathway and further evaluated the influence of GMSCS-CM on the major mol-

ecules in this pathway. The experimental results showed that GMSCs regulate the phos-

phorylation level of EGFR and STAT3, as well as the downstream effector c-Myc in skin 

cells, after exposure to IR. Moreover, our in vivo experiments showed similar results. The 

Designer Antimicrobial Peptide A-hBD-2 has been reported to increase keratinocyte mi-

gration and proliferation through phosphorylation of EGFR and STAT3 and to inhibit 

keratinocyte terminal differentiation to promote wound healing in vivo [65]. In this study, 

the siRNA-mediated knockdown of EGFR and STAT3 led to the inhibition of the migra-

tion and proliferation of skin cells, indicating that GMSCs-CM induces the phosphoryla-

tion of EGFR and STAT3, which leads to their activation, thereby mediating skin cell mi-

gration and proliferation. Furthermore, IR induced the upregulation of EGFR expression 

and promoted the phosphorylation of EGFR, which in turn might promote the activation 

of the STAT3 and the transcription of its downstream genes. In particular, phosphorylated 

STAT3 can result in more efficient DNA damage repair and better survival of cells [66]. In 

our studies, IR induces DNA damage in HaCaT cells and GMSCS-CM treatment enhances 

their ability to repair IR-induced DNA damage. Collectively, we speculate that GMSCs-

CM significantly promotes the DNA repair and survival of skin cells via upregulating 

pEGFR and pSTAT3 expression levels after irradiation. 

This study provided a novel concept for the application of GMSCs. Since it has been 

proven that GMSCs play a critical role in skin tissue repair and regeneration [30,66], some 

researchers began to explore new methods to apply GMSCs in the tissue repair field. Shi 
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et al. showed that the incorporating of GMSC-derived exosomes to hydrogel could effec-

tively promote healing of diabetic skin defects [25]. Our study suggests that GMSCs-CM 

can promote skin cell proliferation and migration by activating the EGFR/STAT3 signaling 

pathway in vitro; while pY-Gel supramolecular hydrogel associated to GMSCs can pro-

mote the damage repair of radioactive skin tissue in vivo. Furthermore, increasing evi-

dence supports that GMSCs secrete various growth factors and chemokines for promoting 

wound healing through paracrine effects [25,30,67]. Conditioned media loaded in hydro-

gel may have significant potential as a novel alternative to whole cell-based therapy and 

to achieve “cell-free regenerative medicine”. 

In summary, we highlight the profound effect of pY-Gel supramolecular hydrogel on 

skin damage repair and demonstrate that GMSCs-CM may promote skin cell proliferation 

and migration through activation of the EGFR/STAT3 signaling pathway, which ulti-

mately promotes skin injury repair. Therefore, GMSCs-mediated skin damage repair 

sheds a light on the cell-based treatment for radiation-induced skin damage. In short, the 

pY-Gel self-assembling peptide hydrogels for GMSCs may become a good option for clin-

ical application in the treatment of radiation-induced skin injury. 
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