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Abstract: Hepatocellular carcinoma (HCC) is the most malignant and poor-prognosis subtype of
primary liver cancer. The scRNA-seq approach provides unique insight into tumor cell behavior at the
single-cell level. Cytokine signaling in the immune system plays an important role in tumorigenesis
and has both pro-tumorigenic and anti-tumorigenic functions. A biomarker of cytokine signaling in
immune-related genes (CSIRG) is urgently required to assess HCC patient diagnosis and treatment.
By analyzing the expression profiles of HCC single cells, TCGA, and ICGC data, we discovered that
three important CSIRG (PPIA, SQSTM1, and CCL20) were linked to the overall survival of HCC
patients. Cancer status and three hub CSIRG were taken into account while creating a risk nomogram.
The nomogram had a high level of predictability and accuracy. Based on the CSIRG risk score, a
distinct pattern of somatic tumor mutational burden (TMB) was detected between the two groups.
The enrichment of the pyrimidine metabolism pathway, purine metabolism pathway, and lysosome
pathway in HCC was linked to the CSIRG high-risk scores. Overall, scRNA-seq and bulk RNA-seq
were used to create a strong CSIRG signature for HCC diagnosis.

Keywords: hepatocellular carcinoma; HCC; scRNA-seq; single cell; cytokine signaling in immune;
prediction model; immune microenvironment; TMB; GSEA

1. Introduction

According to the most recent data from the International Agency for Research on Can-
cer, liver carcinoma is one of the most prevalent malignancies globally [1]. In recent years,
tremendous progress has been made in diagnosing and treating hepatocellular carcinoma
(HCC), the most common type of liver carcinoma [2]. The most effective treatment for early
HCC is surgical resection. However, most patients are diagnosed in their late stages and
are then unable to seek this treatment [3]. As a result, HCC may not be discovered for a
number of years after its onset, usually in its advanced stages [4]. As a result, the diagnostic
delay is a crucial factor that affects the overall controllability of HCC. Finding patients at
high risk is a crucial step in the prediction of HCC. The gene signature produced from the
high-risk group may be used to conduct a risk assessment and to enhance early cancer
screening, early diagnosis, and treatment. Various biochemical clinical indicators have
been used to screen and evaluate HCC patients. Alpha fetoprotein (AFP) is the most classic
one among them. According to the Guidelines for the Diagnosis and Treatment of Primary
Liver Cancer (2022 edition), patients are highly suspected to suffer HCC if their serum
AFP level is greater than the cutoff value of 400 ng/mL, even in the absence of imaging
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evidence [5]. PIVKA-II (prothrombin induced by vitamin K deficiency or antagonist-II) is
another highly specific biomarker of HCC that was first reported by Liebman in 1984 [6].
PIVKA-II has been included in the guidelines of the Asian Pacific Association of Liver
Diseases and the Japan Association of Liver Diseases and is recommended for use in
high-risk population screening, auxiliary diagnosis, monitoring treatment effect, and as a
predictor of prognosis and recurrence. Several studies have indicated that PIVKA-II may
be a convincing supplement to AFP in the clinical diagnosis of HCC [7–9].

Cells of the immune system produce cytokines, including lymphocytes, monocytes,
macrophages, B cells, and T cells [10]. Cytokines are molecular messengers that allow
immune system cells to communicate to generate coordinated, effective, yet self-limiting
antigen responses. Although many forms of immune system communication occur via
direct intercellular connections, cytokine production enables a more diverse and efficient
dissemination of immunological signals [11]. The use of cytokines in the treatment of
multiple tumors is essential, including HCC, melanoma, renal cell carcinoma, etc. [12,13].
At the tumor site, cytokines stimulate immunological effector cells, thereby enhancing
the identification of tumor cells. Interferons and interleukins have a relationship with
enhanced immunostimulatory effects [10]. As a result, numerous cancer treatments based
on cytokines or cytokine antagonists have been created [14]. However, cytokine-based
therapy showed limited therapeutic efficacy for patients with advanced-stage disease.

With the development of biotherapy and precise treatment, RNA sequencing can
explore evidence at the genetic level to guide clinical decisions. Previous studies based on
bulk RNA sequencing have established multiple gene signatures to predict the prognosis
of HCC patients [15–17], but these signatures have not been used in the clinic. In bulk
RNA sequencing, RNA signals from diverse cells within a sample are mixed to represent
the average RNA content of a sample. Therefore, cell type prevalence has a significant
influence on it. However, there are distinct genetic characteristics associated with HCC
that can differentially promote its progression. Therefore, bulk RNA sequencing cannot
study rare or heterogeneous cell populations. In contrast to bulk-RNA sequencing analysis,
single-cell RNA sequencing (scRNA-seq) allows the study of transcriptional activity within
an individual cell and enables the discovery of the gene expression of small but clinically
significant tumor subpopulations.

The TMB concept first came into view as an emerging tumor immunotherapy biomarker
in 2014. Along with the approval of pembrolizumab used for the treatment of TMB-high
(≥10 mutations/Mb) solid tumors, TMB was approved by the FDA as a tumor biomarker in
2020 [18]. A large sample analysis that contained various kinds of cancer showed that 83%
of MSI-H samples also had TMB-H (97% of them had TMB ≥ 10 mutations/Mb). However,
in contrast, only 16% of TMB-H samples were classified as MSI-H [19]. This may indicate
that TMB has a wider range of application. Other evidence also showed that TMB had a
predictive effect on immunotherapy in a variety of tumors [20,21]. Encouragingly, recent
studies have proven that TMB in plasma can be accurately and repeatedly measured and
correlated with immune checkpoint inhibitor efficacy [22]. This confirmed the effectiveness
of blood TMB in predicting the efficacy of immunotherapies, which may be good news for
those who had difficult biopsies.

Patients with HCC metastasis usually have a poor prognosis, so the differential genes
identified from patients with HCC metastasis versus patients with primary HCC may help
to develop markers for predicting poor prognosis. To find prospective signatures using
single-cell RNA sequencing data, we studied primary and metastatic HCC samples. We
created a three-gene prognostic signature that includes PPIA, SQSTM1, and CCL20. The
ICGC dataset provided validation for the signature. Moreover, a predictive nomogram was
established and evaluated. The prognostic status of patients with HCC may be guided by
the signature and nomogram created in this study.
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2. Materials and Methods
2.1. Data Collection and Preparation

The single-cell RNA sequencing (scRNA-seq) datasets of 10 hepatocellular carcinoma
(HCC) patients were from GSE149614 [23]. The bulk RNA data of HCC (TCGA-LIHC)
were downloaded from The Cancer Genome Atlas (TCGA). Additionally, the ICGC-LIRI-JP
dataset was acquired from the International Cancer Genome Consortium database. The
complete survival information and expression profiles of HCC patients were enrolled. The
TCGA-LIHC dataset included 377 HCC samples, and the ICGC-LIRI-JP datasets included
260 HCC samples. Cytokine signaling in immune-related genes (CSIRG) was obtained
from the Reactome Pathway Database.Available online: https://reactome.org/ (accessed
on 13 January 2022).

2.2. scRNA-seq Data Processing

ScRNA-seq analysis was performed in Seurat (v4.1.0, New York Genome Center,
New York, NY, USA), ggplot2, and dplyr. In addition, the scRNA-seq profiles of 10 HCC
patients of 56 440 cell samples were collected from GSE149614 [23]. Ten HCC patients were
examined through three relevant sites: The primary tumor, the portal vein tumor thrombus,
and the metastatic lymph node. The data were then scaled, and principal component
analysis (PCA) was computed. The nearest neighbors were then determined, and three-
dimensional plot_ly was performed to visualize the outcomes. The findMarkers function
in the Seurat package was used for the variance analysis. Differences in gene expression
between the two groups (group 1: Primary HCC, group 2: Metastatic HCC) were analyzed
using the Wilcoxon rank-sum test.

2.3. Identification of Signature

Before conducting the univariate Cox regression analysis, we first adopted the merge
function in R studio to integrate the expression profiles of the 26 CSIRG with corresponding
survival information in the TCGA-LIHC dataset. Before any subsequent analysis, data
collected from TCGA-LIHC and ICGC-LIRI-JP were arranged correspondingly into training
and validating groups. Moreover, LASSO Cox analysis was performed, and the CSIRG
signature was established using the following equation: Risk score = ∑ (βi × Expi). ROC
was further employed to validate the results of the training set. The CSIRG predictive risk
score value in the training group was quantified by the equation. Kaplan–Meier and ROC
analyses were used to verify the effective prognostic potency of the CSIRG signature in
both the training and verification groups. Patients were divided into the CSIRG high- and
low-risk groups according to the median risk score. In the TCGA-LIHC and ICGC-LIRI-JP
datasets, the median risk scores were 0.90094 and 0.85695, respectively.

2.4. Model Construction

The CSIRG signature was combined with all the clinical features obtained from the
LIHC for the training set. First, univariate Cox models were used to calculate hazard ratios.
Furthermore, multivariable Cox analysis was used to testify to the prognostic independence
of the scRNA signature, where p < 0.05 was regarded as statistically significant. The area
under the curve (AUC) of 1-, 3-, and 5-year OS outcomes was used to compare the prediction
accuracy of the new signature. In addition, the decision curve analysis and calibration
curve were plotted to validate the constructed model.

2.5. Histological Data Analysis of HCC

The protein expression of PPIA, SQSTM1, and CCL20 in HCC was investigated based
on immunohistochemistry (IHC) data from the Human Protein Atlas (HPA) database.
Available online: http://www.proteinatlas.org (accessed on 4 September 2022).

https://reactome.org/
http://www.proteinatlas.org
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2.6. Tumor Mutational Burden (TMB)

To calculate the TMB of each LIHC tumor sample, the processed data for somatic
mutations were selected using the VarScan platform in the TCGA-LIHC cohort. The R
package “maftools” was used to analyze MAF files to find nonsynonymous somatic muta-
tions. Frame shift del, frame shift ins, splice site, translation start site, nonsense mutation,
nonstop mutation, in frame del, in frame ins, and missense mutation are all categorized
as nonsynonymous mutations in accordance with the criteria for this package. The gene
mutation frequency was analyzed between the CSIRG high-risk and low-risk groups.

2.7. Gene set Enrichment Analysis (GSEA)

As described above, we classified the TCGA-LIHC dataset into two groups with
high and low CSIRG risk scores. We further performed GSEA to explore the significant
pathways enriched in the CSIRG high- and low-risk score groups. The first step was
to create a differential analysis of all the genes between the CSIRG high- and low-risk
score groups. The genes were then ranked according to the log2-fold change. Then,
GSEA was used to examine the signaling pathways associated with the CSIRG high- and
low-risk score groups. The important pathways that were enriched in each group were
subjected to the normalized enrichment score |NES| ≥ 1 and p value < 0.05 tests. GSEA
(version 4.0.03) was used for analysis (http://www.broadinstitute.org/gsea/, accessed
on 13 January 2022). The molecular signature dataset used for the KEGG pathway was
“c2.cp.kegg. v7.5.1.symbols.gmt”. One thousand permutations were used in the GSEA with
gene set permutations.

2.8. Immune Infiltration

The CSIRG high- and low-risk patients were analyzed using xCell with a cell type
enrichment score for immune subset enrichment [24]. The data were downloaded through
the xCell website in accordance with previous reports [24]. The xCell results had a p < 0.05
value selected. Violin plots were used to visualize the results.

2.9. Statistical Analysis

Statistical analyses were performed using R v4.0.5. Moreover, p < 0.05 was considered
statistically significant.

3. Results
3.1. Identification of 26 Cytokine Signaling in Immune-Related Genes (CSIRG) in GSE149614

The workflow of this study is shown in Figure 1. We first accessed the single-cell
dataset GSE149614 for 10 HCC patients with primary and metastatic samples. Then,
26 differentially expressed cytokine signaling in immune-related genes (CSIRG) between
primary and metastatic HCC samples were identified. Next, the expression profiles of the
26 CSIRG with corresponding survival information from the TCGA-LIHC cohort were used
for LASSO Cox regression analysis. Three important genes (PPIA, SQSTM1, and CCL20)
were identified to calculate the risk score of each patient and construct the prediction model.
The performance of the prediction model was evaluated by ROC curves. Then, patients
in TCGA-LIHC were separated into two groups based on the median risk score. Finally,
tumor mutational burden TMB analysis, gene set enrichment analysis (GSEA), and immune
infiltration analysis were performed to compare the CSIRG high- and low-risk groups
of patients.

Single-cell transcriptome analysis was utilized in this study to understand the genes
that are differentially expressed between primary hepatocellular carcinoma (HCC) and
metastatic HCC using the GSE149614 dataset [23]. By performing nonlinear dimensionality
reduction via the t-SNE algorithm, samples from the GSE149614 dataset were clustered,
as shown in Figure 2A. Overall, differentially expressed genes were identified between
two cell subpopulations: Primary HCC and metastatic HCC. These differentially expressed
genes intersected with the cytokine signaling in immune-related genes from the Reac-

http://www.broadinstitute.org/gsea/
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tome Pathway Database (https://reactome.org/), and 26 genes were cytokine signaling in
immune-related genes (Figure 2B, Supplementary Table S1). As shown in the volcano plots,
14 were upregulated, while 12 were downregulated (Figure 2C). Moreover, the heatmap
shows the expression of the 26 CSIRG in the two cell subpopulations (Figure 2D).

Figure 1. Workflow of this study.

https://reactome.org/
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Figure 2. Identification of cytokine signaling in immune-related genes (CSIRG) in the GSE149614
dataset. (A) Nonlinear dimensionality reduction by the t-SNE algorithm. (B) Differentially expressed
genes and CSIRG from Reactome. (C) A volcano map involving the up- and downregulated CSIRG.
(D) The expression of 26 CSIRG in two cell populations. The primary HCC tissue was denoted as
group 1, and metastatic HCC tissue was denoted as group 2.

3.2. Construction of a Three-Gene Signature Based on PPIA, SQSTM1, and CCL20

We used the 26 CSIRG genes found in the single-cell analysis as the initial gene list
for univariate Cox regression analysis. Before the univariate Cox regression analysis,
we first integrated the expression profiles of the 26 CSIRG with corresponding survival
information in the TCGA-LIHC dataset. Four overall survival (OS)-related CSIRG (CCL20,
PPIA, RPLP0, and SQSTM1) were filtered out through univariate Cox regression analysis
(Supplementary Table S2). The four CSIRG found in univariate Cox regression analysis
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were used as the gene initial list for LASSO regression analysis. The LASSO method was
then employed, and three genes were identified for further analysis (Figure 3A,B). By using
multivariate Cox regression analysis, the selected OS-related CSIRG were analyzed, and all
three genes (PPIA, SQSTM1, and CCL20) were identified (Supplementary Table S3). We
used IHC data from the Human Protein Atlas (HPA) database to compare the protein levels
of PPIA and SQSTM1 in HCC tissues to those in normal tissues. We discovered that the
expression of PPIA and SQSTM1 was much higher in HCC tissue than in normal tissues
(Figure 4). Since CCL20 data are not available in the HPA database, we did not analyze
CCL20. Moreover, the risk score (RS) equation was established based on three genes. The
following demonstrates the risk score equation: RS = 0.00951 × PPIA + 0.00261 × SQSTM1
+ 0.00213 × CCL20. The TCGA-LIHC dataset was separated into a CSIRG low-risk group
(n = 171) and a CSIRG high-risk group (n = 170) based on the median RS (median RS =
0.90094, Supplementary Table S4). In addition, the ICGC-LIRI-JP dataset was separated into
two groups based on the median RS (median RS = 0.85695, CSIRG low-risk group, n = 116;
CSIRG high-risk group, n = 116). Furthermore, the time-dependent ROC curves verified
the performance of the three-gene signature. The TCGA-LIHC dataset had AUC values of
0.711 (1 year), 0.602 (3 years), and 0.614 (5 years), while the ICGC-LIRI-JP dataset had AUC
values of 0.787 (1 year), 0.767 (3 years), and 0.74 (5 years) (Figure 5A,B). The three-gene
signature was then validated by Kaplan-Meier curves. Both datasets demonstrated the
same results and determined that the OS of the CSIRG low-risk groups was better than
that of the CSIRG high-risk groups (Figure 5C,D). In addition, Figure 5E,F demonstrate
the association between survival status and RS in the TCGA dataset. The survival rates of
HCC decreased with increasing RS.
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Figure 3. LASSO regression results. (A) LASSO coefficient profile of four overall survival (OS)-related
CSIRG. (B) LASSO deviation profile of four OS-related CSIRG.

3.3. Integration Nomogram Based on RS and Cancer Status

The forest plots of the univariate and multivariate Cox regression analyses suggested
that cancer status and RS were independent clinical factors related to OS (Figure 6A,B).
Then, the generalized linear model (GLM) regression algorithm was used to develop a
nomogram incorporating cancer status and RS for HCC prognosis (Figure 6C). The AUCs of
the ROC curves for 1-, 3-, and 5-year OS forecasting were 0.667, 0.698, and 0.747, respectively
(Figure 6D). The calibration curves indicated that the predicted 1-, 3-, and 5-year OS rates
were close to the actual OS rates (Figure 6E). Moreover, the clinical utility of the nomogram
was compared with that of the three-gene signature by decision curve analysis. As shown
in Figure 6F–H, the nomogram has higher net benefits than the three-gene signature and
TNM stage when predicting 3-year and 5-year overall survival.
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showed higher expression levels of PPIA and SQSTM1 in HCC tissues than in normal tissues.
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Figure 5. Validation of the three-gene signature in HCC. (A,B) Time-dependent ROC curves of the
three-gene signature in two datasets. (C,D) Kaplan-Meier curves of risk subgroups in the two datasets.
(E,F) The association between survival status and RS. Integration nomogram based on risk score and
cancer status for HCC prediction.
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Figure 6. (A) Forest plot of univariate regression analysis. (B) Forest plot of multivariate regression
analysis. (C) A nomogram incorporating cancer status and risk score for prognosis. (D) ROC curves of
the nomogram with AUCs of 0.667, 0.698, and 0.747 at 1, 3, and 5 years, respectively. (E) Comparison
of predicted and actual OS in the calibration curve. (F–H) Decision curve analyses of models in the
TCGA-LIHC dataset.

3.4. Comparison of Genomic Mutations in the Three-Gene Signature

To investigate the genomic differences between the two risk groups, the genetic
mutations of the two groups in the TCGA cohort were analyzed. The tumor mutation
profile was matched with RS and presented in the waterfall plot (Figure 7A,B). Most genes
had higher mutation rates in the CSIRG high-risk group. Specifically, the mutation rates
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of TP53, CTNNNB1, and TTN were 38%, 27%, and 24% in the CSIRG high-risk group and
22%, 22%, and 19% in the CSIRG low-risk group, respectively (Figure 7A,B). The clinical
information and TMB results of the TCGA cohort are shown in Table 1. In conclusion, the
increase in RS may result in an increase in the proportion of mutated genes.
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Figure 7. Comparison of genomic mutations between the CSIRG high-risk group (A) and the CSIRG
low-risk group (B) of the TCGA-LIHC dataset.

Table 1. Clinical information for TCGA cohort.

Characteristics High
(N = 151)

Low
(N = 153)

Overall
(N = 304)

Age
<60 73 (48.3%) 74 (48.4%) 147 (48.4%)
≥60 78 (51.7%) 79 (51.6%) 157 (51.6%)

Gender
Female 45 (29.8%) 48 (31.4%) 93 (30.6%)
Male 106 (70.2%) 105 (68.6%) 211 (69.4%)

Histologic_grade
G1 16 (10.6%) 27 (17.6%) 43 (14.1%)
G2 66 (43.7%) 79 (51.6%) 145 (47.7%)
G3 61 (40.4%) 43 (28.1%) 104 (34.2%)
G4 8 (5.3%) 4 (2.6%) 12 (3.9%)

Pathologic_T stage
T1 57 (37.7%) 95 (62.1%) 152 (50.0%)
T2 44 (29.1%) 30 (19.6%) 74 (24.3%)
T3 43 (28.5%) 25 (16.3%) 68 (22.4%)
T4 7 (4.6%) 3 (2.0%) 10 (3.3%)

Pathologic_stage
Stage I 56 (37.1%) 95 (62.1%) 151 (49.7%)
Stage II 43 (28.5%) 30 (19.6%) 73 (24.0%)
Stage III 50 (33.1%) 28 (18.3%) 78 (25.7%)
Stage IV 2 (1.3%) 0 (0%) 2 (0.7%)

Cancer_status
Tumor free 75 (49.7%) 96 (62.7%) 171 (56.3%)
With tumor 76 (50.3%) 57 (37.3%) 133 (43.8%)

TMB
Average 3.9 3.3 3.6
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3.5. Enrichment Analysis of the Three-Gene Signature

The significantly correlated pathways in the CSIRG high- and low-risk groups of the
TCGA-LIHC dataset were screened by gene set enrichment analysis. A total of six pathways
were selected in the CSIRG high- and low-risk groups (Figure 7). Specifically, pyrimidine
metabolism, purine metabolism, lysosome, Huntington’s disease, pathogenic Escherichia
coli infection, and vibrio cholerae infection were correlated with the CSIRG high-risk group.
In contrast, the PPAR signaling pathway, glycine, serine and threonine metabolism, fatty
acid metabolism, complement and coagulation cascades, valine, leucine and isoleucine
degradation, and butanoate metabolism were correlated with the CSIRG low-risk group
(Figure 8 and Supplementary Table S5).
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3.6. Associations of the Three-Gene Signature with the Immune Microenvironment

The difference in immune infiltration between the CSIRG high- and low-risk groups
was analyzed through xCell algorithms. Specifically, central memory CD4+ T cells, naïve
CD8+ T cells, common myeloid progenitors, endothelial cells, granulocyte-monocyte
progenitors, hematopoietic stem cells, and plasma B cells were highly distributed in the
CSIRG high-risk group. However, activated myeloid dendritic cells, B cells, memory CD4+
T cells, common lymphoid progenitors, macrophages, M1 macrophages, monocytes, NKT
cells, Th1 CD4+ T cells, and Th2 CD4+ T cells were highly distributed in the CSIRG low-risk
group (p value < 0.05) (Figure 9, Supplementary Table S6).
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4. Discussion

With CSIRG high-throughput scRNA-Seq profiles aiding in the identification of poten-
tial biomarkers for predicting patient survival and response to treatment, the pathophys-
iology, and prognostic variables of HCC (HCC) could be explored. The overall survival
probability of HCC patients remains relatively low due to a lack of effective therapy. The
expression of cytokines is related to the progression of HCC [25]. As a result, cytokine
signaling in immune-related genes (CSIRG) may indicate cancer development and predict
HCC patients. The transcription levels of CSIRG in HCC tumor tissues were analyzed in
detail, and the relationship among differentially expressed genes, as well as overall survival
probability, was established.

As a first step, we used single-cell RNA sequencing and bulk RNA sequencing to
find CSIRG that were different in primary and metastatic HCC. Using LASSO regression
and DEGs between the two subtypes, we created a three-gene model consisting of PPIA,
CCL20, and SQSTM1. Our model showed good performance in both the training cohort
and validation cohort. Although it is not common to obtain better results in validation sets
than in training sets, our results showed that the AUC results in the ICGC cohort were
better than those in the TCGA cohort (Figure 5A,B). Similar results were also reported by
previous studies [26]. The reason for better results in the validation cohort may be that the
training cohort and validation cohort are independent cohorts.

Several studies have shown that overexpression of CCL20 increases the migration and
proliferation of lung cancer cells through the PI3K pathway [27]. Selective recruitment
of regulatory T cells (Tregs) by CCR6 and its ligand CCL20 in the tumor microenviron-
ment may inhibit the proliferation of CD4CD25 and INF-γ secretion and promote the
development of HCC [28]. In HCC caused by cirrhosis, myofibroblasts oversecrete CCL20,
which regulates aerobic glycolysis-driven HCC through the ERK/PKM2 pathway [29]. The
SQSTM1 gene causes various carcinomas, including HCC. Its product p62, which acts as
an adaptor to degrade molecules through autophagy, provides insight into the effects of
SQSTM1 in various cancers [30]. In breast cancer, the PPIA/CrkII axis modulates host
antitumor immune escape [31]. In HCC, hypoxia increases immune infiltration through the
PPIAP22/miR-197-3p/PPIA axis [32].

A nomogram based on the CSIRG risk score was built and verified, and then it was
combined with the tumor status of patients with HCC. We identified a positive correlation
between genes (TP53, MUC16, CTNNB1, and TTN) and HCC occurrence. Among these,
MUC16 is often mutated in different kinds of human cancer and has been linked to increased
cancer cell proliferation [33–36]. Of note, TTN mutations are associated with a high tumor
mutation load, which is consistent with our study. TMB has recently been established as an
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effective and new biomarker for predicting immunotherapy response in a range of cancers.
Additionally, we found that the tumor mutation burden (TMB) in the CSIRG high-risk group
was higher than that in the CSIRG low-risk group. Using the xCell algorithm, we were able
to quantify the condition of immune infiltration. In our results, central memory CD4+ T cells,
naïve CD8+ T cells, common myeloid progenitors, endothelial cells, granulocyte-monocyte
progenitors, hematopoietic stem cells, and plasma B cells were significantly correlated
with the CSIRG high-risk group. Among these, our study discovered the association of
common myeloid progenitor and granulocyte-monocyte progenitor with HCC CSIRG
high-risk groups for the first time. Regulatory T cells (Tregs) are highly correlated with
tumor tissue and can suppress antitumor immune responses [28]. These findings provide
a complete picture of how and why CSIRG might play a role in the development and
progression of HCC. We conducted functional enrichment analysis of several common
biological pathways to further prove the validity of cytokine signaling in immune-related
genes in HCC. Consistent with other studies, pyrimidine metabolism, purine metabolism,
and fatty acid metabolism are highly enriched and are vital in tumor progression [37–40].

There are several limitations to this study. First, compared with large-scale bulk-RNA
sequencing projects such as TCGA, which have 377 HCC patient samples, the patients of
scRNA-seq datasets in this study only include a small number of patients (only 10 patients).
However, as mentioned in the manuscript, our single-cell dataset includes 56 440 cell sam-
ples, which means many more samples than TCGA datasets, and much more information
may be provided. Since the immune profile in the tumor microenvironment and corre-
spondingly the landscape of cytokine signaling in immune-related genes may be more
heterogenous, validation of our model with larger sample size is our direction for future
improvement. Second, the absence of a real-world sample to validate our prediction model
is also a limitation of this study.

Overall, we used scRNA-seq and bulk RNA-seq to create CSIRG signatures that were
then verified in patients. The CSIRG signature has potential predictive value for HCC, and
further study on the mechanism is recommended.
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analysis results; Table S3: Multivariate Cox regression analysis results; Table S4: Risk score (RS) of
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