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Abstract: Lysosomal storage diseases (LSDs) resulting from inherited gene mutations constitute
a family of disorders that disturb lysosomal degradative function leading to abnormal storage of
macromolecular substrates. In most LSDs, central nervous system (CNS) involvement is common
and leads to the progressive appearance of neurodegeneration and early death. A growing amount of
evidence suggests that ion channels in the endolysosomal system play a crucial role in the pathology
of neurodegenerative LSDs. One of the main basic mechanisms through which the endolysosomal
ion channels regulate the function of the endolysosomal system is Ca2+ release, which is thought
to be essential for intracellular compartment fusion, fission, trafficking and lysosomal exocytosis.
The intracellular TRPML (transient receptor potential mucolipin) and TPC (two-pore channel) ion
channel families constitute the main essential Ca2+-permeable channels expressed on endolysosomal
membranes, and they are considered potential drug targets for the prevention and treatment of
LSDs. Although TRPML1 activation has shown rescue effects on LSD phenotypes, its activity is
pH dependent, and it is blocked by sphingomyelin accumulation, which is characteristic of some
LSDs. In contrast, TPC2 activation is pH-independent and not blocked by sphingomyelin, potentially
representing an advantage over TRPML1. Here, we discuss the rescue of cellular phenotypes associ-
ated with LSDs such as cholesterol and lactosylceramide (LacCer) accumulation or ultrastructural
changes seen by electron microscopy, mediated by the small molecule agonist of TPC2, TPC2-A1-P,
which promotes lysosomal exocytosis and autophagy. In summary, new data suggest that TPC2
is a promising target for the treatment of different types of LSDs such as MLIV, NPC1, and Batten
disease, both in vitro and in vivo.

Keywords: TRPML; TRPML3; TRPA1; TRPM2; TRPV2; BK; emphysema; lung injury; COPD; asthma;
cystic fibrosis

1. Introduction

Recycling is the method of turning used and waste materials into new products.
Recycling is highly relevant, not only in an economic or environmental context, but it
is also an important principle in biology. From plants to animals, nutrient recycling by
autophagy is a highly elaborated process to increase chances of survival during starvation
periods, decrease dependence on external resources and efficiently reuse precious materials.
Successful recycling requires proper “waste” management. Errors in or failure of this
“waste” management not only result in a decreased ability to adequately recycle material
but can lead to severe disease or even lethal defects. Usually, the most vulnerable cells of
the body become the first victims, i.e., cells with a low turnover rate or cells that do not
divide, such as neurons.

In mammals, the endolysosomal system, including autophagosomes and lysosomes,
is the core unit of nutrient and material recycling, and more than 60 different diseases
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are known in humans called lysosomal storage disorders (LSDs), i.e., diseases in which
mutations in certain endolysosomal proteins, enzymes or membrane proteins such as
nutrient transporters or ion channels, resulting in the endolysosomal accumulation of
macromolecules, proteins or lipids and glycolipids. Examples of such diseases are neuronal
ceroid lipofuscinoses (NCL, Batten disease), mucopolysaccharidoses such as Hurler or
Hunter syndrome, sphingolipidoses such as Fabry, Gaucher or Niemann–Pick-type C1
(NPC1) disease or mucolipidoses such as mucolipidosis type IV (MLIV). Neurodegenera-
tion, developmental delay, intellectual disability, motor dysfunction, corneal clouding and
vision loss, seizures, hepatosplenomegaly and premature death are common features of
many LSDs.

Here, we will discuss the endolysosomal cation channels TRPML1, mutations of which
cause MLIV, and TPC2 in the context of neurodegenerative diseases and their potential as
targets for neurodegenerative lysosomal storage disease therapy. A particular focus will be
placed upon the recently published work on TPC2 small molecule activation to treat Batten
disease, NPC1 disease and MLIV [1].

2. Candidates for LSD Therapy: TRPML1 versus TPC2

TPC2 knockout mice accumulate material inside endolysosomes such as EGF/EGFR,
PDGF or LDL cholesterol [2,3]; the latter was also observed in TPC2 siRNA-treated [1] or
TPC2 inhibitor-treated cells (Figure 1A,B). In addition to the cholesterol accumulation upon
TPC2 inhibitor treatment, mislocalization of the fluorescently labeled lactosylceramide
(LacCer) was also observed, accumulating in lysosomal compartments (Figure 1C). NPC1
patient cells, e.g., fibroblasts, likewise accumulate cholesterol, and so do MLIV patient
cells [1,4,5]. Lactosylceramide trafficking is affected not only in NPC1 and MLIV cells
but also in NPA, GM1 gangliosidosis and Fabry cells [1,5–7]. Another sphingolipid, sph-
ingomyelin, accumulates in NPC1 cells, and recently it was shown that Batten disease
patients might also exhibit very high sphingomyelin levels [8].

Shen et al. (2012) [5] demonstrated that sphingomyelin blocks TRPML1 channels,
suggesting that LSD patients with high sphingomyelin levels may benefit from the “reacti-
vation” of TRPML1 channels with potent small molecule agonists. Thus, small molecule ac-
tivation of TRPML1 has been shown to revert or rescue cellular phenotypes in NPC1 cells [5].
In addition, during activation of the lysosomal Ca2+-activated potassium channel (BK),
TRPML1-dependently rescues aberrant lysosomal storage in NPA and Fabry disease [9], and
loss of FIG4 (polyphosphoinositide phosphatase) and PYKfyve (FYVE finger-containing
phosphoinositide kinase), which are both involved in the synthesis of the endogenous
TRPML/TPC agonist PI(3,5)P2, is associated with neurological or neurodegenerative dis-
ease phenotypes [9–11] that can be rescued by TRPML1 activation [11]. Likewise, activation
of mutated yet normally localized TRPML1 channels, causing MLIV with TRPML1 channel
agonists, has been demonstrated to revert phenotypes in patient’s cells, while in cells from
patients with complete loss of TRPML1 function (“knockouts” (MLIV2527 and MLIV2048);
Figure 2A), treatment was ineffective. Patients with strongly mislocalized TRPML1 protein
expression may likely benefit only to a very limited extent from TRPML1 agonist treatment
(see, e.g., TRPML1(R403C) and TRPML1(V446L) [7] or TRPML1(T121M), Figure 2A,B).
The latter TRPML1 mutant, T121M, was identified recently in an 18-year-old female MLIV
patient of Yazidi origin in Germany (Figure 2). Using endolysosomal patch-clamp electro-
physiology [12], we found the TRPML1T121M/T121M channel to retain some residual activity
in patient-derived fibroblasts when activated with the TRPML channel agonist ML-SA1 [5]
or the TRPML1-selective agonist ML1-SA1 [13] (Figure 2C–F). Surprisingly, despite the
severe reduction in channel activity and the apparent mislocalization, the patient presented
with a fairly mild yet steadily deteriorating condition.
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Figure 1. Effect of TPC2 inhibitors on cholesterol accumulation and lactosylceramide trafficking. (A) 
Representative confocal images showing filipin staining to visualize cholesterol accumulation and 
TO-PRO3 as nuclear staining. Experiments were performed in human fibroblasts: control (HF CTR), 
Niemann–Pick-type C1 (HF NPC1) and mucolipidosis type IV (HF MLIV) treated with either 
DMSO, SG005 (1 µM), SG094 (1 µM) or tetrandrine (3 µM). (B) Bar plot showing the filipin intensity 
per cell (expressed as cholesterol load). Shown are mean values ± SEM. n > 3 biological replicates for 
each tested condition. ** p-value < 0.01; *** p-value  <  0.001; **** p-value  <  0.0001. Two-way ANOVA, 
post hoc Tukey’s multiple comparisons test. (C) Representative confocal images of LacCer (green) 
and LysoTracker (LyTr; red) in HF MLIV treated with DMSO, SG005 (1 µM) or SG094 (1 µM). 
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Figure 1. Effect of TPC2 inhibitors on cholesterol accumulation and lactosylceramide trafficking.
(A) Representative confocal images showing filipin staining to visualize choles-terol accumulation
and TO-PRO3 as nuclear staining. Experiments were performed in human fibroblasts: control (HF
CTR), Niemann-Pick type C1 (HF NPC1) and mucolipidosis type IV (HF MLIV) treated with either
DMSO, SG005 (3 µM), SG094 (3 µM) or tetrandrine (3 µM). (B) Bar plot showing the filipin intensity
per cell (expressed as cholesterol load). Shown are mean values ± SEM. n > 3 biological replicates
for each tested condition. * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001; **** p-value < 0.0001.
Two-way ANO-VA, post hoc Tukey’s multiple comparisons test. (C) Representative confocal images
of LacCer (green) and LysoTracker (LyTr; red) in HF MLIV treated with DMSO, SG005 (1 µM) or
SG094 (1 µM).
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MLIV and selected patient fibroblasts, carrying MLIV-causing point mutations as indicated, 
visualized by filipin. MCOLN1T121M/T121M is a severely mislocalized variant (B) found to be 
homozygously expressed in a patient from a Yazidi family, recently diagnosed with MLIV (Prof. 
Thorsten Marquardt, University of Münster, Münster Germany). The patient, an 18-year-old 
woman, showed a comparably mild clinical phenotype for her age (ability to walk and talk, delayed 
development with retinal degeneration (risk of blindness), reduced iron (39 µg/dL (60–140)) and 
ferritin (6 µg/L (16–92)) levels, reduced Hb, HCT, MCV and MCHC (iron deficiency anemia), 
slightly deranged liver function (ASAT: 56 U/L(<30) and ALAT: 42 U/L (<30)). Electrophysiology 
revealed TRPML1T121M/T121M to retain some residual channel activity. (C–F) Shown are representative 
currents (I-V traces) from vacuolin-enlarged LE/LY, isolated from WT or patient fibroblasts (HF), 
activated by ML-SA1 or ML1-SA1 (= EVP169 = selective TRPML1 agonist). * p-value < 0.05; *** p-
value  <  0.001; **** p-value  <  0.0001 

Figure 2. Effect of TPC2-A1-P on cholesterol accumulation in selected patient fibroblasts (HF) and
electrophysiological characterization of a novel patient mutation (MCOLN1T121M/T121M). (A) Effect of
TPC2-A1-P or the TRPML1 activators ML-SA1 and MK6-83 on cholesterol accumulation in WT, MLIV
and selected patient fibroblasts, carrying MLIV-causing point mutations as indicated, visualized
by filipin. MCOLN1T121M/T121M is a severely mislocalized variant (B) found to be homozygously
expressed in a patient from a Yazidi family, recently diagnosed with MLIV (Prof. Thorsten Marquardt,
University of Münster, Münster, Germany). The patient, an 18-year-old woman, showed a comparably
mild clinical phenotype for her age (ability to walk and talk, delayed development with retinal
degeneration (risk of blindness), reduced iron (39 µg/dL (60–140)) and ferritin (6 µg/L (16–92)) levels,
reduced Hb, HCT, MCV and MCHC (iron deficiency anemia), slightly deranged liver function (ASAT:
56 U/L (<30) and ALAT: 42 U/L (<30))). Electrophysiology revealed TRPML1T121M/T121M to retain
some residual channel activity. (C–F) Shown are representative currents (I-V traces) from vacuolin-
enlarged LE/LY, isolated from WT or patient fibroblasts (HF), activated by ML-SA1 or ML1-SA1
(=EVP169 = selective TRPML1 agonist). * p-value < 0.05; *** p-value < 0.001; **** p-value < 0.0001.

While phenotypes such as cholesterol accumulation or LacCer mislocalization cannot
be rescued with TRPML1 agonists in “knockout” MLIV patient cells or cells with dysfunc-
tional or severely mislocalized mutant channels, mutants with largely correct localization
(i.e., lysosomal localization) such as the TRPML1 variant F408∆ were found to respond to
TRPML1 agonist treatment [7]. By contrast, all variants, including MLIV “knockouts” and
mislocalized variants, were rescued with the TPC2 agonist TPC2-A1-P (Figure 2A).

TRPML1 activity is highly pH-dependent, i.e., channel activity decreases with increas-
ing lysosomal pH. Indeed, an increase in lysosomal pH is not unusual in LSDs, potentially
hampering the accumulation of inhibitory lipids, as demonstrated for sphingomyelin and
TRPML1 activity [14–20]. In contrast to TRPML1, TPC2 activity seems to be largely pH-
independent (in the pH range of 4.6–7.4 demonstrated for humans and 4.6–6.0 shown for
rabbit TPC2; [21,22]) and not blocked by sphingomyelin (Figure 3), possibly explaining the
consistent efficacy of the TPC2 agonist (Figure 2A). In line with this, we also found reduced
TRPML1 activity in Batten disease iPSC-derived cortical neurons (CLN3 knockout and
CLN3D416G), the latter showing a severe clinical phenotype, while CLN3R405W resulted in
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a retinitis pigmentosa phenotype, presenting with a fully active TRPML1 channel (Figure 4).
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Figure 3. Effect of sphingomyelin on TPC2 and TRPML1 activities. (A,B) Representative measure-
ments (I/Cm -V traces) of transiently transfected PM variants of hTPC2 (A) and hTRPML1 (B) in HEK
cells. Channels were activated by small molecule agonists (10 µM TPC2-A1P and 10 µM ML-SA1),
respectively. Subsequently, bath solution was completely exchanged for a solution containing agonist
plus 20 µM sphingomyelin (SM). Bath solution contained: 138 mM NaCl, 6 mM KCl, 2 mM MgCl2,
2 mM CaCl2, 10 mM HEPES, and 5.5 mM D-glucose (adjusted to pH 7.4 with NaOH) and pipette
solution contained 140 mM K-MSA, 5 mM KOH, 4 mM NaCl, 0.39 mM CaCl2, 1 mM EGTA and
20 mM HEPES (pH was adjusted with KOH to 7.2).
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Figure 4. Effect of TRPML1 activation in different LSD and WT iPSC-derived cortical neurons (en-
dolysosomal patch clamp experiments as described previously [12]). (A) Representative measurements
(I/Cm -V traces) from apilimod-enlarged LE/LY, isolated from WT, CLN mutants or MLIV knockout
iPSC derived cortical neurons activated with ML-SA1 (10 µM). (B) Statistical analysis of TRPML1
activation at −80 mV depicted as mean values ± SEM (WT, CLN D416G, CLN R405R or CLN ko;
n > 5); each dot represents a single measurement from distinct neuronal differentiations. An unpaired
t-test was applied to quantify statistical significance; * p-value < 0.05, **** p-value < 0.0001.
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Functionally, both TRPML1 and TPC2 were shown to promote autophagy as well as
lysosomal exocytosis, likely in a Ca2+ dependent manner as demonstrated and reviewed
extensively in previous publications [1,23–26], with the potential advantage of human
TPC2 activity being pH-independent and not affected by sphingomyelin accumulation.
Thus, we concluded in a recent review that [26]: “Given the strong effect of TPC2 activation
on lysosomal exocytosis when activated with the lipophilic PI(3,5)P2-mimetic TPC2-A1-P,
it would be interesting to investigate how PI(3,5)P2-like TPC2 activation affects lysosomal
function, autophagy, and cell viability in LSDs and ND”. Scotto Rosato et al. (2022) [1]
addressed this question in selected LSD models, i.e., patient fibroblasts and iPSC-derived
neuronal models for Batten disease, NPC1 disease and MLIV and in an in vivo model
for MLIV.

3. TPC2-A1-P Rescues Phenotypes of Several LSDs In Vitro and In Vivo

In detail, we demonstrated that treatment with TPC2-A1-P in MLIV and NPC1 fi-
broblasts significantly recovers the lysosomal accumulation of LacCer. LacCer trafficking
is influenced by intracellular cholesterol levels [5–7,27], and, in the case of cholesterol
overload, it accumulates in endolysosomal compartments [28]. Therefore, in accordance
with the lysosomal accumulation of LacCer, we also observed that both NPC1 and MLIV
fibroblasts showed heavy cholesterol accumulation, which was efficiently reduced by TPC2
activation. While neither changes in LacCer trafficking nor cholesterol accumulation were
detectable in Batten disease, the latter is known to accumulate lipofuscin [29] and globo-
triaosylceramide (Gb3) [30], and treatment with TPC2-A1-P was able to rescue both [1].

A common feature of LSDs is progressive neurodegeneration. To further corroborate
the data from patient fibroblasts in a more relevant cellular model, iPSCs models, created
using CRISPR/Cas9, were generated, carrying the most common mutation causing MLIV
(MCOLN1IVS3-2A>G) or different Batten disease mutations (CLN3D416G (severe phe-
notype), CLN3R405W (mild phenotype) and CLN3∆Ex4-7). From these, cortical neurons
were derived following established protocols [31,32]. We examined these neurons in direct
comparison to isogenic WT neurons by analyzing lysosomal cathepsin B (CtsB) activity,
LysoTracker (LyTr) staining and ultrastructures using electron microscopy. MCOLN1IVS3-
2A>G neurons exhibited significantly increased CtsB activity as well as protein levels [33],
and TPC2-A1-P treatment was able to significantly decrease both isogenic control levels.
Furthermore, TPC2-A1-P was able to rescue lysosomal compartment expansion, high-
lighted by LyTr staining, in both MCOLN1IVS3-2A>G and Batten disease. In addition,
using electron microscopy, we found lysosomal inclusion bodies in MCOLN1IVS3-2A>G
neuronal progenitor cells (NPC), and their number was significantly decreased upon TPC2-
A1-P treatment. No significant changes in lysosomal inclusion bodies were detected in
Batten disease cells; however, the Cristae numbers per mitochondrial area were signifi-
cantly reduced in CLN3∆Ex4-7, and TPC2-A1-P treatment significantly increased these
numbers again.

Alongside the promising data observed in vitro, we took advantage of the well-
established mouse model for MLIV [34,35] to test the pharmacological activation of TPC2
in vivo. The neuropathology observed in MLIV mice is characterized by early behav-
ioral deficits, activation of microglia and astrocytes and, due to an impairment in protein
degradation, P62/SQSTM1 aggregates accumulate in the central nervous system [34,36].
MLIV mice injected with TPC2-A1-P were found to show significant amelioration of the as-
trogliosis phenotype in the cerebellar arbor vitae, and a significant reduction of the number
of P62/SQSTM1 aggregates in both the cerebellum and hippocampus. As an additional
proof-of-concept, we tested TPC2-A1-P versus vehicle-treated mice on motor performance
on the accelerating rotarod [37], demonstrating a significant rescue effect of TPC2-A1-P
over vehicle treatment in MLIV mice.

Mechanistically increased lysosomal exocytosis and autophagy enhancement by TPC2-
A1-P were shown. Both mechanisms were previously postulated to be potentially beneficial
in treating different diseases [2,9,38–44], and recently we showed that TPC2-A1-P promotes
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lysosomal exocytosis in alveolar macrophages [45]. Accordingly, we found that TPC2-
A1-P is also able to induce lysosomal exocytosis in LSD patient fibroblasts. In fibroblasts
and iPSC-derived neurons, we also showed that treatment with TPC2-A1-P promoted
starvation-mediated autophagy and P62/SQSTM1 clearance, suggestive of TPC2 being
a modulator of autophagy under cellular stress conditions.

Altogether, these findings support the hypothesis that TPC2 activation by TPC2-A1-P
is beneficial in neurodegenerative LSD treatment.

4. Is It All Clear Then?

No. A recent work by Tong et al. (2022) [46] claimed that exaggeration of TPC2 activ-
ity in SH-SY5Y neuroblastoma cells expressing mutant Presenilin 1 (PSEN1) and human
fibroblasts from familial Alzheimer’s disease patients results in the reduction of lysosomal
Ca2+, which in turn accelerates the Ca2+/H+ exchanger to expel H+ leading to lysosomal
alkalinization and reduction in autophagy clearance of amyloids. Vice versa, inhibition of
TPC2 by tetrandrine or Ned-19 or via siRNA treatment reportedly restored lysosomal Ca2+

and pH and rescued autophagy [46]. Albeit potentially different from the LSD models we
investigated, the claim is that in AD patient fibroblasts and PSEN1 mutant neuroblastoma
cells, blocking TPC2 would be beneficial compared to activation. However, no evidence,
e.g., endolysosomal patch-clamp data supporting the “hyperactivity theory” of TPC2, was
provided. Furthermore, these findings contrast results by Ambrosio et al. (2016) [47],
who showed that a loss of TPC2 leads to an increase in pH in lysosome-related organelles
(melanosomes), while activation of TPC2 by the PI(3,5)P2-mimetic TPC2-A1-P used in the
study by Gerndt et al. (2020) was shown to have no effect on lysosomal pH [45]. On the
other hand, activation of TPC2 by NAADP and the NAADP-mimetic TPC2-A1-N was
indeed shown to result in the alkalinization of lysosomal pH [45,48,49]. Hence, the mode
of activation may be critical, i.e., whether cells have aberrantly increased NAADP levels
rather than increased PI(3,5)P2 levels. Such an aberrant TPC signaling hypothesis was
also raised by Hockey et al. (2015) [50] when investigating molecular silencing of TPC2
or pharmacological inhibition of TPC signaling in fibroblasts from Parkinson’s disease
patients with the common G2019S mutation in LRRK2. Therefore, the short-term block-
age of NAADP-mediated TPC hyperactivation may correct the changes in pH driven by
NAADP in such cases. Nevertheless, the long-term block or knockout of TPC2 seems rather
problematic as this disrupts endolysosomal trafficking and degradation [2,3,51], suggesting
that permanent inhibition might be counterproductive and would likely rather negatively
impact neuronal health and survival. There is clearly a need to decipher the effects of
different modes of TPC2 activation in neurodegenerative disease models, preferably in
human iPSC-derived neuronal models, i.e., the differences in NAADP versus PI(3,5)P2-
mediated channel activation, the possibility of NAADP mediated TPC2 hyperactivity in
certain neurodegenerative disease models as well as long-term versus short-term inhibi-
tion of TPC2 in different disease models and disease conditions. Interestingly, two recent
studies by Lee et al. (2010) [52] and Lie et al. (2022) [53] (same group) postulated a similar
hyperactivity theory for TRPML1 in a PSEN1 model. Deacidification of endolysosomes
after PSEN1 loss of function was claimed to induce pathological constitutive TRPML1 hy-
peractivation. Blocking TRPML1 channel activation reportedly reversed transport deficits
in PSEN1 knockout neurons [53], while a role for TPC2, in contrast to Tong et al. [39],
was excluded. As stated in a previous review [26], this claim of TRPML1 hyperactivity
is not supported by direct TRPML1 channel activity measurements [54]. Endolysosomal
patch-clamp evidence, by contrast, demonstrates that maximum activity of TRPML1 is
achieved under acidic conditions, gradually decreasing with increasing pH [2,54–56]. How
TRPML1 can be hyperactivated under elevated lysosomal pH conditions thus remains to
be further scrutinized. One possibility might be a change in Ca2+ permeability of TRPML1
in a pH-dependent manner. The methodology to estimate the pH range used by all groups
was LysoSensor Yellow/Blue-dextran. The main difference between the groups is the
timing of pulse and chase and the different biological models used. Tong et al. [46] used
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a human neuroblastoma cell line and fAD fibroblasts while the Nixon group [52,53] and
Coen et al. [57] used mouse cell lines, neurons isolated from PSEN1 KO mouse embryos
and MEF, respectively. Due to the wide pH range present in endocytic organelles, ad-
dressing endolysosomal pH is a challenging task, especially when using endocytic tracers
combined with pH sensitive dyes [58]. Therefore, it might be useful, to address these
controversies using strategies and tools that have become available only recently such as
the genetic lysosomal pH sensor pH-Lemon-GPI [45,59] or the DNA-based fluorescent
reporter, CalipHluor, that can measure ratiometically luminal pH and Ca2+ [58].

5. Discussion and Conclusions

We conclude that activation of TPC2 with the PI(3,5)P2 mimetic TPC2-A1-P in fi-
broblasts from different LSD patients (Niemann–Pick-type C1, MLIV and CLN3-mediated
juvenile Batten disease) as well as in neurons derived from iPSC models of MLIV and
Batten disease results in the rescue of several disease phenotypes. These results are further
backed up by in vivo data performed in an MLIV mouse model, such as the effects of TPC2-
A1-P on astrogliosis, P62 accumulation in the cerebellum and hippocampus and motor
performance (Rotarod experiments). Mechanistically, TPC2 activation may clear aberrantly
accumulating material from lysosomes by lysosomal exocytosis. On the one hand, TPC2-
mediated exocytosis is strongly promoted by TPC2-A1-P. In addition, TPC2-A1-P also
promotes autophagy and may thus enhance the degradation of accumulated material in
autophagolysosomes. In contrast to TRPML1, TPC2 only seems to promote autophagy
under cellular stress conditions. On the other hand, potential benefits of TPC2 have been
demonstrated, such as pH-independent activation by PI(3,5)P2 and its resistance to the
sphingomyelin blockage, which both affect, by contrast, TRPML1 activity. Furthermore,
dysfunction of TPC2 activity leads to increased levels of cholesterol, affecting intracellular
trafficking [2]. These and other data [2] suggest that endolysosomal transport and degra-
dation are impaired in TPC2-deficient cells. Data by Puri et al. (1999) [28] support these
findings by demonstrating that cholesterol reduction restores proper trafficking of LacCer to
the Golgi, whereas cholesterol overload redirects LacCer to endolysosomal compartments.
Additional support comes from experiments where TPC2 was inhibited by different small
molecule antagonists (Figure 1).

Despite the encouraging positive results with the TPC2 agonist TPC2-A1-P in some
LSD models, it needs to be clarified if TPC2 activation might also be beneficial in other LSD
and more common neurodegenerative disease models such as Parkinson’s or Alzheimer’s
disease models. Hitherto, published data such as the ones in PSEN1 and LRRK2 models
suggest that TPC2 inhibition may be beneficial [53]. The PSEN1 studies suggest an essential
role for PSEN1 in the maturation and trafficking of the v-ATPase, responsible for lysosomal
acidification. On the other hand, Coen et al. (2012) [57] and Zhang et al. (2012) [60]
claimed that endolysosomal dysfunction in PSEN1 KO cells is not a consequence of failed
N-glycosylation of V0a1 or compromised lysosomal acidification. Hence, both the role
of PSEN1 in lysosomal acidification as well as the TRPML1 hyperactivity theory remain
controversial. The studies by Tong et al. [46] and Hockey et al. [2] suggest hyperactivity of
TPC2 and/or a beneficial effect of TPC2 inhibition that underscores the relevance of TPC2
in neurodegenerative disease conditions, but in these studies, it remains to be clarified
what causes TPC2 hyperactivity, for example, excess NAADP. Direct channel activity
measurements would be helpful in these models. In addition, Tong et al. [39], in contrast to
the TRPML1 studies [45,46], showed data suggesting that TRPML1 is not involved in the
phenotypes seen in PSEN1 cells. Vice versa, Lee et al. and Lie et al. [45,46] showed data to
exclude the role of TPC2 instead. Finally, some of the tools used in the studies cited above
are not sufficient to discriminate between TRPML1 and TPC2, such as Ned-19, which can
block both channels. More selective tools are available and may be used to discriminate
between these channels.
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Many other open questions remain. What happens to aggregates and macromolecular
material once exocytosed after TPC2-A1-P treatment? Will it be taken up and accumulated
in other cells, or will it be degraded efficiently enough in the extracellular space? Are there
other mechanisms beyond lysosomal exocytosis and autophagy stimulation that potentially
contribute to the observed rescue effects? Would a combination of TRPML1 and TPC2
activation be beneficial? How critical is the mode of TPC2 activation (NAADP/TPC2-A1-N
versus PI(3,5)P2/TPC2-A1-P)? Is TPC2 activation with TPC2-A1-P beneficial in adult-onset
neurodegenerative diseases such as Alzheimer’s or Parkinson’s disease? What side effects
would be expected?

Despite these and other open questions, TPC2 appears to be a promising target for the
therapy of certain LSDs, as discussed here, and it remains to be further investigated if and
how additional LSDs and possibly even more common neurodegenerative diseases may
benefit from TPC2 activation.
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