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Abstract: Introduction: Dysfunction of placental development is involved in early pregnancy loss.
Senescent changes have been seen in missed miscarriage, one type of pregnancy loss. Extracellu-
lar vesicles (EVs) have been widely implicated in the pathogenesis of diseases. In this study, we
investigated the protein profiles in placental EVs derived from missed miscarriage in comparison
with healthy pregnancy. We also investigated whether cargos packed into EVs are involved in
the dysfunctional development of the placenta seen in missed miscarriage. Methods: Proteomic
analysis of placental EVs derived from healthy and missed-miscarriage placentae was performed.
Three senescence-repair-associated proteins, replication protein A-70 (RPA-70), proteasome activator
subunit-4 (PMSE-4), and protein activated kinase-2, (PAK-2) were examined in placental EVs and
placentae, and in placental explants that had been treated with or without GW4869, by western blot-
ting and immunohistochemistry. Results: The total number of proteins associated with placental EVs
was not different between the two groups. However, there were 106 and 151 abundantly expressed
proteins associated with placental micro- or nano-EVs from missed miscarriage in comparison with
EVs from controls. Of these abundant proteins, 59 and 81 proteins in placental micro- or nano-EVs,
respectively, are associated with DNA damage/repair and cell death/survival. We further found
higher levels of three senescence-repair-associated proteins (RPA-70, PMSE-4, and PAK-2) associated
with placental EVs, but lower levels of these proteins in missed-miscarriage placentae. Regarding
inhibition of EV formation or release by GW4869, we found that the expression of these three proteins
was higher in GW4869-treated placental explants from missed miscarriage. Discussion: Our data may
suggest that “inadvertently” sorting of cargos and exporting proteins associated with senescence-
repair by placental EVs may be associated with the dysfunction of placental development seen in
missed miscarriage.

Keywords: placental EVs; proteomics; sorting of cargo; inhibitor of EV formation; missed miscarriage;
senescence-repair; placental development

1. Introduction

Early pregnancy loss during the first trimester is the most common complication
of early pregnancy before 20 weeks and affects 10% to 20% of all pregnancies [1]. Al-
though chromosomal abnormalities or endocrinological disorders contribute to half of
early pregnancy losses [2], dysfunction of placental development, including morphological
and functional changes in placental trophoblast cells, is associated with many complicated
pregnancies, including miscarriage [3–5]. Placental development is regulated by the balance
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of trophoblast proliferation and apoptosis in the development of the placenta in normal
pregnancy [6]. Disbalance in placental trophoblast apoptosis is associated with abnormal
pregnancy outcomes including miscarriage [7–9].

The normal trophoblast life cycle involves the proliferation and differentiation of
mononucleated cytotrophoblasts, some of the cells then merge into the overlaying mult-
inucleated syncytiotrophoblasts [10]. Turnover of aged syncytiotrophoblasts is thought
to involve apoptosis, followed by shedding into the maternal circulation as extracellular
vesicles (EVs) [11], from as early as six weeks of gestation [12]. EVs, including placental
EVs, are lipid-enclosed particles that are released from all cells studied to date, including
the placental syncytiotrophoblast, and carry many functional proteins, regulatory RNAs,
DNA, and lipids (reviewed in [13]). EVs play an important role in cell-to-cell communi-
cation, including signaling during pregnancy, which has roles in maternal vascular and
immune adaptation [14,15]. A number of studies have shown that placental EVs derived
from complicated pregnancy impact the function of target cells [13] by releasing cargos that
EVs carry, such as dangerous proteins including misfolded proteins and Mixed Lineage
Kinase domain-Like (MLKL) [16].

One of the formations of EV biogenesis, called exosomes, includes three processes:
(1) the formation of inside endocytic vesicles, (2) the generation of multivesicular bodies,
(3) the release of vesicles [17]. It is now well known that EVs contain diverse molecules,
including various proteins [18,19] that are originally derived from the cell of origin [20]. Car-
gos are sorted by endosomal sorting complexes required for transport (ESCRT)-dependent
or ESCRT-independent mechanisms [21]), and EV cargos are subject to change under stress
conditions [22]. This may suggest that there is a possibility that during EV biogenesis,
functional proteins or regulatory RNAs are “inadvertently” packed into EVs and released
under pathological conditions. Oxidative stress may affect lipids of the exosome membrane
and the RNA composition in the exosomes [23,24].

There is growing evidence that suggests that increased placental oxidative stress con-
tributes to the common pathogenesis of early pregnancy loss which may result in impaired
trophoblast invasion [5,25,26]. Increased oxidative stress can induce DNA damage in the
placentae [27], and disrupt the protein-folding process and enhance the production of
misfolded proteins [28]. An increased level of senescence is associated with complica-
tions of pregnancies, such as preeclampsia [27] and missed miscarriage [29]. We have
recently reported that instead of being released by EVs, proteins that are associated with
senescence, DNA damage, and endoplasmic reticulum (ER) stress are accumulated in
missed-miscarriage placentae [29].

The differences in proteomic characterizations in placental EVs derived from missed-
miscarriage and normal first-trimester placentae has not been investigated yet. Therefore,
we undertook this study to investigate the proteomic profiles in placental EVs derived from
missed miscarriage. We next analyzed the potential mechanisms of these proteins that are
associated with cellular senescence in the pathogenesis of missed miscarriage, a subtype of
early pregnancy loss. We further investigated whether there is an “inadvertent” exportation
of functional proteins associated with senescence repair by EVs in missed miscarriage.

2. Materials and Methods

This study was approved by the ethics committee of The Hospital of Obstetrics &
Gynaecology of Fudan University, Shanghai, China (reference number 201862), and Wuxi
Maternity and Child Health Hospital affiliated with Nanjing Medical University, Wuxi
China (reference number: 2021/01020204). All placentae were collected with an informed
written patient consent form.

2.1. Placentae Collection and EVs Preparation

Proteomics analysis: missed-miscarriage placentae (n = 3) and gestation-matched
first-trimester placentae from elective surgical termination (n = 3) were collected from the
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Family Planning Clinic in The Hospital of Obstetrics & Gynaecology of Fudan University.
The gestational age for missed miscarriage ranged from 9 to 12 weeks.

Functional analysis: 14 placentae were collected from missed miscarriage and 14 healthy
placentae were collected from elective surgical termination from Wuxi Maternity and Child
Health Hospital affiliated with Nanjing Medical University, Wuxi, China.

Missed miscarriage is defined as where the fetus has died or not developed, without
any maternal symptoms, and the fetus has not been physically miscarried. All the potential
contributing factors with chronic diseases such as chronic hypertension, renal disease,
and diabetes mellitus were excluded. All the placentae (missed miscarriage and healthy
controls) were collected from surgical evacuation. Placental EVs were harvested from
placental explant culture as described previously [30]. Briefly, after removal of the decidua,
approximately 400 mg of first placental explants (wet weight) were dissected and were then
cultured in Netwell™ culture inserts (400 µm mesh) at 37 ◦C in Advanced DMEM/F12
containing 2.5% FBS and 1% penicillin/streptomycin in an ambient oxygen atmosphere
containing 5% CO2 overnight. The conditioned media were collected, and the cellular
debris was removed by centrifuging at 2000× g for 10 min. The supernatant was centrifuged
at 20,000× g for 1 h for micro-EV collection. The supernatant was further centrifuged at
100,000× g for 1 h for nano-EV collection (Avanti J30I Ultracentrifuge, JA 30.50 fixed angle
rotor, Beckman Coulter).

In some experiments, the missed-miscarriage placental explants (n = 5) were cultured
in the presence or absence of GW4869 (20 µM) (MedChemExpress, Shanghai, China) for
24 h. The placental explants were then fixed by 4% PFA for 24 h and paraffin blocks were
prepared. GW4869 is a commonly used inhibitor of EV formation or release (reviewed
in [31]).

Morphology of placental micro and nao-EVs was confirmed by electron microscopy and
molecular characterization of CD81, an EV-enriched marker, and pan-cytokeratin, a marker of
placental origin, was confirmed by western blotting (Supplementary Figures S1–S3).

2.2. Protein Extraction and Quantification

Proteins in placental micro- or nano-EVs derived from six placentae were extracted by
commercially purchased RIPA buffer (Applygen Technologies Inc., Beijing, China). After
centrifugation by 12,000 rpm for 15 min to remove the cellular debris, the proteins were
collected and stored at −80 ◦C for future experiments. The protein concentrations of pla-
cental micro- or nano-EVs were measured by Bicinchoninic Acid (BCA) assay following the
manufacturer’s guidelines (Beyontime Technology, Guangdong, China). The concentration
was normalized to µg/mg placental tissue.

2.3. Proteomic Analysis

Proteomic analysis was performed with a Fusion mass spectrometer (ThermoFisher
Scientific, Massachusetts, USA). The dried peptide fractions were applied to a C18 nanocap-
illary column (3 µm, 250 mm × 75 µm, Eksigent Technologies, Redwood City, CA, USA)
and eluted into the Orbitrap Fusion LC-MS/MS mass spectrometer (ThermoFisher Scien-
tific, Massachusetts, USA). Buffer A (0.1% formic acid in water) and buffer B (0.1% formic
acid in acetonitrile) were used for gradient elution. Then, the peptides were eluted from the
column at a constant flow rate of 600 nL/min (in total 4 µL) with a gradient of buffer B from
5% to 30% in 82 min. The eluted peptides were ionized in positive-ion mode at 2000 V and
scanned in the Orbitrap with a resolution of 120,000 which covered the range 300–1400 m/z.
Dynamic exclusion was used for the data collection with an exclusion duration of 18 s, and
the minimum intensity was 5000. Proteomic analysis was performed in three individual
samples and the data was pooled as a mean.

2.4. Data Analysis

Protein identification was performed using the MaxQuant (version 1.6.0.16, Jürgen
Cox, Max Planck Institute of Biochemistry, Martinsried, Germany), searching against
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the Uniport database of human protein sequences (http://www.uniprot.org). Search
parameters were of trypsin specificity. Variable modifications were defined as oxidation
on methionine residues and acetylation of protein n-terminal, and carbamidomethylation
on cysteine was the fixed modification. The resulting peptide groups only have peptides
with modified sites, removing contaminant matches and matches to the reverse database.
For the quantitation of proteins, metaboanalyst software (http://www.metaboanalyst.ca/)
was used. Unpaired Student’s t-tests were used to compare the two groups. The significant
differentially expressed proteins (DEP) (p-value < 0.05) were further selected and the ones
with a differential expression ratio of over ±2 were obtained, referred to as abundantly
expressed proteins. Upstream regulator analysis, functional analysis, downstream effect
analysis and network between proteins in the DEP dataset were performed by ingenuity
pathway analysis (IPA) software (http://www.ingenuity.com/products/ipa). For IPA
analysis, Fisher’s exact test was used to analyze the significance of canonical pathways
and the association between proteins and biofunctions. Z-score was used to determine the
potential activation states (activated or inhibited) of implicated biological processes.

2.5. The Levels of Protein Activated Kinase-2 (PAK-2), Proteasome Activator Subunit-4 (PMSE-4)
and Replication Protein A-70 (RPA-70) Carried by Placental EVs Were Measured by
Western Blotting

After protein extraction from placental micro- or nano-EVs (n = 4), the proteins (20 µg)
were denatured by boiling with loading buffer (Cwbio, Beijing, China), followed by elec-
trophoresis on 10% SDS-PAGE gels for 1 h 30 min. Proteins were transferred onto PVDF
membranes (0.22 µm, Biosharp Inc., Hefei, China) and were blocked with 5% non-fat milk
for 1 h at room temperature. After incubation with primary antibodies at 4 ◦C overnight,
the membranes were then washed with TBS-T and were cultured with a secondary anti-
body (Affinity, Shanghai, China, 1:5000) for 1 h at room temperature. The membranes were
treated with ECL (Vazyme, Nanjing, China) and developed on the chemical fluorescence
luminescence developer. The concentrations of senescence-repair-associated antibodies are
as follows: PAK-2 (Abcam, Shanghai, China), 1:5000; PMSE-4 (Abcam, Shanghai, China),
1:1000; RPA-70 (Abcam, Shanghai, China), 1:1000.

Semiquantitative analysis of the western blotting images after normalization to levels
of b-actin were performed by measuring the density of the band with ImageJ. Data show
mean and standard deviation (SD).

2.6. The Expression of PAK-2, PMSE-4 and RPA-70 in Placentae Collected from
Missed-Miscarriage or Healthy First-Trimester Placentae or Collected from Missed-Miscarriage
Placental Explant Culture Was Measured by Immunohistochemistry

The expression of PAK-2, PMSE-4, and RPA-70 in placentae collected from missed
miscarriage (n = 5) or control (n = 5) or from missed-miscarriage placental explant culture
in the presence or absence of GW4869 (n = 5) was measured by immunohistochemistry.
Paraffin blocks were sectioned with 5 µm and the expression of PAK-2, PMSE-4, or RPA-70
was examined. Briefly, after being deparaffinized in xylene and rehydrated in graded
alcohol, the sections were boiled with citrate buffer (pH = 6.8) for 2 min using a pressure
cooker for antigen retrieval. Rabbit anti-human PAK-2 (1:200, Abcam, Shanghai, China),
rabbit anti-human PMSE-4 (1:1000, Abcam, Shanghai, China), or rabbit anti-human RPA-70
monoclonal antibody (1:100, Abcam, Shanghai, China) was then added to the sections for
1 h at room temperature. After washing with PBS-T three times, the sections were incubated
with a secondary antibody and streptavidin/peroxidase complex using Vectastain Universal
Quick Kit (VectorLabs, Newark, CA, USA) following the instructions. After further washing
with PBS-T three times, sections were incubated with 3,3-Diaminobenzidine (DAB) for
visualization. Sections were then counter-stained for 1 min with hematoxylin. Negative
controls were performed as above but omitting the primary antibodies.

Semiquantitative analysis of the immunohistochemistry result was performed on the
strength of staining, which was scored by two independent authors (QC and YZ). Strong
staining was scored as 3 points, moderate staining was scored 2 points, and weak staining

http://www.uniprot.org
http://www.metaboanalyst.ca/
http://www.ingenuity.com/products/ipa


Cells 2022, 11, 2772 5 of 15

was scored as 1 point compared with the negative control, as we used previously [29]. Data
show mean and standard deviation (SD).

2.7. Statistical Analysis

The protein contents of placental EVs were expressed as mean and standard deviation
(SD). Student’s t-test was performed for the statistical analysis using Prison (version 9.4).
Semiquantitative analysis of the western blots or the immunohistochemistry images was
assessed by t-test (nonparametric) using the Prism software package; data were expressed
as mean and SD. p < 0.05 was considered as statistically different.

3. Results
3.1. There Was No Difference in the Total Protein Quantity Carried by EVs Derived from Missed
Miscarriage and Controls

We first compared the total protein quantity in placental EVs derived from control or
missed-miscarriage placentae. There was no statistical difference in the protein concentra-
tion of EVs from healthy and missed-miscarriage placentae (Figure 1).
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Figure 1. The concentration of proteins in micro-EVs and nano-EVs from missed miscarriage and
healthy placentae.

3.2. Comparison of the Number of Proteins Carried by Placental EVs Derived from Controls and
Missed Miscarriage

To understand the difference in placental micro- or nano-EVs derived from controls
and missed-miscarriage placentae at the proteomic level, we performed a proteomic anal-
ysis. We identified 1854 or 1825 proteins in placental micro-EVs derived from healthy or
missed-miscarriage placentae, respectively. Of these, there were 1568 overlapping proteins
between the two groups (Figure 2A). In addition, 1585 or 1459 proteins were identified
in placental nano-EVs derived from the control or missed-miscarriage placentae, respec-
tively. Of these, there were 1258 overlapping proteins between the two groups (Figure 2B).
There was no difference in the number of proteins identified in placental EVs between the
two groups. Furthermore, the number of overlapped proteins between placental micro-
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and nano-EVs from missed miscarriage was similar to the overlapped proteins between
placental micro- and nano-EVs from controls. The expression levels of non-overlapped
proteins between the two groups were much lower. Thus, further analysis was carried out
on the overlapped proteins. The heatmap of the overlapping proteins is shown in Figure 3.
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3.3. Analysis of Abundantly Expressed Proteins in EVs from Missed Miscarriage

By proteomic analysis, the expression of 106 proteins in placental micro-EVs were
significantly different between the two groups. Among these, 37 proteins were upregulated,
and 69 proteins were downregulated, compared with micro-EVs derived from the healthy
first-trimester placentae (Figure 4A). In addition, the expression of 151 proteins in placental
nano-EVs was significantly different between the two groups. Among these, 31 proteins
were upregulated, and 120 proteins were downregulated, compared with nano-EVs derived
from the healthy first-trimester placenta (Figure 4B). Detailed proteins that were abundantly
expressed are summarized in Supplementary Tables S1 and S2.



Cells 2022, 11, 2772 7 of 15

Cells 2022, 11, x FOR PEER REVIEW 7 of 18 
 

 

 

Figure 3. The heatmap of the proteins in placental EVs from missed miscarriage and healthy 

pregnancy. 

3.3. Analysis of Abundantly Expressed Proteins in EVs from Missed Miscarriage 

By proteomic analysis, the expression of 106 proteins in placental micro-EVs were 

significantly different between the two groups. Among these, 37 proteins were upregu-

lated, and 69 proteins were downregulated, compared with micro-EVs derived from the 

healthy first-trimester placentae (Figure 4A). In addition, the expression of 151 proteins 

in placental nano-EVs was significantly different between the two groups. Among these, 

31 proteins were upregulated, and 120 proteins were downregulated, compared with 

nano-EVs derived from the healthy first-trimester placenta (Figure 4B). Detailed proteins 

that were abundantly expressed are summarized in Supplementary Tables S1 and S2. 

 

1 

Figure 4. The abundantly expressed proteins in micro-EVs (A) and nano-EVs (B) from
missed-miscarriage and healthy placentae.

3.4. Functional Analysis of Placental EVs

Following IPA functional analysis, we found that the abundantly expressed proteins asso-
ciated with micro- or nano-EVs are mainly associated with biological functions, physiological
system development and functions, and diseases and disorders (Supplementary Tables S3 and S4).
There were 20 abundantly expressed proteins associated with DNA damage and repair, and
39 abundantly expressed proteins associated with cellular death and survival in placental
micro-EVs, respectively. There were 15 abundantly expressed proteins associated with
DNA damage and repair, and 66 abundantly expressed proteins associated with cellular
death and survival in placental nano-EVs, respectively. Of these proteins, we selected
three senescence-repair proteins, RPA-70 (Replication protein A 70) and PAK-2 (Protein
Activated Kinase 2) which were highly expressed in placental micro-EVs, and PSME-4
(Proteasome Activator Subunit 4, also called PA 2000) which was highly expressed in
placental nano-EVs, for further analysis. RPA-70 binds ssDNA to protect it and maintains it
in an unfolded state. PSME-4 potentially regulates cellular homeostasis at the transcription
level and regulates the expression of genes involved in cell survival. PAK-2 regulates cell
motility, cell cycle progression, apoptosis, or proliferation. PAK-2 is an important regulator
of cellular senescence.

We first investigated the levels of these proteins in placental EVs from missed-miscarriage
placentae, and the tissues from which the EVs were derived, since our recent study re-
ported an accumulation of proteins associated with senescence (DNA damage) in missed-
miscarriage placentae [29]. As shown in Figure 5, the levels of RPA-70 and PAK-2 in
placental micro-EVs, or the levels of PSME-4 in placental nano-EVs derived from missed-
miscarriage placentae were significantly increased, compared with controls. In contrast, the
expression of RPA-70, PAK-2, and PSME-4 was significantly lower in the missed-miscarriage
placentae, compared with their expressions in the healthy first-trimester placentae, mea-
sured by a semiquantitative analysis (Figure 6A–D). GW4869 is a commonly used inhibitor
of EV formation or release (reviewed in [31]). We next investigated the expression of these
proteins in missed-miscarriage placental explants that had been treated with GW4869.
The expression of RPA-70, PAK-2, and PSME-4 in missed-miscarriage placental explants
that had been treated with GW4869 were significantly higher than in untreated placental
explants from missed miscarriage, measured by a semiquantitative analysis (Figure 7A–D).
Interestingly, the expression of RPA-70, PAK-2, and PSME-4 in healthy first-trimester pla-
cental explants that had been treated with GW4869 was not different to that of the untreated
placental explants (data not shown).
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PAK-2 (B) in placental micro-EVs, and high levels of PSME-4 (C) placental nano-EVs derived from
missed-miscarriage placentae, measured by a semiquantitative analysis (D). (MM: missed miscarriage,
NC: control).
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measured by a semiquantitative analysis (D) (magnification: ×400).
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Figure 7. The representative immunohistochemistry images showing the expression of RPA-70 (A),
PSME-4 (B), and PAK-2 (C) in missed-miscarriage placental explants that had been treated with (a) or
without (b) GW4869, measured by a semiquantitative analysis (D) (magnification: ×400).

4. Discussion

In this study, we found no differences in the total protein quantity carried by placental
EVs derived from missed miscarriage and healthy placentae. By proteomic analysis, we
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found no differences in the number of proteins associated with placental EVs derived from
missed miscarriage and healthy placentae. However, there were 106 or 151 differently
expressed proteins in placental micro- or nano-EVs between the two groups. Higher levels
of cellular senescence-repair proteins, RPA-70, PSME-4, and PAK-2 were seen in placental
EVs derived from missed miscarriage, but lower levels of the three proteins were seen in
missed-miscarriage placentae, compared with healthy first-trimester placentae. Inhibition
of EV formation or release by GW4869 resulted in higher levels of RPA-70, PSME-4, and
PAK-2 in missed-miscarriage placental explants.

Extracellular vesicles are described as a heterogeneous population of membrane-bound
vesicles released by all cell types studied to date, including both prokaryotic and eukary-
otic cells, from unicellular to multicellular organisms. Therefore, the secretion of EVs is
considered as an evolutionarily conserved process [32–34]. EV biogenesis involves double
invagination of the plasma membrane and the formation of intracellular multivesicular
bodies. The intracellular multivesicular bodies can then release intraluminal vesicles into
the extracellular space upon fusion with the plasma membrane (reviewed in [24]), although
the biogenesis of EVs depends on the subtypes of EV. It is well-recognized that cargos car-
ried by EVs, including functional proteins and regulatory RNAs, are originally packed from
cells [20], and the contents associated with EVs vary with the subtypes of EVs, cell type,
and physiologic conditions (reviewed in [35]). The functions of EVs are also dependent on
EV cargos [36].

The functions of EVs have been widely studied, including their involvement in disease
pathogenesis, as well as their utilization as diagnostic biomarkers for diseases by exploiting
the changes in EV cargo signatures. However, the comparison of the proteomics profiles
between missed miscarriage and healthy pregnancy has not been investigated yet. In
our current study, we found the total protein in placental EVs derived from healthy or
missed-miscarriage placentae was not different. Interestingly, by proteomic analysis, the
numbers of proteins in placental EVs were also not different between the two groups.
Although the protein contents of EVs often reflect their cell of origin [20], given that there
were no differences in the total protein contents, our data suggested that the mechanisms
involved in the biogenesis and release of EVs may be similar between the two different
conditions of pregnancy. Quantity may not be a suitable indicator that the same EV
packaging mechanisms are operating in the two pregnancy conditions.

By proteomic analysis, however, we found a difference in the levels of 106 upregulated
and 151 downregulated proteins, respectively, in placental micro- and nano-EVs between
the two conditions of pregnancy. Through IPA functional analysis, we found that there are
93 and 129 abundantly expressed proteins in placental micro- and nano-EVs, respectively,
associated with protein synthesis, DNA damage, and cell death/survival (Supplementary
Tables S3 and S4). These data suggest that these abundantly expressed proteins play a criti-
cal role in the pathogenesis of missed miscarriage, as we recently reported that senescence
and DNA damage were associated with placental dysfunction in missed miscarriage [29].

When we selected three senescence-repair-associated proteins for further investigation,
we interestingly found high levels of RPA-70, PSME-4, and PAK-2 in placental EVs derived
from missed-miscarriage placentae. In contrast, there were lower levels of the three proteins
in missed-miscarriage placental tissues from which the EVs were derived. RPA-70 binds
and stabilizes single-stranded DNA intermediates that form during DNA replication or
upon DNA stress [37]. PMSE-4 potentially regulates the expression of genes involved in
cell survival upon selective mitochondrial inhibition in neuroblastoma cells [38]. PAK-2 is
required for the expression of genes involved in cellular senescence and regulates the depo-
sition of newly synthesized H3.3 onto chromatin in senescent cells [39]. We do not know
the exact reason why these three proteins are enriched in EVs compared with the cell or
origin. However, it could point towards differences in the mechanisms of cargo packaging
onto EVs from placentae complicated by missed miscarriage. The packaging of cargos onto
EVs is based on endosomal sorting complexes required for transport (ESCRT)-dependent
or ESCRT-independent mechanisms. Post-translational modifications have been shown
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to contribute as a signal for cargo transport into multivesicular bodies and demonstrated
that the ESCRT machinery plays a crucial role in this pathway [40]. EV proteins modified
by post-translational modifications can be directly loaded onto the EVs, and the specific
post-translational modifications also can control the selective mechanisms of protein cargo
sorting and promote some proteins to be enriched in EVs [21]. Oxidation and redox pro-
cesses are thought to affect the packaging of EV cargos. Importantly, oxidation may also
affect lipids of the EV membrane [23], and cellular stress could alter the composition of
cell-derived EVs [22]. Oxidative stress has been shown to influence the RNA composition
in EVs [23]. We previously showed that oxidative stress contributes to the changes of
senescence in missed-miscarriage placentae [29]. Taken together, our current data may
suggest that dysfunctional packaging of cargos that causes exportation of some proteins
involved in senescence-repair by EVs may be a potential mechanism in missed miscarriage.

To investigate this hypothesis, placental explants from missed miscarriage were treated
with GW4869, a commonly used inhibitor of EV formation and release (reviewed in [31]).
Interestingly, we found that missed-miscarriage placental explants that had been treated
with GW4869 showed high expressions of RPA-70, PSME-4, and PAK-2, compared with
untreated miscarriage placental explants. In contrast, explants from healthy first-trimester
placentae that had been treated with GW4869 showed no difference in the expressions
of these proteins, compared with untreated healthy placental explants. Our recent study
found that potentially dangerous misfolded proteins were not exported into EVs, and
consequently accumulated in missed-miscarriage placentae [29]. Therefore, our current
data may suggest an “inadvertent” exportation of functional proteins associated with
senescence repair by EVs in missed miscarriage, a pathological condition of pregnancy.
Future study to understand the mechanism is required.

In conclusion, our data demonstrated that the total protein quantity, including the number
of proteins, was not different in placental EVs derived from healthy and missed-miscarriage
placentae. However, by proteomic analysis, there were 106 and 151 abundantly expressed
proteins in placental micro- and nano-EVs derived from missed-miscarriage placentae, in
comparison with the controls. High levels of three senescence-repair-associated proteins
were seen in EVs derived from missed-miscarriage placentae, but lower levels of these
three proteins were seen in missed-miscarriage placentae. Inhibition of EV formation or
release resulted in increased levels of these three proteins in missed-miscarriage placentae.
Our data may suggest that “inadvertently” or dysfunctional packaging of cargos and
exportation of proteins involved in senescence repair by EVs may be associated with
the dysfunction of placental development seen in missed miscarriage. Future research is
required to confirm our findings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11182772/s1, Figure S1: The electron image of placental
micro-EVs (A) and nano-EVs (B); Figure S2: The size of micro-EVs and nano-EVs is confirmed by
Nanosight NS300 (Malvern Panalytical, Almelo, The Netherlands); Figure S3: The characterizations
of placental micro-EVs and nano-EVs are also confirmed by measuring EV-specific surface proteins,
CD81 and pan cytokeratin. No expression of vimentin in placental micro- and nano-EVs suggests the
trophoblastic origin of vesicles obtained from cultured placental explants.

Author Contributions: All authors were involved in the drafting, editing, and approval of the
manuscript for publication. In addition to this, each author contributed to the following work: Y.Z.
and Y.T.: experiment performance. X.S.: data analysis. M.K., M.Z., J.W. and Q.C.: study design and
completion of the final manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was supported by a Major Project funded by Wuxi Health and Family Planning
Commission of China (reference number Z202104 to M.Z.) and Outstanding Talent Project of Wuxi
Maternity and Child Health Hospital affiliated with Nanjing Medical University (reference number
TY2020003 to M.Z.).

https://www.mdpi.com/article/10.3390/cells11182772/s1
https://www.mdpi.com/article/10.3390/cells11182772/s1


Cells 2022, 11, 2772 14 of 15

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Ethics Committee of The Hospital of Obstetrics & Gynaecology
of Fudan University, China (reference number 201862, dated on March 2020), and Wuxi Mater-
nity and Child Health Hospital affiliated Nanjing Medical University, China (reference number:
2021/01020204, dated on February 2021).

Informed Consent Statement: All placentae were collected with an informed written patient con-
sent form.

Data Availability Statement: The datasets used and/or analyzed during the current study are
available from the corresponding author on reasonable request. The raw proteomic data included in
this study has been uploaded on iProX (accession number: IPX0002999003); visit http://www.iprox.cn
for a direct link to the raw data accessed on June 2022.

Acknowledgments: The authors would like to thank the women who donated the placentae for this
study. The authors would also like to thank George Chen, a native English speaker from The Royal
Liverpool University Hospital, United Kingdom, for editing this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Leveno, K.J.; Corton, M.M.; Bloom, S.L. Williams Manual of Pregnancy Complications, 23rd ed.; McGraw-Hill Medical: New York,

NY, USA, 2013.
2. Vaiman, D. Genetic regulation of recurrent spontaneous abortion in humans. Biomed. J. 2015, 38, 11–24. [CrossRef] [PubMed]
3. Jauniaux, E.; Burton, G. Pathophysiology of histological changes in early pregnancy loss. Placenta 2005, 26, 114–123. [CrossRef]
4. Jauniaux, E.; Hempstock, J.; Greenwold, N.; Burton, G.J. Trophoblastic Oxidative Stress in Relation to Temporal and Regional

Differences in Maternal Placental Blood Flow in Normal and Abnormal Early Pregnancies. Am. J. Pathol. 2003, 162, 115–125.
[CrossRef]

5. Hustin, J.; Jauniaux, E.; Schaaps, J. Histological study of the materno-embryonic interface in spontaneous abortion. Placenta 1990,
11, 477–486. [CrossRef]

6. Ka, H.; Hunt, J.S. Temporal and Spatial Patterns of Expression of Inhibitors of Apoptosis in Human Placentas. Am. J. Pathol. 2003,
163, 413–422. [CrossRef]

7. Huppertz, B. Placental villous trophoblast: The altered balance between proliferation and apoptosis triggers pre-eclampsia. J. Für
Reprod. Und Endokrinol. 2006, 3, 103–108.

8. Madazli, R.; Benian, A.; Ilvan, S.; Calay, Z. Placental apoptosis and adhesion molecules expression in the placenta and the
maternal placental bed of pregnancies complicated by fetal growth restriction with and without pre-eclampsia. J. Obstet. Gynaecol.
2006, 26, 5–10. [CrossRef]

9. Abrahams, V.M.; Kim, Y.M.; Straszewski, S.L.; Romero, R.; Mor, G. Macrophages and apoptotic cell clearance during pregnancy.
Am. J. Reprod. Immunol. 2004, 51, 275–282. [CrossRef]

10. Baczyk, D.; Satkunaratnam, A.; Nait-Oumesmar, B.; Huppertz, B.; Cross, J.; Kingdom, J. Complex Patterns of GCM1 mRNA and
Protein in Villous and Extravillous Trophoblast Cells of the Human Placenta. Placenta 2004, 25, 553–559. [CrossRef]

11. Heazell, A.; Moll, S.; Jones, C.; Baker, P.; Crocker, I. Formation of syncytial knots is increased by hyperoxia, hypoxia and reactive
oxygen species. Placenta 2007, 28, S33–S40. [CrossRef]

12. Liu, H.; Kang, M.; Wang, J.; Blenkiron, C.; Lee, A.; Wise, M.; Chamley, L.; Chen, Q. Estimation of the burden of human placental
micro- and nano-vesicles extruded into the maternal blood from 8 to 12 weeks of gestation. Placenta 2018, 72, 41–47. [CrossRef]

13. Sadovsky, Y.; Ouyang, Y.; Powell, J.S.; Li, H.; Mouillet, J.F.; Morelli, A.E.; Sorkin, A.; Margolis, L. Placental small extracellu-lar
vesicles: Current questions and investigative opportunities. Placenta 2020, 102, 34–38. [CrossRef]

14. Tong, M.; Stanley, J.L.; Chen, Q.; James, J.; Stone, P.R.; Chamley, L.W. Placental Nano-vesicles Target to Specific Organs and
Modulate Vascular Tone In Vivo. Hum. Reprod. 2017, 32, 2188–2198. [CrossRef]

15. Tong, M.; Abrahams, V.M.; Chamley, L.W. Immunological effects of placental extracellular vesicles. Immunol. Cell Biol. 2018,
96, 714–722. [CrossRef]

16. Tang, Y.; Chen, Y.; Nursalim, Y.; Groom, K.; Hickey, A.; Chamley, L.; Chen, Q. Endoplasmic reticulum stress occurs in as-sociation
with the extrusion of toxic extracellular vesicles from human placentae treated with antiphospholipid antibodies. Clin. Sci. 2020,
134, 459–472. [CrossRef]

17. Batista, B.S.; Eng, W.S.; Pilobello, K.T.; Hendricks-Muñoz, K.D.; Mahal, L.K. Identification of a Conserved Glycan Signature for
Microvesicles. J. Proteome Res. 2011, 10, 4624–4633. [CrossRef]

18. Kahlert, C.; Melo, S.A.; Protopopov, A.; Tang, J.; Seth, S.; Koch, M.; Zhang, J.; Weitz, J.; Chin, L.; Futreal, A.; et al. Identification of
double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients
with pancreatic cancer. J. Biol. Chem. 2014, 289, 3869–3875. [CrossRef]

19. Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is
a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9, 654–659. [CrossRef]

http://www.iprox.cn
http://doi.org/10.4103/2319-4170.133777
http://www.ncbi.nlm.nih.gov/pubmed/25179715
http://doi.org/10.1016/j.placenta.2004.05.011
http://doi.org/10.1016/S0002-9440(10)63803-5
http://doi.org/10.1016/S0143-4004(05)80193-6
http://doi.org/10.1016/S0002-9440(10)63671-1
http://doi.org/10.1080/01443610500363840
http://doi.org/10.1111/j.1600-0897.2004.00156.x
http://doi.org/10.1016/j.placenta.2003.12.004
http://doi.org/10.1016/j.placenta.2006.10.007
http://doi.org/10.1016/j.placenta.2018.10.009
http://doi.org/10.1016/j.placenta.2020.03.002
http://doi.org/10.1093/humrep/dex310
http://doi.org/10.1111/imcb.12049
http://doi.org/10.1042/CS20191245
http://doi.org/10.1021/pr200434y
http://doi.org/10.1074/jbc.C113.532267
http://doi.org/10.1038/ncb1596


Cells 2022, 11, 2772 15 of 15

20. Boriachek, K.; Islam, M.N.; Möller, A.; Salomon, C.; Nguyen, N.T.; Hossain, M.S.A.; Yamauchi, Y.; Shiddiky, M.J.A. Biological
Functions and Current Advances in Isolation and Detection Strategies for Exosome Nanovesicles. Small 2018, 14, 1702153.
[CrossRef]

21. Villarroya-Beltri, C.; Baixauli, F.; Gutiérrez-Vázquez, C.; Sánchez-Madrid, F.; Mittelbrunn, M. Sorting it out: Regulation of
exosome loading. Semin. Cancer Biol. 2014, 28, 3–13. [CrossRef]

22. De Jong, O.G.; Verhaar, M.C.; Chen, Y.; Vader, P.; Gremmels, H.; Posthuma, G.; Schiffelers, R.M.; Gucek, M.; Van Balkom, B.W.M.
Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J. Extracell. Vesicles
2012, 1, 18396–18408. [CrossRef]

23. Huber, J.; Vales, A.; Mitulovic, G.; Blumer, M.; Schmid, R.; Witztum, J.L.; Binder, B.R.; Leitinger, N. Oxidized membrane vesicles
and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions.
Arterioscler. Thromb. Vasc. Biol. 2002, 22, 101–107. [CrossRef]

24. Wei, H.; Chen, Q.; Lin, L.; Sha, C.; Li, T.; Liu, Y.; Yin, X.; Xu, Y.; Chen, L.; Gao, W.; et al. Regulation of exosome production and
cargo sorting. Int. J. Biol. Sci. 2021, 17, 163–177. [CrossRef]

25. Burton, G.J.; Jauniaux, E. Placental oxidative stress: From miscarriage to preeclampsia. J. Soc. Gynecol. Investig. 2004, 11, 342–352.
[CrossRef]

26. Hempstock, J.; Jauniaux, E.; Greenwold, N.; Burton, G.J. The contribution of placental oxidative stress to early pregnancy failure.
Hum. Pathol. 2003, 34, 1265–1275. [CrossRef] [PubMed]

27. Cindrova-Davies, T.; Fogarty, N.M.E.; Jones, C.J.P.; Kingdom, J.; Burton, G.J. Evidence of oxidative stress-induced senescence in
mature, post-mature and pathological human placentas. Placenta 2018, 68, 15–22. [CrossRef]

28. Chong, W.C.; Shastri, M.D.; Eri, R. Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Nexus Implicated in Bowel
Disease Pathophysiology. Int. J. Mol. Sci. 2017, 18, 771. [CrossRef]

29. Tang, Y.; Zhang, X.; Zhang, Y.; Feng, H.; Gao, J.; Liu, H.; Guo, F.; Chen, Q. Senescent Changes and Endoplasmic Reticulum Stress
May Be Involved in the Pathogenesis of Missed Miscarriage. Front. Cell Dev. Biol. 2021, 9, 656549. [CrossRef]

30. Xiao, X.; Xiao, F.; Zhao, M.; Tong, M.; Wise, M.R.; Stone, P.R.; Chamley, L.W.; Chen, Q. Treating normal early gestation placentae
with preeclamptic sera produces extracellular micro and nano vesicles that activate endothelial cells. J. Reprod. Immunol. 2017,
120, 34–41. [CrossRef]

31. Catalano, M.; O’Driscoll, L. Inhibiting extracellular vesicles formation and release: A review of EV inhibitors. J. Extracell. Vesicles
2020, 9, 1703244. [CrossRef]

32. Barteneva, N.S.; Fasler-Kan, E.; Bernimoulin, M.; Stern, J.N.; Ponomarev, E.D.; Duckett, L.; Vorobjev, I.A. Circulating microparticles:
Square the circle. BMC Cell Biol. 2013, 14, 23. [CrossRef] [PubMed]

33. Vader, P.; Mol, E.A.; Pasterkamp, G.; Schiffelers, R.M. Extracellular vesicles for drug delivery. Adv. Drug Deliv. Rev. 2016,
106 Pt A, 148–156. [CrossRef]

34. Van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018,
19, 213–228. [CrossRef] [PubMed]

35. Abels, E.R.; Breakefield, X.O. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and
Uptake. Cell. Mol. Neurobiol. 2016, 36, 301–312. [CrossRef] [PubMed]

36. Saber, S.H.; Ali, H.E.A.; Gaballa, R.; Gaballah, M.; Ali, H.I.; Zerfaoui, M.; Elmageed, Z.Y.A. Exosomes are the Driving Force in
Preparing the Soil for the Metastatic Seeds: Lessons from the Prostate Cancer. Cells 2020, 9, 564. [CrossRef] [PubMed]

37. Dueva, R.; Iliakis, G. Replication protein A: A multifunctional protein with roles in DNA replication, repair and beyond. NAR
Cancer 2020, 2, zcaa022. [CrossRef] [PubMed]

38. Douida, A.; Batista, F.; Robaszkiewicz, A.; Boto, P.; Aladdin, A.; Szenykiv, M.; Czinege, R.; Virág, L.; Tar, K. The proteasome
activator PA200 regulates expression of genes involved in cell survival upon selective mitochondrial inhibition in neuro-
blastoma cells. J. Cell. Mol. Med. 2020, 24, 6716–6730. [CrossRef]

39. Lee, J.S.; Mo, Y.; Gan, H.; Burgess, R.J.; Baker, D.J.; van Deursen, J.M.; Zhang, Z. Pak2 kinase promotes cellular senescence and
organismal aging. Proc. Natl. Acad. Sci. USA 2019, 116, 13311–13319. [CrossRef]

40. Katzmann, D.J.; Odorizzi, G.; Emr, S.D. Receptor downregulation and multivesicular-body sorting. Nat. Rev. Mol. Cell Biol. 2002,
3, 893–905. [CrossRef]

http://doi.org/10.1002/smll.201702153
http://doi.org/10.1016/j.semcancer.2014.04.009
http://doi.org/10.3402/jev.v1i0.18396
http://doi.org/10.1161/hq0102.101525
http://doi.org/10.7150/ijbs.53671
http://doi.org/10.1016/j.jsgi.2004.03.003
http://doi.org/10.1016/j.humpath.2003.08.006
http://www.ncbi.nlm.nih.gov/pubmed/14691912
http://doi.org/10.1016/j.placenta.2018.06.307
http://doi.org/10.3390/ijms18040771
http://doi.org/10.3389/fcell.2021.656549
http://doi.org/10.1016/j.jri.2017.04.004
http://doi.org/10.1080/20013078.2019.1703244
http://doi.org/10.1186/1471-2121-14-23
http://www.ncbi.nlm.nih.gov/pubmed/23607880
http://doi.org/10.1016/j.addr.2016.02.006
http://doi.org/10.1038/nrm.2017.125
http://www.ncbi.nlm.nih.gov/pubmed/29339798
http://doi.org/10.1007/s10571-016-0366-z
http://www.ncbi.nlm.nih.gov/pubmed/27053351
http://doi.org/10.3390/cells9030564
http://www.ncbi.nlm.nih.gov/pubmed/32121073
http://doi.org/10.1093/narcan/zcaa022
http://www.ncbi.nlm.nih.gov/pubmed/34316690
http://doi.org/10.1111/jcmm.15323
http://doi.org/10.1073/pnas.1903847116
http://doi.org/10.1038/nrm973

	Introduction 
	Materials and Methods 
	Placentae Collection and EVs Preparation 
	Protein Extraction and Quantification 
	Proteomic Analysis 
	Data Analysis 
	The Levels of Protein Activated Kinase-2 (PAK-2), Proteasome Activator Subunit-4 (PMSE-4) and Replication Protein A-70 (RPA-70) Carried by Placental EVs Were Measured by Western Blotting 
	The Expression of PAK-2, PMSE-4 and RPA-70 in Placentae Collected from Missed-Miscarriage or Healthy First-Trimester Placentae or Collected from Missed-Miscarriage Placental Explant Culture Was Measured by Immunohistochemistry 
	Statistical Analysis 

	Results 
	There Was No Difference in the Total Protein Quantity Carried by EVs Derived from Missed Miscarriage and Controls 
	Comparison of the Number of Proteins Carried by Placental EVs Derived from Controls and Missed Miscarriage 
	Analysis of Abundantly Expressed Proteins in EVs from Missed Miscarriage 
	Functional Analysis of Placental EVs 

	Discussion 
	References

