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Abstract: Background: Titanium (Ti) is one of the most popular implant materials, and its surface
titanium dioxide (TiO2) provides good biocompatibility. The coagulation of blood on Ti implants
plays a key role in wound healing and cell growth at the implant site; however, researchers have yet
to fully elucidate the mechanism underlying this process on TiO2. Methods: This study examined
the means by which blood coagulation was affected by the crystal structure of TiO2 thin films
(thickness < 50 nm), including anatase, rutile, and mixed anatase/rutile. The films were characterized
in terms of roughness using an atomic force microscope, thickness using an X-ray photoelectron
spectrometer, and crystal structure using transmission electron microscopy. The surface energy and
dielectric constant of the surface films were measured using a contact angle goniometer and the
parallel plate method, respectively. Blood coagulation properties (including clotting time, factor
XII contact activation, fibrinogen adsorption, fibrin attachment, and platelet adhesion) were then
assessed on the various test specimens. Results: All of the TiO2 films were similar in terms of
surface roughness, thickness, and surface energy (hydrophilicity); however, the presence of rutile
structures was associated with a higher dielectric constant, which induced the activation of factor XII,
the formation of fibrin network, and platelet adhesion. Conclusions: This study provides detailed
information related to the effects of TiO2 crystal structures on blood coagulation properties on Ti
implant surfaces.

Keywords: titanium implant surface; titanium dioxide; crystal structure; dielectric constant; blood
coagulation

1. Introduction

Biomaterials have been used to enhance organ function and/or replace damaged
tissue for a long time [1,2]. Blood is the primary tissue coming into contact with the
surface of implant materials [3,4]. Blood-material interactions trigger a variety of complex
events, including protein adsorption, platelet formation, leukocyte activation/adhesion,
and coagulation [5]. The formation of blood clots at implant surfaces is critical to the
subsequent ingrowth of tissues and the healing of surgical wounds in the process of
osseointegration [6]. Coagulation involves a complex cascade of reactions via direct contact
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(extrinsic pathways) or tissue damage (intrinsic pathways) leading to the formation of
fibrin clots [7,8]. Fibrinogen, a protein abundantly expressed in blood plasma in response
to platelet adhesion, plays a key role in the coagulation cascade [9]. The self-activation of
factor XII (FXII) has been shown to initiate coagulation and thrombin formation via the
conversion of prekallikrein into kallikrein [10,11]. The contact activation responsible for
condensation on biomaterial surfaces is triggered by the conversion of Factor XII protein
into its activated form, FXIIa [12]. Fibrinogen reacts with thrombin in its conversion to
fibrin, which then polymerizes to form a fibrin mesh amenable to thrombosis [13,14]. The
osseointegration of implants depends largely on the interaction between blood and implant
surfaces leading to coagulation [15].

Researchers have developed a number of surface treatments to facilitate the osseoin-
tegration of Ti dental implants with living bone tissue [16,17]. Titanium dioxide (TiO2)
coatings are inexpensive, non-toxic, and highly biocompatible in terms of platelet adhesion
and behavior [18]. TiO2 has been reported to positively influence the wound healing pro-
cess through antibacterial [19] and cell growth stimulating properties [20]. Furthermore,
TiO2 nanoparticles in sol-gel materials have been shown to promote the coagulation of
body fluids [21]. The TiO2 film that naturally forms on the surface of pure Ti and its alloys
is crucial to the repair and replacement of hard tissue involved in anchoring prosthetic
joints and artificial bone [22,23].

When exposed to air, Ti forms a chemically stable TiO2 passivation film [24,25].
This naturally formed TiO2, usually with an amorphous structure, may be easily dam-
aged by progressive external wear and/or corrosion in body fluids [26]. It is known that
TiO2 has the most two common crystal structures, anatase and rutile phases [27,28]. These
two crystalline structures tend to be more biocompatible than the amorphous (non-crystalline)
structure [29]; however, the effect of specific crystal structure on blood coagulation has yet
to be fully elucidated.

Our objective in the current study was to investigate the blood coagulation properties
(clotting time, contact activation of FXII, fibrinogen adsorption, fibrin formation, and
platelet adhesion) of TiO2 thin films with various crystal structures, including anatase,
rutile, and mixture of the two. Analysis of surface roughness, wettability, surface energy,
and dielectric constant revealed that the existence of rutile phase in TiO2 film was associated
with a higher dielectric constant and the corresponding activation of FXII, the adsorption
of fibrinogen, the formation of fibrin networks, and platelet adhesion.

2. Materials and Methods
2.1. Fabrication of TiO2 Film Specimens

Physical vapour deposition (PVD) was used to prepare TiO2 thin films with various
crystalline phases on polished grade IV Ti specimens (diameter 16 mm; thickness 1 mm).
The modified surfaces are denoted according to the constituent phases, as follows: anatase
phase (group A), rutile phase (group R), and a mixture of A and R crystalline phases (group
AR). We also fabricated control group of polished but otherwise untreated Ti (group T) and
specimens of silica glass (group G).

2.2. Surface Characterizations

The surface topography of the test specimens was observed using an atomic force
microscope (AFM) with scan area of 50 µm × 50 µm. The thickness of the TiO2 films was
measured using an X-ray photoelectron spectrometer (XPS) with argon ions at etching
rate of 0.1 nm/s. The crystal phase structure on modified Ti surfaces was character-
ized using transmission electron microscopy (TEM). The sessile drop method was used
to analyze the wettability (hydrophilicity) and surface energy of the test specimens by
a contact angle goniometer. The contact angles of polar deionized water and non-polar
diiodomethane were measured, followed by calculating the corresponding surface energy
using the Owens–Wendt method.
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For the measurement of dielectric constant (ε) of TiO2 thin films on Ti surfaces,
a parallel plate method was used, and the details were described below. The surface
of TiO2 thin film was patterned with platinum dot over an area measuring 9 × 10−4 cm2

using a shadow mask. The highly conductive platinum layer formed a metal-insulator-
metal (MIM) capacitor with the nonconductive TiO2 film and conductive Ti substrate.
The capacitance-voltage (C-V) measurement was performed on a precision LCR meter
(HP4284A) with 25 mV ac sweeping signal at 1 MHz. Before C-V measurement, a calibra-
tion was done to remove the parasitic series resistance. Sequentially, the dielectric constant
of TiO2 thin film was calculated using the following formula: C = ε × A/d, where C refers
to the measured capacitance value, ε indicates the dielectric constant, A is the known area
of the platinum dot, and d is the TiO2 thin film thickness.

2.3. Clotting Kinetics of Whole Blood

The kinetic clotting time method [30] was used to characterize the formation of blood
clots on Ti specimens after whole blood came into contact with TiO2 film. Human whole
blood from healthy adults was allowed to coagulate on the surface of the test specimens for
various durations. Water (hypotonic solution) was then added to dissolve the red blood
cells (RBCs) that had not yet undergone clot formation. The number of RBCs that ruptured
due to hemolysis release hemoglobin was measured using the cyanomethemoglobin (Hi-
CN) method. The sequential addition of potassium ferricyanide and cyanide resulted
in the conversion of hemoglobin into cyanomethemoglobin, the absorbance of which
was measured at 540 nm. The size of the formed clots was inversely proportional to the
absorbance value.

2.4. Factor XII Activation

Purified FXII recombinant protein formulated at a physiological concentration of
30 µg/mL was placed on the surface of test specimens under 5% CO2 at 37 ◦C for 10 min to
promote activation. A suspension of FXIIa collected after contact activation was combined
with XII deficient plasma. FXII clotting time was then measured using an automated
blood coagulation analyzer. A standard curve was used as a reference in calculating the
concentration of FXIIa in the suspension. In a parallel test, FXIIa that did not attach to the
surface of the test specimens was rinsed off using water and then dried in order to quantify
FXIIa adsorption. We also conducted XPS analysis to identify the functional elements,
particularly nitrogen (N). By comparing the percentage of nitrogen on the surface of the
test specimens, it was possible to characterize the adsorption and adhesion of FXIIa on the
specimen surfaces.

2.5. Fibrinogen Adsorption

Purified fibrinogen prepared at a physiological concentration of 3 mg/mL with phos-
phate buffered saline (PBS) at pH 7.4 was loaded on the surface of test specimens at 37 ◦C
for 10 min. Fibrinogen that did not adsorb on the surface was washed off using water and
dried. The proportion of nitrogen was then measured using XPS to quantify the adsorption
of fibrinogen on the surface of the specimens.

2.6. Fibrin Attachment

Whole blood was added to a tube containing an anticoagulant of sodium citrate (3.2%).
The solution was thoroughly mixed and then subjected to centrifugation at 3000 rpm
for 10 min. The supernatant was collected as platelet poor plasma (PPP) for testing.
The test specimens were subsequently incubated with the PPP at 37 ◦C for 10 min to trig-
ger contact activation leading to the formation of reticular fibrin on the surface. Follow-
ing incubation, PBS was used to remove the residual plasma and unattached proteins on
the surface. Glutaraldehyde (2%) was continuously added to fix the specimens at 4 ◦C
for 1 h. The test specimens were then dehydrated sequentially using alcohol (20–100%;
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2 times/concentration; 5 min/time) prior to critical point drying. The attachment of fibrin on
the surface of the Ti specimens was observed using a scanning electron microscope (SEM).

2.7. Platelet Adhesion

Platelets for the platelet adhesion test were collected by isolating platelet-rich plasma
(PRP) from whole blood. This involved placing whole blood in a tube containing anticoag-
ulant sodium citrate (3.2%) to undergo centrifugation at 1500 rpm for 5 min. The top layer
(supernatant) contained PRP, whereas the bottom layer contained erythrocytes. Centrifuga-
tion was then repeated at 3000 rpm for 10 min, after which the platelets deposited on the
bottom were washed twice using Tyrode buffer. Buffered saline glucose citrate (BSGC) was
added to prepare platelet concentrates for testing.

Platelet adhesion was measured by immersing the test specimens in platelet solution
(5 × 107 platelets/µL) to undergo incubation under 5% CO2 at 37 ◦C for 10 min. PBS was
then used to remove platelets that did not attach to the surfaces. Triton X-100 (0.5%) was
applied to the surfaces and held at 4 ◦C for 1 h to dissolve the platelet cell membranes that
had adhered to the specimens. Note that after the complete dissolution of the membrane,
lactate dehydrogenase contained in the platelet cytoplasm is released. This made it possible
to quantify the number of platelets attached to the surface of Ti specimens simply by
measuring the concentration of lactate dehydrogenase at an absorption wavelength of
490 nm.

In a parallel test, the attached platelets were thoroughly washed using PBS before being
fixed in 2% glutaraldehyde at 4 ◦C for 1 h. The fixed specimens were then dehydrated using
alcohol in increasing concentrations (20~100%, twice at each concentration to 5 min). The
dried specimens then underwent surface plating with platinum to facilitate the counting of
platelets and observe the platelet morphologies using a SEM microscope.

2.8. Statistical Analysis

Each experiment was performed in triplicate. The number of sample size of each test
group every experiment was five. The experimental results are presented as mean ± standard
deviation (SD). One-way analysis of variance (ANOVA) was used as statistical analysis
method with the factor of crystal structure of surface film. A p value ≤ 0.05 was statistically
significant. Tukey’s test was used for pairwise comparisons. Note, however, that the G
group was used as reference and not included in the statistical analysis.

3. Results and Discussion
3.1. Surface Characterization
3.1.1. Surface Topography

Figure 1 illustrates the surface roughness of the various specimens as measured
using AFM as well as the visual appearance of the test Ti specimens. No statistically
significant differences were observed between the T, R, A, and AR groups in terms of
average roughness (Ra~7.2–8.8 nm) (p > 0.05). A mirror-like appearance was observed
on all test Ti specimens (Figure 1f). The smoothness of specimens in control group G
(Ra~1.27 nm) greatly exceeded that of the treatment groups. Note that surface roughness
can be used to enhance adhesion between the implant surface and tissue [31]. One previous
study on cellulose dialysis membranes reported that rougher surfaces (Ra~50–100 nm) are
more amenable to platelet adhesion than are smooth surfaces (Ra~10 nm) [32]. By contrast,
Hasebe et al. reported that surface roughness (4.1~97 nm) do not have a significant effect on
platelet coverage on polycarbonate substrates [33]. The range of surface roughness values
of the test Ti specimens in the current study (approximately 7–8 nm) was similar to that
in [33]; however, we predicted that the difference in surface crystal structure (A, R, or AR)
would lead to different blood coagulation ability. Verifying this hypothesis would require
a more comprehensive assessment of surface characteristics.
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Figure 1. Surface topography of the test specimens, analysed via AFM: (a) T group (non-crystalline
polished Ti surface), (b) A group (TiO2 anatase phase), (c) R group (TiO2 rutile phase), (d) AR group
(mixed anatase/rutile phase), (e) G group (silica glass); (f) visual appearance of test Ti specimens. All
test Ti groups (T, A, AR, and R) showed similar and small surface roughness values (Ra—8 nm) and
mirror-like surfaces.

All test Ti groups (T, A, AR, and R) showed very close and small surface roughness
values (Figure 1a–d) and mirror-like surfaces (Figure 1f). Therefore, the density of peaks was
not calculated. We speculated that the density of peaks may play a role in the adsorption of
nanoscale proteins on the test Ti specimens, which is beyond the purpose of this study.
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3.1.2. TiO2 Film Thickness

The thickness of TiO2 film on the surface of test Ti specimens was estimated using
XPS depth profile analysis (Figure 2) at an etching rate of 0.1 nm/s. The thickness of the
oxide layer on Ti specimens after surface deposition was roughly 45 nm, which represents
a 3-fold increase over the unmodified specimens.
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Figure 2. XPS depth profile analysis, in terms of Ti and O elements, of TiO2 thickness on different Ti
specimens. The thickness of the oxide layer on surface-modified Ti specimens was roughly 45 nm,
approximately 3 times than that of unmodified polished Ti specimens.

The amorphous TiO2 film that forms naturally on Ti surfaces has been shown to
promote the anchoring of implants within bone [34]; however, it is usually too thin to
provide a strong interface and insufficiently stable in the presence of body fluids [28,35].
We expected that the surface deposition fixation methods in the current study would
ameliorate these issues.

3.1.3. TiO2 Crystal Phase Structure

Figure 3 presents the crystal structure of the TiO2 films on test specimens in terms of
selected area diffraction patterns (SADPs) using TEM. These results confirmed the thick-
ness of the oxide layer (roughly 45 nm) in the form of anatase phase, rutile phase, and
a mixture of two phases. The rutile phase generally presents a tetragonal structure contain-
ing six atoms per unit cell. Anatase generally presents a tetragonal structure, involving the
connection of octahedra via corner sharing [26,36]. Researchers have previously reported
that the crystal phase of TiO2 can have a profound influence on blood plasma coagula-
tion and platelet adhesion [26]. Huang et al. reported that large-diameter TiO2 anatase
phase nanotubes are more active than smaller rutile phase nanotubes in promoting fibrin
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network formation and platelet adhesion [37]. Lv et al. reported that anatase films are
more conducive to fibronectin adsorption than are rutile films, due to the presence of
a larger number of Ti-OH groups [38]. Overall, it appears that the crystal phase of the
implant surface can have a profound effect on the process of blood coagulation; however,
the abovementioned information is insufficient to fully explain the observed phenomena in
this study. We therefore assessed the influences of surface energy and dielectric constant of
different TiO2 crystal phase on blood coagulation, which have not previously been reported
in this context.
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TEM. The thickness of the oxide layer in the form of anatase phase, rutile phase, and a mixture of
two phases was roughly 45 nm.

3.1.4. Surface Energy and Dielectric Constant

The surface energy values were as follows: A group (756 mN/m), R group (760 mN/m),
AR group (761 mN/m), and T group (753 mN/m) (see Table 1). All of the test Ti specimens
presented hydrophilic surfaces, as evidence by water contact angles of 44–54◦ [39]. One
previous study reported a significant correlation between the hydrophilicity of Ti surfaces
and thrombin content [40]. Note, however, that elevated hydrophilicity can have a negative
effect on fibrinogen adsorption, platelet adhesion, and platelet activation [41], due to the
energy barrier created by surface-adsorbed liquid [15].

Table 1. Analysis results of wettability and dielectric constant on different test specimens.

Contact Angle (θ)
Surface Energy (m/Nm)

Dielectric Constant

di-H2O Glycerol (ε)(ε)(ε)

T 44.59 ± 1.77 54.62 ± 4.91 752.68 81.9

A 44.01 ± 0.46 52.55 ± 2.80 756.43 24.9

AR 47.44 ± 0.88 68.28 ± 1.76 760.86 39.6

R 53.95 ± 2.26 66.50 ± 1.78 759.69 143.7

G 32.15 ± 1.41 50.19 ± 2.46 750.03 3.8 *

* Reference from https://www.clippercontrols.com/pages/DielectricConstant-Values.html#G
(accessed on 16 August 2022)

In the current study, surface deposition (and the corresponding crystal phase forma-
tion) was shown not to have a significant effect on surface energy; however, we observed
remarkable variability in the dielectric constant ε between the test Ti specimens, as follows:

https://www.clippercontrols.com/pages/DielectricConstant-Values.html#G
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A group (25), R group (144), AR group (40), and T group (82). Our findings are in good
agreement with those dielectric constants reported in previous papers: anatase phase
(30~40) and rutile phase (100~170) [42–44]. One previous study reported that the high
dielectric constant of crystalline TiO2 films increases the van der Waals force to beyond that
other TiO2 oxides (e.g., TiO and Ti2O3) [45]. Researchers have previously reported that the
van der Waals force plays a major role in protein adsorption [46].

It has been reported that the band gap of anatase is around 3.2 eV and that of rutile
around 3.0 eV [47]. Researchers have previously reported that a smaller band gap does not
provide the strongly negative surface charge required for platelet adhesion or interactions
with positively charged items, such as plasma blood proteins [48]. Note that there has
previously been almost no research on the influence of dielectric constant on the process of
blood coagulation.

3.2. Clotting Kinetics of Whole Blood

The clotting kinetics of whole blood has been evaluated by measuring the content of
free hemoglobin on the surfaces of specimens [15]. When the specimens are immersed in
DI water, the lysing of unclotted red blood cells leads to the release of hemoglobin. Thus,
the hemoglobin level in the solution is inversely proportional to the extent of blood clotting
on the surfaces of specimens [49]. As shown in Figure 4, coagulation was less extensive on
the treated Ti specimens than on the silica glass specimens (Figure 4a). Hemolysis values
at 10 min were higher on the test Ti specimens (~50–60%) than on silica glass specimens
(35%), while the R and AR groups did not show significant difference (p > 0.05) (Figure 4b).
General speaking, in the first 10 min, the test Ti specimens showed higher hemolysis values,
namely less coagulation ability, than the silica glass specimens; the untreated polished Ti
surface (T group) had the lowest hemolysis value among the test Ti surfaces (p < 0.05).
Note that one previous study reported a more pronounced clotting cascade on rutile phase
TiO2 than on other crystalline phases or amorphous samples [50]. In the following, we
therefore assessed the role of TiO2 phase in the activation of coagulation factor (FXII) and
the adsorption of blood proteins and platelets.

3.3. Factor XII (FXII) Activation

Figure 5 and Table 2, respectively, present the concentration of FXIIa in the supernatant
and the elemental composition (at.%) on test specimens after 10 min of contact activation as
an indication of FXIIa adsorption. The small amount of FXIIa in the supernatant indicated
high FXIIa adsorption on the specimen surface. Overall, FXIIa adsorption was most
pronounced on specimens in the R group, as indicated by the low concentration of FXIIa
in the supernatant (0.74 µg/mL) (Figure 5). Specimens in the R group also presented
the highest percentage (1.1 at.%) of surface N (Table 2), exceeding that in the A and AR
groups (0.6 at.% of N), and T group (0.8 at.%). The activation of FXII on implant surfaces is
considered a prerequisite to triggering blood coagulation [13,51]. Although the activation
of FXII is different on the surfaces with different hydrophilicity [52], this fact did not
appear to be used in the current study due to the similar surface energy (or hydrophilicity)
between all test Ti specimens (Table 1). R specimen with a high dielectric constant (143.7;
Table 1) was shown to have a strongly positive effect on the activation of coagulation FXII
on the specimen surface, i.e., a negative effect on the FXII concentration in the supernatant
(Figure 5). The higher dielectric constant of specimen in the R group was associated with
superior activation of FXII, and thus expected to result in the corresponding activation of
several proteins leading to thrombin formation [53]. This led us to posit that the adsorption
of these blood plasma proteins should be more pronounced on rutile specimens than
on anatase or mixed-phase specimens. In the following, we tested this hypothesis by
examining the interaction between these blood plasma proteins and the specimen surfaces.
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Cells 2022, 11, x FOR PEER REVIEW 10 of 18 
 

 

appear to be used in the current study due to the similar surface energy (or hydrophilicity) 
between all test Ti specimens (Table 1). R specimen with a high dielectric constant (143.7; 
Table 1) was shown to have a strongly positive effect on the activation of coagulation FXII 
on the specimen surface, i.e., a negative effect on the FXII concentration in the supernatant 
(Figure 5). The higher dielectric constant of specimen in the R group was associated with 
superior activation of FXII, and thus expected to result in the corresponding activation of 
several proteins leading to thrombin formation [53]. This led us to posit that the adsorp-
tion of these blood plasma proteins should be more pronounced on rutile specimens than 
on anatase or mixed-phase specimens. In the following, we tested this hypothesis by ex-
amining the interaction between these blood plasma proteins and the specimen surfaces. 

The dielectric constant of T surface (81.9) was higher than that of the A and AR sur-
faces (24.9 and 39.6, respectively). However, the concentration of FXII in the supernatant 
of T group was higher, i.e., the FXII adsorption on T surface was lower, than that of A and 
AR groups although no statistical significance was observed (p > 0.05) (Figure 5). It is 
worth noting that the naturally formed surface oxide film on the polished T group was 
non-crystalline with a thickness of about 15 nm; while the surface oxide films on both A 
and AR groups were crystalline with a thickness of about 45 nm. We speculated that T 
surface had a higher dielectric constant but a lower FXII adsorption than A and AR sur-
faces, which was related to the difference in surface film thickness and crystallinity be-
tween T and A (or AR). This still needs to be confirmed with further investigations. 

 
Figure 5. FXIIa concentrations in supernatant, calculated at 10 min from test specimens. The amount 
of FXIIa in supernatant of R group was the least (p < 0.05), indicating amount of FXIIa on surface of 
R specimen was the highest (groups with different lowercase letters are significantly different (p < 
0.05)). 

  

Figure 5. FXIIa concentrations in supernatant, calculated at 10 min from test specimens. The amount
of FXIIa in supernatant of R group was the least (p < 0.05), indicating amount of FXIIa on surface
of R specimen was the highest (groups with different lowercase letters are significantly different
(p < 0.05)).



Cells 2022, 11, 2623 10 of 16

Table 2. XPS analysis results, in terms of elemental composition, of FXIIa from coagulation on the
surfaces of test specimens.

Atomic Percentage (at.%)

Ti O C N

T 33.1 58.9 7.3 0.8
A 34.6 56.0 8.8 0.6

AR 35.0 55.4 9.1 0.6
R 33.7 52.6 12.6 1.1
G - - 86.4 13.6 *

* compared and evaluated with C at.% only.

The dielectric constant of T surface (81.9) was higher than that of the A and AR surfaces
(24.9 and 39.6, respectively). However, the concentration of FXII in the supernatant of T
group was higher, i.e., the FXII adsorption on T surface was lower, than that of A and
AR groups although no statistical significance was observed (p > 0.05) (Figure 5). It is
worth noting that the naturally formed surface oxide film on the polished T group was
non-crystalline with a thickness of about 15 nm; while the surface oxide films on both A and
AR groups were crystalline with a thickness of about 45 nm. We speculated that T surface
had a higher dielectric constant but a lower FXII adsorption than A and AR surfaces, which
was related to the difference in surface film thickness and crystallinity between T and A (or
AR). This still needs to be confirmed with further investigations.

3.4. Fibrinogen Adsorption

Table 3 lists the amount of fibrinogen adsorbed on the surface of test specimens,
in terms of functional elements analysed using XPS analysis. The percentage of N on
the specimen surfaces was as follows: T group (0.9 at.%), A group (1.5 at.%), AR group
(1.2 at.%), and R group (1.3 at.%). As one of the first blood plasma proteins to adsorb
on implant surfaces, fibrinogen plays an important role in the coagulation cascade. Once
interacting with biomaterial surface after the coagulation cascade activated by FXII, fib-
rinogen can induce fibrin polymerization leading to the formation of blood clots [12].
Note that despite a higher dielectric constant (Table 1), the fibrinogen adsorption on ru-
tile surfaces did not differ significantly from that on other crystal surfaces. In previous
studies, materials with a high dielectric constant tend to have a lower exciton binding
energy (the measure of Columbic attraction between the electron and hole wave function),
with a corresponding negative effect on recombination and positive effect on charge car-
rier extraction efficiency [54]. Thus, a higher dielectric constant (i.e., more electrons with
a negative charge) on rutile surfaces should be associated with a stronger attraction to blood
protein (with a positive charge). A higher dielectric constant also generates a stronger van
der Waals force, which contributes to protein adsorption. Overall, the analysis of fibrinogen
content alone is insufficient to confirm the effects of dielectric constant on the adsorption of
blood plasma proteins.

Table 3. Fibrinogen adsorption on different test specimens, measured by the presence of functional
elements (Ti, O, C, and N) using XPS.

Atomic Percentage (at.%)

Ti O C N

T 38.9 58.5 1.7 0.9
A 34.3 55.1 9.1 1.5

AR 36.7 56.5 5.6 1.2
R 34.4 52.9 11.4 1.3
G - - 78.4 21.6 *

* compared and evaluated with C% only.
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3.5. Fibrin Attachment

Fibrin plays key roles in preventing bleeding and angiogenesis and also functions as
a temporary extracellular matrix [55,56]. Low-magnification SEM micrographs revealed
a dense fibrin reticular network on the treated surface of A, AR, and R specimens, but
not on the untreated T and G specimens (Figure 6). In the presence of rutile phase TiO2,
the layering of fibrin filaments in the network became far denser. In the R group, a large
proportion of the rutile phase was almost completely fused with the reticulated fibrin
(Figure 6d). The positive effect of dielectric constant on protein adsorption was verified
explicitly through our analysis of fibrin attachment.
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These results correspond to our analysis of FXII activation. Essentially, a higher dielec-
tric constant (in the R group) was associated with superior coagulation factor activation
(Figure 5) and fibrin formation (Figure 6). In a previous study, FXII activation is also
correlated with procoagulant platelet levels in plasma [52]. Fibrin works with platelets to
produce the growth factors required for the recruitment and activation of fibroblasts, which
are essential for wound healing [57]. This prompted us to perform further analysis on the
adhesion of platelets to the various TiO2 phases.

3.6. Platelet Adhesion

Figure 7 presents the quantitative results of platelet attachment to test specimen
surfaces (platelet No./µL) after 10 min: R group (~3.0 × 107), A group (~5.8 × 106), AR
group (~1.5 × 107), T group (~5.6 × 106), and G group (~1.9 × 106). Figure 8 presents SEM
images illustrating the aggregation of platelets, the extension of pseudopodia, and platelet
attachment. Overall, platelet adhesion was more pronounced on treated Ti surfaces than
on untreated surfaces. The content of rutile phase was proportional to the aggregation of
platelets as well as the stretching and flattening of pseudopods. Note that these results
are consistent with the content of platelets mentioned above (Figure 7). Native platelets
perform multiple functions in the process of wound healing, including the binding of
fibrin, the formation of a platelet fibrin ‘plug’ capable of stabilizing bleeding [58,59], and
exerting strain on fibrin fibers to induce clot retraction within the clot network [60] and
thereby stabilize the clot [61–63]. Researchers have previously reported that fibrinogen
adsorption is proportional to the number of platelets attached to the surface [64,65]. In
the current study, the number of platelets was proportional to the density of the fibrin
network (Figures 6–8), despite an insignificant difference in fibrinogen absorption (Table 3).
In R group, the correlation between the high dielectric constant and high platelet count
is presumably due to the early activation of FXII and blood plasma proteins. Previous
study found that the degree to which the negative charge increases the binding of calcium
ions (Ca2+) to the surface varies as a function of surface electrical potential, sequentially
stimulating the platelet adhesion and promoting blood clotting [66]. Thus, it appears
that the enhanced blood coagulation in the R group can be attributed to negative charge.
An understanding of the effects of dielectric constant on blood clotting properties could
inform the further development of Ti medical implants that benefit wound healing.
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4. Conclusions

Our results revealed that the dielectric constant of TiO2 thin film on biomedical Ti
implant surface was the main factor affecting the process of blood coagulation adjacent
to implant. Specimens with predominantly rutile phase TiO2 thin film did not differ
significantly from those with anatase phase or mixed anatase/rutile phase TiO2 thin film in
terms of surface roughness, film thickness, and surface energy (hydrophilicity). However,
the rutile TiO2 thin film exhibited a higher dielectric constant, which was shown to promote
FXII activation, fibrin attachment, and platelet adhesion with a corresponding positive
effect on blood coagulation, all of which should promote wound healing after implantation.
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