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Abstract: In nematodes that invade the gastro-intestinal tract of the ruminant, the process of larval
exsheathment marks the transition from the free-living to the parasitic stages of these parasites. To
investigate the secretome associated with larval exsheathment, a closed in vitro system that effectively
reproduces the two basic components of an anaerobic rumen environment (CO2 and 39 ◦C) was
developed to trigger exsheathment in one of the most pathogenic and model gastrointestinal parasitic
nematodes, Haemonchus contortus (barber‘s pole worm). This study reports the use of multimodal
untargeted metabolomics and lipidomics methodologies to identify the metabolic signatures and
compounds secreted during in vitro larval exsheathment in the H. contortus infective third-stage larva
(iL3). A combination of statistical and chemoinformatic analyses using three analytical platforms
revealed a panel of metabolites detected post exsheathment and associated with amino acids, purines,
as well as select organic compounds. The major lipid classes identified by the non-targeted lipidomics
method applied were lysophosphatidylglycerols, diglycerides, fatty acyls, glycerophospholipids, and
a triglyceride. The identified metabolites may serve as metabolic signatures to improve tractabil-
ity of parasitic nematodes for characterizing small molecule host–parasite interactions related to
pathogenesis, vaccine and drug design, as well as the discovery of metabolic biomarkers.

Keywords: Haemonchus contortus; metabolomics; lipidomics; helminth; parasite; exsheathment

1. Introduction

Parasitic nematodes cause numerous diseases with major health consequences for
both humans and animals [1,2]. From an agricultural perspective, Haemonchus contortus
(barber’s pole worm), is one of the most economically important pathogenic nematodes
infecting small ruminants, such as sheep and goats, representing a global animal health
issue through the drastic losses in livestock [3]. These blood-feeding strongylid nematodes
are orally transmitted via contaminated pasture to the host where they penetrate the
fourth stomach (abomasum) mucosa, causing anemia and associated complications, often
leading to death [4]. Although many of the worm species can be managed using existing
prophylactic drugs (anthelmintics), the research in this space is important owing to the
remarkable natural tendency of roundworms to develop resistance induced by the excessive
use and consequent diminishing efficacy demonstrated for both old and new chemicals,
threatening the global livestock industry [5–7].

In the nematodes that invade the gastro-intestinal tract of the ruminant, ecdysis (εκδυo,
ekduo, “to take or strip off”), is a key developmental process involving the molting of the
cuticle (Figure 1). In H. contortus and the related nematodes, the post-embryonic stages of
the life cycle are marked by four sequential molts, where larval exsheathment does not take
place until the infective third-stage larva (L3) enters the rumen [8–11]. This sheath provides
protection from various external (or environmental) stressors, such as low temperatures
and desiccation. The L3s emerge from within their sheath (xL3) once they are exposed
to the drastic rumen conditions, namely an increase in temperature (39 ◦C), a strictly

Cells 2022, 11, 2525. https://doi.org/10.3390/cells11162525 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11162525
https://doi.org/10.3390/cells11162525
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-2101-2452
https://orcid.org/0000-0003-1364-3593
https://doi.org/10.3390/cells11162525
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11162525?type=check_update&version=1


Cells 2022, 11, 2525 2 of 16

anaerobic environment of predominantly carbon dioxide (CO2), and the influence of a
pH change [12–19]. The process of larval exsheathment is thus of great interest, because
it marks the sensitive phase of transition from the free-living to the parasitic stages of
these parasites.
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Figure 1. Developmental life cycle of the parasitic nematode Haemonchus contortus.

Metabolomics is an increasingly recognized research area to semi-quantitatively mea-
sure the small molecular metabolites in biological samples, using high-throughput ap-
proaches [20,21]. Lipidomics involves the profiling of the lipids within biological samples
that are essential for the synthesis of steroid hormones, the molecules involved in the trans-
mission of membrane signals, and for the transport of vitamins [22,23]. While significant
ground has been gained in various ‘omics’ fields to facilitate our molecular-level under-
standing using the free-living model nematode Caenorhabditis elegans [24–28], much less has
been achieved for the parasitic nematodes of veterinary significance [29,30]. Moreover, al-
though H. contortus is currently regarded as a near-model organism, with notable landmark
metabolomics studies investigating its various life-cycle stages [31–33], further molecular
investigations into the key developmental process of larval exsheathment are warranted.

In this study, we present a closed in vitro parasite culture system that effectively
mimics the rumen conditions to stimulate exsheathment without chemical interventions
that is suitable for all of the currently available molecular and functional experimentation
applications (such as genomics, transcriptomics, proteomics, glycomics, lipidomics, and
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metabolomics), as well as microbiome investigations. Our application of non-targeted
multimodal metabolome and lipidome approaches to identify secreted compounds with
varying chemical properties (e.g., polarity, hydrophobicity, etc.), is the first step in the
multiomic investigation of the distinct secondary metabolites, pheromones, hormones,
signaling pathways, and post-transcriptional/post-translational regulations associated
with the larval exsheathment in H. contortus.

2. Materials and Methods
2.1. Production and Procurement of H. contortus

All of the experimental procedures used in generating the parasite material for this
study were approved by the AgResearch’s Grasslands Animal Ethics Committee under
the Animal Welfare Act 1999 in New Zealand (AEC application number 13928). The pure
cultures of H. contortus third-stage larvae (L3) were maintained by the regular passage
through five otherwise parasite-free lambs housed indoors at the AgResearch’s Grasslands
campus. The L3 were cultured in fresh fecal material containing eggs collected into fecal
bags on infected sheep. The feces were pooled and mixed with vermiculite, then placed in
trays, moistened with tap water (at 20 ◦C), covered and cultured for 10 days at 22–24 ◦C. A
modified Baermann technique [34] was used to clean and separate the larvae from the feces.
Briefly, approximately 150 g of feces was enclosed in paper facial tissues and suspended
over a large conical measuring flask filled with unchlorinated water. The samples were
incubated for 20 h and the larvae washed by their movement through the apparatus. The
feces were then removed and the liquid carefully siphoned to a remaining volume of about
20 mL. The resulting L3s and the volume were examined in a counting chamber (Whitlock
S.F.E.L.O., Australia; volume 2 mL) at ×100 magnification and stored in tap water at 10 ◦C
until required. A single batch of larvae were used for all of the experiments to account for
any batch-related confounding factors with larval viability, and the motility was checked
microscopically prior to any further experimentation.

The specificity of the genomic DNA was verified by automated Sanger sequencing
of the second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA, following
PCR amplification from genomic DNA [35]. A 100% similarity identity was achieved corre-
sponding to the H. contortus NZ_Hco_NP (genome version 1.0, BioProject accession number
PRJNA517503), the representative chromosome-level genome of the anthelmintic-susceptible
H. contortus field strain, isolated from pasture-grazed New Zealand sheep [36–38].

2.2. In Vitro Larval Exsheathment Culture Assay

Prior to in vitro testing, the pooled L3 cultures were cleaned using autoclaved phosphate-
buffered saline (1× PBS) solution (137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, and
2 mM KH2PO4, pH 7.4) and acclimated overnight to room temperature by gravity migra-
tion filtration through nylon mesh (pore size 20 µm). The larval viability and motility
were checked microscopically and quantified using a Petroff–Hausser chamber (Hausser
Scientific, Horsham, PA, USA), according to the manufacturer’s instructions.

In this study, we report a ‘closed’ and high-throughput system designed to simulate
the physiological conditions of the rumen (39 ◦C and high CO2 concentration) for the
purposes of culturing rumen microorganisms [39–43]. This closed system was modified
from previously described work [9,10,19], to be used for in vitro larval exsheathment assays
that are suitable for future parasite–host–microbiome interactions and multiomic studies
(Figure 2). Briefly, the anaerobic 1× PBS solution was mixed in boiling dH2O and cooled to
room temperature under a continuous flow of O2-free CO2. Once cooled, the PBS solution
was transferred to 100 mL serum bottles in 70 mL aliquots and flushed with CO2 for 1 h.
The bottles were sealed with butyl rubber bungs and aluminum crimp caps before being
autoclaved at 121 ◦C for 20 min.
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Figure 2. Overview of the experimental procedure and multimodal metabolomics workflow.
Schematic diagram of the closed in vitro system that effectively reproduces the two basic com-
ponents of an anaerobic rumen environment (CO2 and 39 ◦C) was used to trigger exsheathment
(xL3) in H. contortus third-stage infective larvae (iL3) in O2-free CO2 saturated saline solution (left).
Multi-modal metabolomics workflow and statistical analyses used to process data integrated from
multiple analytical approaches through to pathway mapping (right).

The larval cultures (n = 5 biological replicates) were transferred anaerobically (approx-
imately 200,000 L3/sample), using an O2-free CO2-flushed 3 mL syringe and a wide-bore
hypodermic needle (16 G thickness and length of 1–1/2 inch, BD), into aluminum-wrapped
and pre-warmed serum bottles containing 70 mL of autoclaved PBS, and incubated anaer-
obically at 39 ◦C with gentle horizontal shaking at 75 rpm for up to 24 h in darkness.
As control treatments, distilled water (dH2O) was used instead of 1× PBS (n = 5), and
also in the absence of rumen anaerobic conditions. The exsheathment of the L3 larvae
(xL3) was determined by either complete or partial loss of the sheath and was measured
by sub-sampling each replicate beginning at t = 0 min, then at 5 min intervals up to 2 h,
with another seven time points (t = 2.5, 3, 4, 5, 6, 12, and 24 h) after incubation at 39 ◦C
and CO2 anaerobic conditions. At each time point, the contents were thoroughly mixed
before 1 mL was transferred using an O2-free CO2-flushed 1 mL syringe and wide-bore
hypodermic needle to a 24-well plate and exsheathment enumerated. The numbers of xL3s
in each subsample was quantified via 200-fold dilution of sample to another 24-well plate
containing dH2O to yield approximately 200 larvae per replicate. The larvae were killed by
the addition of one drop of 3% helminthological iodine solution (Lugol’s solution) and the
exsheathment enumerated.

The Student’s t-test was applied to investigate the larval exsheathment, resulting
in a significant difference between PBS and the dH2O (p < 0.05) negative control sam-
ples. The samples were collected from the t = 6 h time point, snap-frozen in liquid ni-
trogen, transferred to glass vials, and stored at −80 ◦C until further use for subsequent
metabolomics analysis.

2.3. Electron Microscopy of H. contortus Larval Exsheathment

The scanning electron microscopy (SEM) imaging was performed (Figure 2), using
methodology as previously described [36]. Briefly, the cryopreserved worms were gently
spun, washed three times in PBS, and fixed in SEM primary fixative (3% glutaraldehyde,
2% formaldehyde in 0.1 M Phosphate Buffer pH 7.2) for 2 days at room temperature. The
samples were dehydrated in a graded ethanol series, that is, 25%, 50%, 75%, and 95%
for 10–15 min each and two times in 100% ethanol for 1 h, then Critical Point (CP)-dried
using liquid CO2 and mounted onto an aluminum specimen support stub using double-
sided adhesive tape. The samples were sputter-coated with gold (200 sec) and observed
using a FEI Quanta 200 Environmental SEM microscope, with an energy dispersive X-ray
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spectroscopy (EDAX) module. The electron microscopy was conducted with the assistance
of the Manawatū Microscopy and Imaging Centre at Massey University (Palmerston North,
New Zealand).

2.4. Metabolomics Analysis
2.4.1. Metabolomics Conditions and Analytical Procedures

A combination of multiple metabolomics platforms, or ‘multi-modal’ strategy, was
applied in parallel to the same batch of biological samples to facilitate interpretation
and provide extensive coverage of the parasite metabolome (Figure 2). To elucidate the
metabolites associated with the larval exsheathment we applied: hydrophilic interaction
liquid chromatography (HILIC) to separate the polar compounds; ultra-high-performance
liquid chromatography (UHPLC) with C18 chromatography to separate the semi-polar
compounds; and CSH C18 chromatography to separate the lipids [44,45]. From here on,
HILIC, C18, and LIPID terms are used to refer to the above-mentioned metabolomics
approaches. The LC–MS studies were conducted in both positive and negative electrospray
ionization (ESI) modes.

To evaluate the enriched lipids and metabolites secreted by H. contortus xL3, seven
aliquots of 1 mL each (five for the analyses and two for quality control) of each sample were
transferred into the microcentrifuge tubes. The two QC samples were pooled and solely
used for monitoring sample degradation, tracking run-order effects within a batch, and
quality control purposes. Briefly, the samples were thawed overnight at 4 ◦C, centrifuged
(4 ◦C, 11,000× g) for 10 min, and 200 µL of supernatant transferred into a 2 mL micro-
centrifuge tube. An extraction solvent comprising 800 µL of chloroform: methanol (1:1;
v/v) was added and the samples were vortexed (1 min). The sample was diluted with
water (400 µL), again vortexed (1 min), and centrifuged (4 ◦C, 11,000× g) for 15 min.

For the lipid compounds, the lower organic layer (200 µL) was taken separately,
evaporated to dryness under a continuous stream of nitrogen (30 ◦C), and the dried
extract was reconstituted in 200 µL of chloroform: methanol (2:1; v/v), with 16:0 d31–18:1
phosphatidylethanolamine (10 µg/mL) as an internal standard. Finally, samples were
vortexed (1 min), and 100 µL was transferred to a glass insert in an auto-sampler vial for the
LC–MS analysis. For the polar and semi-polar compounds HILIC and C18 chromatography
were applied, respectively (46–49). For these analyses, supernatants (200 µL) were mixed
with 800 µL of pre-chilled chloroform: methanol (1:1, v/v) containing 1.6 mg/L of internal
standards; d5-L-tryptophan, d4-citric acid, d10-leucine, d2-tyrosine, d35-stearic acid, d5-
benzoic acid, 13C2-glucose, and d7-alanine. The upper aqueous layers (200 µL) were taken
and evaporated as above, then reconstituted in 200 µL of the extraction solvents comprised
of acetonitrile: water, containing 0.1% formic acid (1:1 for HILIC and 1:9 for C18, v/v).

2.4.2. Chromatography and Mass Spectrometry Spectral Acquisition

The chromatographic gradient and the other conditions were selected to detect metabo-
lites over a wide polarity range for the non-targeted LC–MS and lipid analyses, as previ-
ously described [44,46]. For the semi-polar compounds, the C18 conditions were set as
described; the extract (2 µL) was injected into a 100 mm × 2.1 mm Thermo Hypersil Gold
C18 column with 1.9 µm particle size and eluted over a 16 min gradient with a flow rate of
400 µL/min. The mobile phase was a mixture of water with 0.1% formic acid (solvent A),
and acetonitrile with 0.1% formic acid (solvent B). For the polar compounds, the extract
(2 µL) was injected into a 100 mm × 2.1 mm ZIC-pHILIC column with 5 µm particle
size and eluted over 17 min with a solvent gradient from 97% solvent A (1 min), 97–70%
solvent A (1–12 min), 70–10% solvent A (12–14.5 min), to 10% solvent A (14.5–17 min). The
mobile phase solvent A was a mixture of acetonitrile with 0.1% formic acid, solvent B was a
mixture of water with 16 mM ammonium formate, and the flowrate was 250 µL/min. The
chromatographic gradient and other LC–MS conditions were previously described [45,46].

The C18 and HILIC column effluents were connected to a high-resolution mass spec-
trometer, Exactive Orbitrap™ (ThermoFisher Scientific, Waltham, MA, USA) with elec-
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trospray ionization technology, and the lipid analysis was conducted on a Q-Exactive
mass spectrometer (ThermoFisher Scientific, Waltham, MA, USA). Both of the full and
data-dependent MS2 (ddMS2) scans were collected in profile data acquisition mode. For
the full scan mode, a mass resolution setting of 35,000 was set to record a mass range of
m/z 200–2000 with a maximum trap fill time of 250 ms. In ddMS2, the MS2 measurements
were activated when a set peak intensity threshold was achieved. For the ddMS2 scan
mode, the same mass resolution setting was maintained, with a maximum trap fill time of
120 ms. The isolation window of the selected MS1 scans was ± 1.5 m/z with a normalized
collision energy of 30. The samples were run separately in both positive and negative
ionization modes. The positive ion mode parameters were as follows: spray voltage, 4.0 kV;
capillary temperature, 275 ◦C; capillary voltage, 90 V; tube lens 120 V. The negative ion
mode parameters were as follows: spray voltage, −2.5 kV; capillary temperature, 275 ◦C;
capillary voltage, −90 V; tube lens, -100 V. The nitrogen source gas desolvation settings
were the same for all of the modes (arbitrary units): sheath gas, 40; auxiliary gas, 10; sweep
gas, 5. The Xcalibur software package provided by the manufacturer was used to create
these settings.

The QC comprised a pooled aliquot of the extract of all of the samples. The pooled
samples with internal standards were used as the controls and the samples were random-
ized prior to injection to allow for the investigation of any systematic variations. Blank
subtraction was applied after the internal standard correction. To verify and maintain the
data quality, the QC sample was injected once every 10 samples. The retention time, signal
intensity, and mass error of the internal standard were constantly monitored during the
runs. The fragmentation data on approximately four samples in total per ionization mode
(positive and negative) were used for the identification of metabolite ions/classes. The
amino acid standards (Sigma-Aldrich, St. Louis, MO, USA, A9906) were spiked with the
samples within the same analytical run in both C18 and HILIC.

2.4.3. Data Processing, Peak Detection and Statistical Analysis

The MS raw data files (Thermo.raw files) were converted to mzXML files using the
MSConvert function of ProteoWizard™ [47]. Peak detection, retention time alignment,
grouping, and gap filling [48] were implemented, based on tools from the xcms R pack-
age [49]. Briefly, the chromatographic peak detection was based on the ‘centWave’ method
with parameters of ppm = 15, peakwidth = c(3:15), mzdiff = 0.02, and snthresh = 10. The
retention time alignment was based on the ‘orbitrap’ method with the default parameters.
The peaks were grouped using ‘group.density’ with bw = two and mzwid = 0.02. The
missing peaks were filled by the “chrom” method, which integrates signals in the same
region where the peaks were detected from the other samples. The peak tables were then
exported for statistical evaluation, where the weak peaks (with mean intensity <1000)
were removed and the 13C isotopic peaks were filtered out [50]. The broad peaks were
investigated and removed with in-house scripts. The same procedures of peak detection
and analysis were employed for all of HILIC, C18 and LIPID after the peak shape of some
of the known metabolites were monitored.

2.4.4. Metabolite Annotation and Identification

The massive peak features can be collected from LCMS-based metabolomics. The
metabolite annotation, based on the peaks features, was a challenging task. Typical practices
involve identifying the significant peak features and focusing on the top-ranked peaks
with the biological relevance under study. Further independent evidence is often required
to elucidate the structures of those unknowns. Here, we are interested in what could be
annotated in the exsheathment secretome. We carried out MSI (Metabolomics Standards
Initiative) level 2 annotation, supported by orthogonal evidence from both the accurate
mass and retention time. The accurate mass must be with 5 ppm accuracy when searching
for candidates from the databases, which include HMDB, LIPID MAPS, and WormBase. The
presence of the adduct ions depends on the experimental conditions, such as the solvents.
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We have included [M+H]+, [M+Na]+, [M+K]+, and [M+NH4]+ for the positive ions and
[M−H]−, [M+FA−H]−, and [M+Cl]− for the negative ions. The isotopic distribution of
the potential molecular formula was investigated to check the adduct identity. The match
of the retention time (RT) of the identified peaks was based on the external standards
and in-house RT library [51]. The QSRR (Quantitative Structure-Retention Relationship)
model [51] was also deployed here, to predict the RT of the candidates from HILIC. The
validity of this practice is supported by the RTs’ common 21 metabolites from the external
standards (this study), and in the recently published work [51] is shown to be linearly
correlated (R-squared = 0.994, p-value < 2.2 × 10−16). However, we have not established
QSRR models for the CSH chromatography. The RT information used for annotating the
lipids was based on our knowledge and published resources (https://www.waters.com/
webassets/cms/library/docs/720004107en.pdf, accessed on 20 April 2022) for the similar
chromatographic conditions. Furthermore, the fragmentation spectra (MS2) were collected
and analyzed [52] to support the lipid annotation.

The metabolic pathway coverage and enzymes (ECs) in a reference pathway were
annotated by manual investigation of the metabolomic datasets, using the KEGG (Kyoto
Encyclopedia of Genes and Genomes) metabolic pathways database. The MS data (in
mzML) and metadata reported in this study were submitted to the MetaboLights database
with the study identifier: MTBLS1717.

3. Results
3.1. In Vitro Culture Technique Effectively Induces Third-Stage Larval Exsheathment in
H. contortus

Our results showed that a high and reproducible level of larval exsheathment was
readily achieved in H. contortus (Figure 3). The efficacy of the larval exsheathment was
determined by measuring the percentage of larvae that exsheath at 39 ◦C and in an anaer-
obic environment (CO2), and then in the absence of rumen conditions on freshly culti-
vated H. contortus L3s. At 5 h post incubation, 100% exsheathment was achieved in the
H. contortus third-stage larvae (L3), with no exsheathment observed in the distilled water
negative control or in the absence of rumen conditions. Overall, an incubation period
of only 25 min was sufficient to trigger the exsheathment cascade, with a total of 75%
exsheathment achieved at the 70 min time point.

The SEM imaging was able to capture the physiological changes and provide a de-
tailed insight into the anatomy of the H. contortus third-stage larvae that occurs during
exsheathment, a crucial step determining infection as the larvae transition from infective
to parasitic developmental stages. The first indication of ecdysis and initiation of cuticle
digestion occurred after only 2 min incubation, and was characterized by an indentation
at the anterior termination of the lateral alae (Figure 4). The cuticle region both anterior
and posterior to this point swelled, and then depressed to form the refractile ring region.
Along the circumference of the refractile ring region, the indentation gradually deepened
until holes began to appear in the cuticle, and the release of the exsheathment fluid could
first be observed at the 4 min time point. The cuticle hole increased in size to form a
continuous separation along the annulus (t = 7 min), and at the 9 min time point the first
examples of the cuticular cap being forced off by the head of the L3 was observed. As the
L3 escaped through the opening, the posterior portion of the cuticle generally separated
along the lateral alae, leaving the cap attached to the remainder of the cuticle. Notably and
in agreement with early microscopic descriptions of the ecdysis process in other species of
parasitic nematodes, no pores or other openings were visible on the body of the exsheathed
xL3 in the region where the refractile ring had initially formed. In prospective, our results
call for further investigation of the application of our in vitro system to activate a succession
of events that begin with triggering exsheathment and the subsequent development to the
fourth stage in additional species of parasitic nematodes infecting a variety of hosts.

https://www.waters.com/webassets/cms/library/docs/720004107en.pdf
https://www.waters.com/webassets/cms/library/docs/720004107en.pdf
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Figure 3. H. contortus infective larvae during in vitro exsheathment. Time series analysis of the
exsheathment activity of H. contortus L3 using the anaerobic in vitro system. Mean of the total
exsheathment percentage (±SEM) at each time point across replicates (n = 5). Significant (p < 0.001)
exsheathment was obtained resulting in 75% and 100% of larvae exsheathing after 70 min and
5 h, respectively, post trigger exposure. No exsheathment activity was observed in the absence of
anaerobic treatment conditions. Exsheathment up to 6 h post trigger application shown.
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shown for seven time points post incubation (t = 0, 2, 4, 7, 9, 10 and 25 min). Each image depicts the
earliest observations of key morphological changes that occur during the exsheathment process and
is representative of the larval population for each biological sample. Scale bars differ and have been
adjusted according to magnification of each image.
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3.2. Identification of Exsheathment Associated Metabolites

We applied a ‘multi-modal’ strategy to elucidate the metabolites associated with larval
exsheathment by investigating the enriched lipids and metabolites that were secreted
in the dense populations of 100% exsheathed H. contortus xL3 (i.e., 6 h post incubation).
The normalized peak tables of metabolites are described in Table S1 (Supplementary
Materials). The peak names were denoted with (HP/HN, CP/CN, and LP/LN), where
‘H’, ‘C’, ‘L’ represents peaks derived from HILIC, C18, and LIPID platforms, respectively,
and ‘P’ and ‘N’ for positive (HP, CP, LP) and negative (HN, CN, LN) ionization mode
peaks, respectively.

To tease out the natural metabolites that constitute the exsheathment fluid secreted by
the larvae upon ecdysis (i.e., iL3 to xL3) of H. contortus, the fragmentation data were further
mined, with a total of 26 compounds identified (Table 1). Overall, the C18 and HILIC top
peaks were classed as amino acids (n = 10), purines (n = 2) and organic compounds (n = 2).
Among these were a panel of metabolites, including methionine, leucine, alanine, pheny-
lalanine, xanthine, and hypoxanthine, that were significant in two separate metabolomics
streams and associated with the amino acids and purine metabolism pathways. Of in-
terest, the lysine (C6H14N2O2) was annotated with both the positive and negative HILIC
ionization modes from our in-house database.

Table 1. Summary of Compounds Identified Across All Metabolomics Streams.

Metabolite
Class Molecular Species Platform Isotopic Peak

(m/z_rt) Ion Type Calc Mass Rt * (min) C. elegans KEGG Pathway ID

C18 and HILIC

Amino acids

Lysine
HP 147.1128_15.79 [M+H]+ 147.1128 15.8 Lysine biosynthesis (cel00300) and

degradation (cel00310)HN 145.0982_15.78 [M−H]− 145.0972 15.8

Glycine HP 76.0396_13.21 [M+H]+ 76.0398 13.2 cel00260-Glycine, serine, and
threonine metabolismThreonine HP 120.0654_12.76 [M+H]+ 120.0655 12.7

Methionine
HP 150.0583_10.57 [M+H]+ 150.0583 10.5 cel00270-Cysteine and methionine

metabolismCP 150.0595_1.10 [M+H]+ 150.0583 1.08

Alanine HP 90.0546_12.54 [M+H]+ 90.0549 12.5 cel00250-Alanine, aspartate and
glutamate metabolismGlutamic acid HN 146.0465_13.2 [M−H]− 146.0448 13.3

Isoleucine
HP 132.1030_10.12 [M+H]+ 132.1019 10.2

Valine, leucine, and isoleucine
degradation (cel00280) and

biosynthesis (cel00290)

CP 132.1022_1.87 [M+H]+ 132.1019 1.76

Leucine
HP 132.1025_9.84 [M+H]+ 132.1019 9.8

CP 132.1027_1.73 [M+H]+ 132.1019 1.75

Tryptophan HP 205.0969_10.45 [M+H]+ 205.0972 10.5 cel00380-Tryptophan metabolism

Phenylalanine HP 166.0877_9.80 [M+H]+ 166.0863 9.8 cel00360-Phenylalanine metabolism

Purines

Xanthine
HN 151.0258_8.62 [M−H]− 151.0251

8.3 *

cel00230-Purine metabolism

CP 153.0419_1.39 [M+H]+ 153.0407

Hypoxanthine

HP 137.0470_8.24 [M+H]+ 137.0458
7.9 *

HN 135.0309_8.24 [M−H]− 135.0301

CP 137.0473_1.2 [M+H]+ 137.0458 1.2

Organic
compounds

Piperidine HP 86.0963_9.84 [M+H]+ 86.097 10.3 ** cel00310-Lysine degradation

Carnitine
HP 162.1125_10.46 [M+H]+ 162.1125

10.6 ** cel01212-Fatty acid metabolism
CP 162.1131_0.67 [M+H]+ 162.1125
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Table 1. Cont.

Metabolite
Class Molecular Species Platform Isotopic Peak

(m/z_rt) Ion Type Calc Mass Rt * (min) C. elegans KEGG Pathway ID

LIPIDS

LPG
Palmitic acid (16:0) LN 255.2327_3.5 [M−H]− 255.2319

[52]

cel00061-Fatty acid biosynthesis
Stearic acid (18:0) LN 283.2641_4.18 [M−H]− 283.2632

DG

DG(32:0) LN 603.4765_7.85 [M+Cl]− 603.475

cel00561-Glycerolipid metabolism

DG(34:0) LN 631.5075_8.56 [M+Cl]− 631.5063

DG(36:0) LN 659.5388_9.23 [M+Cl]− 659.5376

DG(18:0/18:0) MS2 LP 642.6033_9.98 [M+NH4]+ 642.6031

DG(16:0/18:0) MS2 LP 614.5719_8.55 [M+NH4]+ 614.5718

GP
PKHdiA-PS LN 686.2696_6.46 [M+Cl]− 686.2703 cel00564-Glycerophospholipid

metabolismOHHdiA-PS LN 714.3014_7.23 [M+Cl]− 714.3016

FA

hydroxy-eicosenoic
acid LP 344.3161_2.28 [M+NH4]+ 344.3159 cel00590-Arachidonic acid

metabolism

2-oxo-docosanoic
acid LP 372.3473_2.88 [M+NH4]+ 372.3472 cel01040-Biosynthesis of

unsaturated fatty acids

TG * TG(16:0/18:0/18:0)
MS2 LP 880.8331_12.57 [M+NH4]+ 880.8328 cel00561-Glycerolipid metabolism

Metabolomics analysis was performed on samples (approximately 200,000 L3/sample with n = 5 biological
replicates) containing 100% exsheathed H. contortus xL3 at 6 h post incubation. Compounds were identified by
matching with a local library of authentic standards, public domain mass spectral databases, and analytical stream.
Abbreviations: Rt, retention time in minutes; LPG, lysophosphatidylglycerol; DG, diglyceride; FA, fatty acyls; GP,
glycerophospholipids; TG, triglycerides. All metabolite identifications are classed with Level 2 confidence for
lipids with 16:0, 18:0, etc., referring to fatty acids with their respective number of carbon atoms and double bonds.
rt *, standards as previously described [52]; rt **, QSRR prediction.

For the LIPID peaks, we also investigated the available MS2 spectra collected for a few
precursor m/z, using the previously described method [51,52]. Overall, five distinct lipid
classes were identified by the non-targeted lipidomics analysis, lysophosphatidylglycerols
(LPGs; n = 2), diglycerides (DGs; n = 5), glycerophospholipids (GPs; n = 2), fatty acyls (FAs;
n = 2), and the triglyceride TG(C16:0/C18:0/C18:0) were identified.

4. Discussion

The early work exploring the effects of the fundamental anaerobic (CO2) and tempera-
ture (39 ◦C) rumen conditions on the exsheathment of a variety of nematode species [10–14],
formed the conceptual basis for this work. The initial biological objective of this study was
to validate and determine the efficacy on larval exsheathment using our in vitro exsheath-
ment system that mimics the inoculation of the H. contortus L3 larvae into the rumen.
To date, in order to obtain xL3s for numerous gastro-intestinal nematode (GIN) parasite
species, the common laboratory practice is to use sodium hypochlorite as a desheathment
agent [53–55]. The developed ‘closed’ in vitro exsheathment system presented in this
work provides a straightforward, cost-effective, non-chemical, and efficient alternative
method for larval exsheathment. As such, our system maintains a constant and measurable
anaerobic environment that does not damage the larvae, enables subsampling without
altering the in vitro conditions, and can be tailored to accommodate future ‘omics-oriented
studies at high-throughput capacities [56]. Importantly, the natural conditions maintained
in this closed system, in contrast to the hypochlorite-stimulated exsheathment, allow for
more realistic data interpretation from the downstream ‘omics studies. This is of particular
importance to the microbiome and RNA sequencing investigations, in which exposure to
oxygen, as with traditional methods and especially with the use of sodium hypochlorite,
can affect the transcriptional response in both the worm and its microbiome [57–59].

The metabolomic and comparative genomic analyses have underlined the impor-
tance of the metabolic networks in the understanding of parasites’ pathogenesis and their
metabolic adjustments throughout the life cycle [60]. However, while the rapid devel-
opments of the ‘omics field have accelerated our knowledge of nematode biology at the
molecular level, much fewer advancements have been achieved for the parasitic nematodes
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of veterinary importance, and particularly regarding metabolomics. In this study, a set of
analytical techniques and methodologies was explored to carry out metabolomic profiling
to investigate the larval exsheathment in H. contortus.

The discovery of novel or the identification of pathophysiological biomarkers that
cause infective L3s to exsheath/molt and develop to become infective, provide much
needed opportunities for the development of novel drug or vaccine targets for the mit-
igation of haemonchosis. To investigate the biological mechanisms at play and identify
the potential nematode exsheathment bioactives, we applied a non-targeted multimodal
metabolomics and lipidomics approaches. To be noted is that the samples encompassed
metabolites that were secreted from the larval body in the Haemonchus milieu, but also
those potentially carried over from the nematode microbiota as secondary metabolites
at the six hours post exsheathment trigger application. The latter offers possibilities to
investigate the intimate parasite–microbiome interaction [61–63]. It is also possible that
the worms acquired the extracellular vesicles (EVs), serving for the delivery of numerous
information signals between the parasites and their environment through the enveloped
cargo consisting of proteins, glycans, lipids, metabolites, and nucleic acids [64]. Based on
our stringent statistical analysis we identified a suite of small molecule-level metabolic
changes related to the larval exsheathment in H. contortus (Table 1). In order to provide
a context for the compounds identified, we investigated their inferred KEGG metabolic
pathway annotations from our integrative analysis. For future work, a comprehensive
time-series investigation of the exsheathment metabolome would be a valuable resource to
differentiate the metabolites associated with the initiation of exsheathment.

In addition to confronting the physiochemical environmental conditions associated
with migration into the rumen, such as temperature, pO2, pCO2, pH, osmotic pressure, and
redox potential [65], the parasitic nematodes are able to extract most of their nutritional
requirements from the environment to meet the energy requirements of exsheathment [66].
The changes in the amino acids in larval exsheathment were also observed and include
methionine, leucine, alanine, and phenylalanine (Table 1). The complex and essential amino
acid methionine, which animals cannot synthesize, and the branched-chain amino acids
(BCAAs) leucine and isoleucine, were identified in both of the C18 and HILIC streams
with high confidence. These amino acids were included in significantly changed KEGG
pathways, such as aminoacyl-tRNA biosynthesis (cel00970), biosynthesis, and degradation
of BCAAs (cel00290), as well as the cysteine and methionine metabolism (cel00270) in
nematodes. The recent metabolomics studies have consistently revealed that BCAAs are
positively related to longevity common to dauers in worms [67,68], and proposed to be
intricately associated with the mitochondrial biogenesis during exsheathment. Alanine was
also identified as being upregulated in the alanine, aspartate, and glutamate metabolism
KEGG pathway (cel00260), that is, involved in the protein synthesis and the synthesis
of other vital amino acids (glycine, serine, threonine, etc.), phospholipid, and collagen
production, as well as in the release of energy, all of which have important roles in rapid cell
proliferation. Therefore, the increased levels of particular BCAA profiles, may serve as the
potential biomarker candidates of parasitism in the rumen, and possibly other tissue types.
The phenylalanine, upregulated within the KEGG pathway Phenylalanine metabolism
(cel00360) through tyrosine synthesis, serves for melanin production, which in C. elegans
cuticle has been designated a protective role [69]. Furthermore, our study validates methio-
nine as a rational candidate for the development of anti-parasitic drugs [70]. A recent study
compared the metabolomes and lipidomes of the excretory and secretory products (ESPs)
and the somatic extracts (SEs) of the infective L3 of GIN Nippostrongylus brasiliensis and
Trichuris muris, respectively [71]. Some of the top expressed polar metabolites observed
herein, such as adenine, xanthine, succinate, hypoxanthine, and methionine, were upregu-
lated in N. brasiliensis ESPs, or downregulated (alanine and phenylalanine), implying their
unrevealed importance in parasite–host crosstalk. After cataloguing the bioactive prop-
erties of these metabolites, it is striking that most of them mediate an anti-inflammatory
environment, except xanthine, which strengthens our opinion that these metabolites have
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a far more complex act in immune modulation than for now meets the eye. For future
work, the developed in vitro system should be used to determine the relative abundances
of these metabolites produced during H. contortus larval exsheathment under basic rumen
conditions, to explore their potential as a biomarkers of haemonchosis.

Regarding general energy metabolism, the quiescent H. contortus L3 seemingly de-
pend on stored lipid reserves to survive the adverse conditions in the pastures before
host infection [72,73], and are secreted in the not yet feeding H. contortus xL3 exposed to
lack of oxygen in the rumen. Further transcriptomic evidence is required to investigate
such hypotheses in the GIN nematodes and shed light on the possible role of alternative
metabolic pathways, particularly with regards to dauers and over-winter survival strategies.
In this study we applied the first-known untargeted lipidomic approach to describe the
secreted lipids of non-chemically induced exsheathment of intact H. contortus xL3 larvae,
an essential transition from aerobic free-living to anaerobic parasitic stages. A total of
12 lipid species across five classes were identified with high confidence that formed three
types of metabolite groupings. In accordance with a recent report on the global lipidome of
H. contortus [32], long chain (more than 12 carbons) saturated fatty acid levels are high in
the transition from the free-living phase. The lipid species represented by GlyceroPhos-
phoCholine lipids (PCs) associated with the glycerophospholipid metabolism, including
the phospholipid biosynthesis (cel00564) KEGG pathways as well as retinol or vitamin A
metabolism (cel00830). All of these are related to choline metabolism, but also sarcosine
can be generated by alternative pathways via creatine metabolism [74]. Interestingly, the
creatine that was clearly detected using both C18 and HILIC streams (Table 1), can be
phosphorylated and dephosphorylated by mitochondrial and cytosolic creatine kinase and
creatinase to protect against the inhibition of mitochondrial respiration. Multiple copies of
both of the creatine metabolism enzymes are present in the H. contortus NZ_Hco_NP (v1.0)
and may convey an obvious advantage to the ingested L3 as they are able to utilize the host
creatine as a source of nitrogen via sarcosine generation from creatine, and the breakdown
of sarcosine by sarcosine oxidase to glycine that was also detected. As such, the nematode
phosphagens and kinases may serve well for future development as anthelmintic targets
and as potential vaccine candidates, due to their strong antigenicity in mammals.

Our detection of the branched fatty acids, palmitic acid (C16:0) and stearic acid
(C18:0), are in agreement with the previous studies, particularly C. elegans [75,76], that
report the adaptation of nematodes to increased levels of saturated fatty acids at higher
temperatures, and in response to a change in their environmental temperature. In addition
to their roles in helminths’ energy flows, lipid metabolites have been recognized as the
key players in the regulation of innate immune responses for over 30 years, especially
lysophosphatidylglycerols (palmitic and stearic acids) and fatty acyls, such as arachidonic
acid (hydroxy-eicosenoic acid) and 2-oxo-docosanoic acid [77]. While some of them mediate
the pro-inflammatory cascade initiating PAMPs (pathogen-associated molecular patterns)
recognition via TRL4 (Toll-like receptor 4) [78] or serving as a precursor for prostaglandins
and leukotrienes [79], such as palmitic and arachidonic acid, respectively, the others (stearic,
α-linolenic acid) have immunosuppressive effects on T cells [80]. GINs’ strategy mediated
through the lipid metabolites and employed for the manipulation of the host immune
response towards successful propagation and parasitism, opens a wide perspective that
should be compounded by the contemporary use of multi-omics approaches.

The robust detection of such metabolites, using our in vitro system coupled with the
advent of sequencing technologies and availability of genomic data, warrants a compre-
hensive transcriptomic investigation to uncover the exsheathment molecular mechanisms.
The integration of the metabolic data, identified under basic rumen in vitro conditions with
the anthelmintic-susceptible New Zealand H. contortus NZ_Hco_NP field strain genome,
enables future research to explore the nexus of gene–environment interactions associated
with exsheathment to guide the development of precision intervention strategies (i.e., novel
drug and vaccine targets) against major parasitic nematodes. A key unanswered question
is whether our findings apply to other pathogenic nematodes of ruminants, with future
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efforts combining genomic and transcriptomic approaches needed to advance this issue.
The research in this space is important, owing to the diminished efficacy demonstrated for
both old and new anthelmintics in parasitic nematodes and their effect on livestock in NZ
and around the world.

5. Conclusions

In this study, we validated our ‘closed’ in vitro exsheathment system that provides
an effective alternative method for larval exsheathment suitable for many different future
‘omics-oriented applications. We established multivariate analysis models based on numer-
ous statistical models for the identification of the robust metabolic signatures associated
with larval exsheathment. In conclusion, this study reports the use of a comprehensive
multimodal metabolomics approach, and provides a valuable resource for future research
and data mining. The small sample size of our research could serve as a platform study for
future functional studies in a systems biology context, investigating larval exsheathment
and parasite development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11162525/s1, Lists of metabolite peaks identified for the
HILIC, C18, LIPID positive and negative ionization streams.
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