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Abstract: Mitochondria are not only the main energy supplier but are also the cell metabolic center 
regulating multiple key metaborates that play pivotal roles in epigenetics regulation. These metab-
olites include acetyl-CoA, α-ketoglutarate (α-KG), S-adenosyl methionine (SAM), NAD+, and O-
linked beta-N-acetylglucosamine (O-GlcNAc), which are the main substrates for DNA methylation 
and histone post-translation modifications, essential for gene transcriptional regulation and cell fate 
determination. Tumorigenesis is attributed to many factors, including gene mutations and tumor 
microenvironment. Mitochondria and epigenetics play essential roles in tumor initiation, evolution, 
metastasis, and recurrence. Targeting mitochondrial metabolism and epigenetics are promising 
therapeutic strategies for tumor treatment. In this review, we summarize the roles of mitochondria 
in key metabolites required for epigenetics modification and in cell fate regulation and discuss the 
current strategy in cancer therapies via targeting epigenetic modifiers and related enzymes in met-
abolic regulation. This review is an important contribution to the understanding of the current met-
abolic-epigenetic-tumorigenesis concept. 

Keywords: mitochondria; epigenetics; cancer; metabolism 
 

1. Introduction 
Mitochondria in eukaryotic cells likely evolved from bacteria by endosymbiosis [1,2], 

and they are composed of two separate and functionally distinct membranes (the outer 
membrane and the inner membrane), the intermembrane space, and matrix compart-
ments. Mitochondria also have a circular genome called mitochondrial DNA (mtDNA) 
[3]. The mitochondrial genome encompasses thousands of copies of the mtDNA and more 
than one thousand nuclear DNA (nDNA)-encoded genes [4]. Mitochondria form a dy-
namic and interconnected network that is intimately integrated with other cellular com-
partments such as nuclear, endoplasmic reticulum (ER), and plasma [5–7]. Mitochondria 
are not only the center for energy metabolism, but also the headquarters for different cat-
abolic and anabolic processes, calcium fluxes, and various signaling pathways [8–11]. 
During these processes, many intermediates are generated, which are critical for cell ana-
bolic metabolism and cellular signaling, as well as for providing substrates required for 
epigenetic modification [12]. Metabolites that are essential for epigenetic modification in-
clude acetyl coenzyme A (Acetyl-CoA), oxidized nicotinamide adenine dinucleotide 
(NAD+), α-ketoglutarate (α-KG), succinate, etc., and they perform diverse functions, in-
cluding contributing to gene transcription modulation and cell fate determination. 
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The concept of epigenetics can be traced back to 1942. Waddington described the di-
vergence between genotype and phenotype during development [13]. Now, epigenetics 
commonly refers to heritable alterations in gene expression without DNA sequence 
changing [14,15]. Epigenetic modification mainly includes DNA and histone modifica-
tions, which lead to nucleosome remodeling and gene transcription alternations. There 
are many types of epigenetic modifications, but all are tightly regulated by the specific 
enzymes and the corresponding substrates required [16]. The expression of enzymes is 
determined by the cell linage and state, while the substrates are highly dependent on the 
cell metabolism, which is tightly regulated by extracellular signaling and available nutri-
tion [17–19]. These epigenetic modifications are also strictly dependent on the cellular en-
ergy status [20]. Metabolites generated in the tricarboxylic acid cycle (TCA) in mitochon-
dria or related metabolism are crucial for epigenetics, which links the relation among mi-
tochondria, gene expression, and cell fate dictation. We briefly explored the function of 
several important metabolites in basic epigenetics such as DNA methylation and histone 
modification. The aberration of epigenetics exerts a significant impact on cellular function, 
thus leading to the dysregulation of gene expression and finally resulting in various dis-
eases, such as cancers [21]. 

Oncogene overactivation and tumor suppressor inactivation transform somatic cells 
into cancer cells [22–24]. This transformation can take place during tissue regeneration 
and can be accelerated under infections, toxins, or other metabolic influences that cause 
mutations [25,26]. After transformation, additional gene mutation, gene expression alter-
ation, and change in tumor microenvironment drive tumor evolution [27]. 

Historically, the notion of cancer stem cells (CSCs) is adopted from somatic stem 
cells, and it refers to a subpopulation of cancer cells with relatively slow cycling but that 
can regenerate the entire tumor after treatment. CSCs originate from either differentiated 
cells or tissue-resident stem cells [28]. CSC was first discovered as the leukemia-initiating 
cell in human acute myeloid leukemia in 1994 [29]. After that, CSCs were also found in 
tumors in the brain, breast, colon, liver, etc. [30–34]. These CSCs drive tumor initiation 
and tumor malignant growth and are often responsible for drug resistance and relapses. 
Unlike normal somatic stem cells, CSCs evolve with tumor evolution, which results from 
additional gene expression alternations and tumor microenvironment changes. CSCs can 
propagate tumors and promote tumor progression compared with the non-tumorigenic 
cells within the bulk tumor [35]. 

Metabolic and epigenetic reprogramming is essential for tumor initiation, evolution, 
and metastasis [36,37]. Epigenetics dictates the cell fate of both embryonic cells and so-
matic cells in differentiation and development [38], and different epigenetic regulations 
on gene expression also affect tumorigenesis [39,40]. A multitude of epigenetic mecha-
nisms, including DNA methylation and post-translational modification of histones, con-
tribute to diversity within tumors [41,42]. Epigenetic deregulation participates in the ear-
liest stages of tumor initiation and has been increasingly recognized as a hallmark of can-
cer [43,44]. The deregulation of various epigenetic pathways contributes to tumorigenesis, 
especially concerning the maintenance and survival of CSCs [35]. For example, DNA hy-
permethylation has been associated with the silencing of tumor suppressor genes as well 
as differentiation genes in various cancers [45]. 

Considering the critical role of mitochondria in cellular metabolism and the essential 
role of epigenetics in tumorigenesis, it is recognized that the interplay between mitochon-
dria metabolism and epigenetic enzymes plays a critical role in tumor initiation and evo-
lution [46–49]. The metabolites such as acetyl-CoA, α-KG, S-adenosyl methionine (SAM), 
NAD+, and O-linked beta-N-acetylglucosamine (O-GlcNAc) play crucial roles in cell fate 
determination by regulating epigenetic modifications and gene expression. 

Tumorigenesis affected by both genetic and non-genetic determinants constitutes a 
major source of therapeutic resistance. Targeting epigenetics as well as mitochondrial me-
tabolism has been demonstrated as a promising therapeutic strategy to inhibit tumor 
growth. Mitochondrial and epigenetic targeting cancer therapy reduces tumor 
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malignancy and often exhibits synergistic effects when combined with classical cytotoxic 
cancer therapy. 

2. Mitochondria Function in Epigenetic Regulation 
Mitochondria are the energy and metabolic center in the cell, which are essential for 

catabolic and anabolic metabolism. Mitochondrial function is tightly regulated by the ex-
pression of the mitochondrial genome as well as the surrounding microenvironment, both 
of which determine the cellular level of acetyl-CoA, α-KG, SAM, NAD+, and O-GlcNAc 
required for epigenetic modification [50,51]. Epigenetic modification is a genetic regula-
tion model that is independent of DNA sequence and plays an important role in estab-
lishing and maintaining specific gene expression. DNA methylation, histone post-transla-
tional modification, and chromatin remodeling are the major forms of epigenetic modifi-
cations [52,53]. Epigenetic alterations are the main mechanisms in development and tu-
morigenesis. Mitochondria, as the main energy supplier, play a pivotal role in the regula-
tion of epigenetics [54]. 

2.1. Mitochondria and DNA Methylation 
Methylation is the only known modification that occurs on DNA, RNA, and proteins 

[55]. 
DNA methylation is a major form of DNA modification in the mammalian genome, 

which mainly occurs at cytosine in a dinucleotide CpG [56–58]. DNA methyltransferases 
(DNMTs) are responsible for the establishment and maintenance of methylation patterns 
[59]. They transfer the methyl group donated from SAM to cytosine and generate 5-
methylcytosine (5mC) [60] (Figure 1). DNMT1 is responsible for maintaining the existing 
DNA methylation during DNA replication, and DNMT3A and DNMT3B are responsible 
for establishing de novo DNA methylation patterns [61]. The pattern of DNA methylation 
in the genome changes is a dynamic process regulated by both de novo DNA methylation 
and demethylation [62]. 

The demethylation of DNA requires the function of the ten-eleven translocation 
(TET) enzyme. TETs belong to the 2-oxoglutarate-dependent dioxygenases (2-OGDO) 
family and their activity requires coenzyme factors such as Fe2+ and α-KG [63,64]. They 
catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-
formylcytosine (5fC), and 5-carboxylcytosine (5caC) [65,66]. 5hmc resulted from the hy-
droxylation of methylcytosine and hydroxylation is involved in more than 90% reduction 
in cytosine methylation. 5hmC is not only an intermediate in the DNA demethylation 
process but also an independent epigenetic marker [67–70]. 

2.1.1. SAM Source and Mitochondrial Regulation of SAM 
SAM is a significant biological sulfonium compound that participates in a variety of 

biochemical processes. SAM is synthesized through the reaction of methionine with ATP 
catalyzed by methionine adenosyltransferase (MAT). This reaction mainly occurs in the 
cytosol through the one-carbon (1C) metabolism pathway that encompasses both the fo-
late and methionine cycles [71]. Since SAM is synthesized in the cytosol [72], it has to be 
transported into mitochondria by the mitochondrial SAM carrier, and it is converted into 
S-adenosylhomocysteine (SAH) in the methylation reaction of DNA, RNA, and proteins 
[73]. SAH is further hydrolyzed in a reversible reaction by SAH hydrolase (SAHH) to give 
rise to adenosine and homocysteine. SAH is a competitive inhibitor of the methylation 
process, therefore both the increase of SAH and the decrease of SAM or SAM/SAH ratio 
inhibit the transmethylation reactions [74,75]. 

SAM is utilized in the cell by three metabolic pathways: transmethylation, transsul-
furation, and polyamine synthesis [72]. It is the universal and sole methyl donor to 
DNMTs. The methyl group from SAM can be transferred to a variety of substrates, 
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including nucleic acids, proteins, phospholipids, biologic amines, and other small mole-
cules [74]. 

SAM levels are regulated by the level of methionine that is an essential amino acid in 
one-carbon metabolism, and methionine deficiency reduces liver SAM levels and H3K4 
trimethylation drastically [76]. 1C units can be generated from serine by cytosolic or mi-
tochondrial folate metabolism, and the loss of mitochondrial pathway renders cells de-
pendent on extracellular serine to make 1C units [77]. 

2.1.2. α-KG Source and Its Function in DNA Methylation 
α-KG is generated in cell cytoplasm via glycolysis and in mitochondria from iso-

citrate catalyzed by isocitrate dehydrogenase (IDH) [78]. It is a membrane-impermeable 
crucial metabolite in the TCA cycle, contributing to the oxidation of nutrients such as 
amino acids, glucose, and fatty acids and it then provides energy for cell processes [79]. 
The level of α-KG changes upon fasting, exercise, and aging [80,81]. 

α-KG possesses a variety of physiological functions, besides its function in the TCA 
cycle in ATP production, and it reacts with ammonia and is converted into glutamate and 
glutamine. It can be metabolized into succinate, carbon dioxide (CO2), and water, and it 
also eliminates H2O2 by this process, acting as an antioxidant [79,82]. 

α-KG is an important metabolic intermediate and cofactor for several chromatin-
modifying enzymes [83]. The family of α-KG-dependent dioxygenases includes Jumonji 
C-domain (JmjC) lysine demethylases, TET DNA cytosine-oxidizing enzymes, and prolyl 
hydroxylases (PHDs) [84]. In terms of DNA methylation, α-KG is an essential cofactor for 
αKG-dependent dioxygenases and the TET family of DNA demethylases [65,66,85]. α-KG 
is dramatically required and is increased for the activation of DNA methylation of the 
PRDM16 promoter during the early stage of adipogenesis [86]. In AML, decreased intra-
cellular α-KG levels cause DNA hypermethylation through altering TET activity [87]. 

The level of α-KG is regulated by other metabolites. Fumarate and succinate, the in-
termediates of the TCA cycle and substrates of fumarate hydratase (FH) and succinate 
dehydrogenase (SDH), are competitive inhibitors of α-KG-dependent dioxygenases [88–
90] (Figure 1). The accumulation of fumarate and succinate caused by mutation of en-
zymes inhibits α-KG-dependent enzymes, including TETs [91], thus leading to the global 
decreases in 5hmC and inactivation of FH and SDH and causing the loss of 5hmC 
[90,92,93]. Both fumarate and succinate accumulation are involved in glycolytic pathways 
by the inhibition of TET1 and TET3 [90]. FH-mediated TET inhibition promotes epithelial-
mesenchymal transitions (EMT)-related transcription factors and enhances cell migration 
[88]. Mutations in isocitrate dehydrogenase 1 (IDH1), another TCA enzyme, lead to the 
accumulation of 2-hydroxyglutarate (2-HG), and 2-HG acts as a competitive inhibitor of 
α-KG-dependent enzymes, including TETs [66,94]. IDH mutations not only generate 2-
HG but also result in hypermethylation of tumor suppressor genes [95]. Non-specific α-
KG analogue dimethyloxallyl glycine (DMOG) has been used as a TET inhibitor, which 
blocks multiple α-KG-dependent dioxygenases [64]. 

2.1.3. Mitochondrial ROS and DNA Methylation 
Reactive oxygen species (ROS) is regarded as the byproduct of oxygen consumption 

and cellular metabolism [96]. Mitochondria and NADPH oxidases (NOX) are two major 
contributors to endogenous ROS in tumor cells [97]. ROS plays an important role in phys-
iology and the pathophysiology of aerobic life [98]. Excessive or inappropriately localized 
ROS damages cell growth. Higher levels of ROS contribute to tumor development 
through both genetic and epigenetic mechanisms [99–101]. ROS also acts as signaling mol-
ecules in DNA damage, thus promoting genetic instability and tumorigenesis. ROS-in-
duced oxidative stress is closely related to both hypermethylation of tumor suppressor 
gene promoter regions and global hypomethylation. 

ROS can function as the catalyst of DNA methylation by facilitating the transfer of 
methyl group to cytosine such as the formation of large complexes containing 
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DNMT1/DNMT3B or increasing the expression of DNMTs, thus leading to hypermethyl-
ation of genes [102–104]. DNMT expression can be upregulated by superoxide anion, 
which is a form of ROS. The elevation of superoxide anion upregulates DNMT1 and 
DNMT3B and inhibits superoxide anion, thus leading to a decrease in DNMT upregula-
tion and DNA methylation. In colon cancer, H2O2 reduces the expression of RUNX1 by 
elevating methylation at its promoter [105]. H2O2 also induces the upregulation of DNMT1 
and HDAC1, thus leading to gene silence via histone deacetylation and promoter methyl-
ation [106,107]. In a brain function study, it was found that 5mC levels seemed to be in-
creased and the 5hmC levels decreased coupled with increased ROS in the adult cerebel-
lum, which suggested the promotion role of ROS in DNA methylation [108]. 

Epigenetic modifications within the mammalian nuclear genome include DNA meth-
ylation (5mC) and hydroxymethylation (5hmC) or DNA demethylation [65,109]. DNA hy-
droxymethylation can occur as a result of oxidative stress or the action of TET1 [65,109]. 
Oxidative stress has been suggested to activate TET via the increased production of α-KG 
and leads to an increase in 5hmC levels [110]. As the TET enzymes that convert 5mC to 
5hmC may respond to oxidative stress, oxidative stress leads to the demethylation of 
genes. The redox-linked alterations to TET function can be reflected by the addition of 
ascorbate (vitamin C) to cellular 5hmC levels. Vitamin C is an antioxidant that can scav-
enge the primary ROS, and vitamin C treatment leads to an increase in 5hmC levels; thus, 
demethylation was promoted [111–113]. 

Besides ROS, oxygen availability modulates both DNMT’s and TETs’ enzymatic ac-
tivity, and hypoxia induces hypermethylation by reducing TET activity [105,114,115]. 
DNA hypermethylation and hypoxia are well-recognized cancer hallmarks. TET belongs 
to the subfamily of 2OG oxygenases, which also act as an oxygen sensor [116]. Tumor 
hypoxia directly reduces TET activity, thus causing a 5hmC decrease predominantly at 
gene promoters and enhancers. Reduced TET activity leads to an accumulation of 5mC, 
thus decreasing the expression of associated genes. 5hmC is reduced under hypoxia in a 
dose-dependent manner, with decreasing concentrations of purified TET1 and TET2 [114]. 

2.1.4. Mitochondria Dysfunction and DNA Methylation 
Mitochondrial dysfunction invokes mitochondria to nucleus responses [117]. It re-

duces oxygen and SAM-CH3 production in the cell, and the unbalanced redox homeosta-
sis leads to perturbed methylation of nuclear DNA [118]. The mtDNA copy number is one 
of the signals by which mitochondria affect nDNA methylation patterns; changes in 
mtDNA copy number, often observed in cancer, induce changes in nDNA methylation 
[119]. Cells with depleted mitochondria (rho0 cell) result in the aberrant methylation of 
promoter CpG islands which were previously unmethylated in the parental cells, and the 
repletion of mitochondria back into rho0 cells reestablishes methylation partially to their 
original parental state, indicating the crucial role of mitochondria for DNA methylation 
[119,120].  

The presence of mtDNA methylation is controversial [121–123]. In 2011, Shock et al. 
reported that mammalian mitochondria have mtDNA cytosine methylation; mitochon-
drial DNA methyltransferase (mtDNMT1) binds to mtDNA in the mitochondrial matrix; 
mtDNMT1 is upregulated by nuclear respiratory factor 1 (NRF1), PGC1-α, and the loss of 
p53. The expression of mtDNMT1 asymmetrically affects the expression of transcripts of 
mtDNA, and thus affects the function of mitochondria [124,125]. However, this discovery 
was overturned in 2021 by Lacopo Bicci et al. [126], and they found that there is no CpG 
methylation in human mtDNA via whole genome bisulfite sequencing (WGBS) for stud-
ying the methylation of mtDNA. 
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Figure 1. Mitochondrial function in DNA methylation. 

The demethylase TETs’ activity requires coenzyme factors such as Fe2+ and α-KG. 
IDH mutation leads to the increase of succinate, fumarate, and 2-HG, and they inhibit TET 
activity. DNMTs transfer the methyl group from SAM to substrates. SAM is regulated by 
1C unit metabolism. ROS can function as the catalysts of DNA methylation by facilitating 
the transfer of methyl group to cytosine and by adding vitamin C; an antioxidant can 
scavenge the ROS and leads to the increase in 5hmC. The oxidative stress also activates 
TET via increasing α-KG and finally leads to an increase in 5hmC. 

2.2. Mitochondria and RNA Methylation 
Over 100 different types of RNA modification have been identified. RNA methyla-

tion, especially the N6-methyladenine (m6A) modification, is the most abundant RNA 
modification confirmed in viruses, yeast, and mammals [127,128]. m6A modification was 
established by pioneering studies in 1974 [129,130]. Around 15,000 human genes have 
m6A modification, which is a widespread regulatory mechanism that controls gene ex-
pression by affecting the splicing, stability, and translation efficiency of the modified 
mRNA molecules in diverse physiological processes [128,131–133]. m6A RNA modifica-
tion affects cell division, immune homeostasis, and biological rhythm. The dysregulation 
of m6A modification has been suggested to drive human cancers [134]. 

2.2.1. The Effect of Mitochondria-Associated Metabolites on RNA Methylation 
RNA methyltransferases, also named RNA methylation writers such as METTL3-

METTL14, move the methyl group from SAM to mRNA, and the demethylases FTO and 
ALKBH5 remove the RNA methylation [135]. RNA methylation is decoded by proteins 
such as YTHDF1 and YTHDF2 [131]. FTO and ALKBH5 belong to the α-KG-dependent 
dioxygenase family [136]. The α-ketoglutarate dehydrogenase (OGDH) is the first rate-
limiting enzyme in the TCA cycle, and ALKBH5 promotes viral replication metabolically 
by upregulating OGDH [137]. Furthermore, the enzymatic activity of FTO is inhibited in 
IDH mutation AML cells, thus leading to an increase in m6A levels [138,139]. 

In addition, several mitochondrial proteins also regulate RNA methylation. For ex-
ample, mitochondrial RNA methyltransferase METTL8 facilitates 3-methyl-cytidine 
(m3C) methylation of the mt-tRNA and thus promotes mitochondrial ETC activity [140]. 

  



Cells 2022, 11, 2518 7 of 45 
 

 

2.2.2. The Roles of RNA Methylation in Mitochondria 
Mitochondrial function is closely associated with RNA methylation, including both 

mRNA and tRNA methylation. Mitochondria possess specific translation machinery for 
the synthesis of proteins in ETC, and tRNA modification is indispensable during mito-
chondrial translation and the OXPHOS process, which require folate-dependent tRNA 
methylation [141]. A recent study indicates that mitochondrial tRNA methylation is nec-
essary for tumor metastasis due to its critical role in mitochondria gene translation [142]. 
Moreover, tRNA methyltransferase 10C (TRMT10C), catalyzing the mitochondrial ND5 
mRNA at N1-methyladenosine (m1A) site, promotes cancer cell metabolism by reducing 
the mitochondrial ribonuclease P protein 1 (MRPP1) in mitochondria and inducing pro-
tein instability and mt-tRNA processing [143]. In short, RNA methylation plays pivotal 
roles in mitochondrial synthesis and function. 

2.3. Mitochondria and Histone Modifications 
Besides DNA methylation, mitochondrial metabolism also plays a pivotal role in the 

modifications of histone tails [144]. Chromatin structure and function are regulated by 
post-translational modifications (PTMs) of histones, such as histone methylation, acetyla-
tion, succinylation, ubiquitylation, and SUMOylation [145]. By altering interactions be-
tween nucleosome components, including histones and DNA, histone PTMs affect chro-
matin structures. Histone modifications are both highly dynamic and tightly regulated by 
the histone modification enzymes as well as their substrates, which are tightly regulated 
by mitochondria [146] (Figure 2). 

2.3.1. Mitochondria and Histone Acetylation 
a. Concept and enzymes of histone acetylation 

Histone acetylation usually occurs on the lysine residues of histone tails. Acetyl 
groups are transferred from acetyl-CoA by histone acetyltransferases to the ε-amino 
group of lysine residues. Acetylation in histone tails generally reduces interaction be-
tween histones and DNA and increases accessibility to transcription factors [147,148]. 
Three major types of acetylation have been described based on the acetylation site in the 
protein, including: (a) N-terminal acetylation that is commonly named N-ter acetylation 
or Nα-acetylation; (b) lysine acetylation that is commonly named K-acetylation (KAc) or 
Nε-acetylation; (c) O-acetylation [149]. Histone acetylation is one of the key epigenetic 
modifications regulated by histone acetyltransferases (HATs) and histone deacetylases 
(HDACs) [150–153]. HATs catalyze the transfer of an acetyl group from acetyl-CoA to the 
ε-NH2 group of lysine residues in proteins while HDACs remove it [154]. HDACs are 
organized in four classes depending on sequence identity and domain organization. Class 
I (HDAC1, 2, 3, and 8), class II (HDAC4, 5, 6, 7, 9, and 10), and class IV (HDAC11) are zinc-
dependent HDACs, while class III (SIRT1–7) deacetylases are NAD+-dependent [155]. The 
NAD+-dependent deacetylases sirtuins consist of seven members (SIRT1 to SIRT7) with 
different subcellular locations: SIRT1 and SIRT2 are in the nucleus, and cytosol SIRT3, 
SIRT4, and SRIT5 are in mitochondria, while SIRT6 and SIRT7 are in the nuclear location. 
Sirtuins play important roles in inflammation, cell growth, circadian rhythm, energy me-
tabolism, neuronal function, and stress resistance [156–158]. 
b. Function of histone acetylation 

Histone acetylation loosens contacts between histones and DNA, and it masks the 
positive charges present on the lysine residues, reducing the affinity between histones and 
negatively charged DNA, facilitating the recruitment of transcriptional co-activators, and 
making transcription factor binding sites more accessible, thereby enhancing gene tran-
scription [150]. HDACs remove the acetyl groups, tightening the interaction between 
DNA and histones, thus repressing transcription. Therefore, HATs play the transcription-
promoting role via histone acetylation while HDACs conduct the transcription-delimiting 
function through deacetylation [159]. HATs function as both oncogenes and tumor 
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suppressors in cancer. The deregulation of these enzymes by genetic or epigenetic altera-
tions accompanied by defects in gene transcription has been implicated in oncogenesis 
[160]. Aberrations in histone modifications occur frequently in cancer, including changes 
in their levels and distribution at gene promoters, gene coding regions, repetitive DNA 
sequences, and other genomic elements [161]. Low histone acetylation levels are associ-
ated with a poorer prognosis of cancer patients due to increased risk of tumor recurrence 
and/or decreased survival probability [162]. 
c. Mitochondria regulate histone acetylation 

The TCA intermediate metabolites in mitochondria such as acetyl-CoA and NAD+ 
regulate the nuclear epigenome as the substrate of acetylation and a cofactor of deacety-
lation, respectively [54,163]. Other co-factors, including flavin adenine dinucleotide (FAD) 
and α-KG are closely associated with the above process, and the biosynthesis of the met-
abolic coenzymes depends on intracellular ATP levels and mitochondrial function 
[20,164,165]. 

Histone acetylation levels are strictly dependent on energy status. Reduced energy 
supplies not only reduce acetyl-CoA levels but also lead to the oxidation of NADH to 
NAD+. Since NAD+ but not NADH is a substrate for histone deacetylases—the sirtuins, 
energy deficiency activates the sirtuins to deacetylate the histones, thus increasing the 
positive charge of the chromatin proteins, causing chromatin condensation, and finally 
suppressing transcription, replication, growth, and proliferation [20]. When the energy 
supply is sufficient, acetyl-CoA is upregulated, and ATP and acetyl-CoA phosphorylate 
and acetylate chromatin, thus opening the nDNA for transcription and replication, and 
histone acetylation will be increased. When cells are in starvation or calories are limited, 
acetyl-CoA is required to be oxidized in the mitochondria for ATP synthesis. Chromatin 
phosphorylation and acetylation are lost, gene expression is suppressed, and the nucleo-
cytosolic acetyl-CoA will be reduced [20]. 

Mitochondria are required to maintain histone acetylation (H3K27ac) in human colon 
cancer cells after inhibiting the electron transport chain (ETC) in mitochondria or deplet-
ing mitochondrial DNA, and histone acetylation is reduced accordingly. Pan-histone acet-
ylation and H3K27ac marked acetylation are reduced in ρ0 DLD-1 cells compared with 
their complete parental cells [166]. In human glioblastoma tumors, histone acetylation is 
generally upregulated, and ROS pathways have negative correlations with H2B acetyla-
tion [167]. In addition, the increased level of lactic acid generated from glycolysis contrib-
utes to the higher local acidic pH to promote histone deacetylation and favors an aggres-
sive and pro-metastatic phenotype of cancer cells [168,169]. 

Genes in mitochondria also affect histone acetylation. For example, C1qbp, which is 
primarily located in the mitochondrial matrix but can also be found at the cell surface, 
cytosol, and nucleus, is required for mitochondria oxidative phosphorylation (OXPHOS) 
as an RNA-binding protein to facilitate mitochondrial translation [170–172]. There is a re-
duction of acetyl-CoA in C1qbp-deficient CD8+ T cells and a significant decrease of 
H3K27ac in effector genes [173,174]. 

NAD+ function in histone acetylation 
Nicotinamide adenine dinucleotide exists in two forms inside the cell (in the cyto-

plasm, nucleus, Golgi, mitochondria, and other peroxisomes), oxidized form NAD+ and 
reduced form NADH. NAD+ can be synthesized de novo from tryptophan or through the 
recycling of its precursors. In de novo pathway, it is synthesized through the Preiss–Han-
dler pathway from nicotinic acid (NA) or via salvage of the NAD+ precursors such as nic-
otinamide mononucleotide (NMN), nicotinamide riboside (NR), reduced nicotinamide 
mononucleotide (NMNH), or reduced nicotinamide riboside (NRH). Besides the Preiss–
Handler pathway, NAD+ salvage also occurs through the recycling of other precursors 
such as nicotinamide (NAM) [175]. It plays an important role in intermediary metabolism, 
especially in numerous oxidation/reduction reactions [175]. 
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NAD+ is required for over 500 enzymatic reactions and plays key roles in the regula-
tion of almost all major biological processes [176]. It is used as a substrate by several fam-
ilies of enzymes (the so-called NAD+ consumers): sirtuins (SIRTs), poly (ADP-ribose) pol-
ymerases (PARPs) and cyclic ADP-ribose (cADPr) synthases [177–180], and all of them 
generate NAM as a result of NAD+ utilization. 

The proper acetylation level within cells is modulated by the balanced activities of 
HAT and HDAC, and HDACs are regulated by fluctuations in NAD+ concentrations 
[181,182]. NAD+ served as a catalytic cofactor for HDAC III (sirtuins)-mediated histone 
deacetylation reactions [182,183]. Sirtuin family is NAD+-dependent protein lysine 
deacetylases, playing important roles in various physiological functions, from energy me-
tabolism to stress response [184]. The elevated level of NAD+ has been demonstrated to 
activate Sirt1 and reduce acetylation [185]. 

Acetyl-CoA function in histone acetylation 
Acetyl-CoA is a metabolite derived from several pathways such as glycolysis, fatty 

acid oxidation, and amino acid catabolism [186–188]. The generation of acetyl-CoA via 
glycolysis is achieved by pyruvates. Pyruvates are synthesized from glycolysis. When ox-
ygen is sufficient in normal cells, they traverse the mitochondria via the voltage-depend-
ent anion channel (VDAC) or porin and the impermeable inner mitochondrial membrane 
with the aid of two mitochondrial pyruvate carriers (i.e., MPC1 and MPC2). Then, they 
are converted to acetyl-CoA to fuel the TCA cycle for efficient energy supply. In the mito-
chondria, acetyl-CoA is catalyzed by citrate synthase with oxaloacetate to yield citrate, 
and citrate can be transported to the cytosol and cleaved by ATP-citrate lyase (ACL) to 
regenerate acetyl-CoA and oxaloacetate [189]. Mammalian cells generate acetyl-CoA in 
mitochondria with a complex of nucleus-encoded proteins known as pyruvate dehydro-
genase complex (PDC) [190]. PDC can be translocated to the nucleus generating acetyl-
CoA in the nucleus independent of mitochondria. The knockdown of nuclear PDC in iso-
lated functional nuclei decreased the de novo synthesis of acetyl-CoA and acetylation of 
core histones [191]. The dynamic translocation of mitochondrial PDC provides a pathway 
for nuclear acetyl-CoA synthesis required for histone acetylation and epigenetic regula-
tion [191]. 

Acetyl-CoA controls key cellular processes, including energy metabolism, mitosis, 
and autophagy [187]. Mitochondrial acetyl-CoA is used to synthesize ketone bodies as an 
alternative fuel. Besides roles in ATP production, acetyl-CoA also represents a key node 
in metabolism due to its intersection with many metabolic pathways and transformations 
[188]. Glycolytic pyruvate enters the TCA cycle through acetyl-CoA, and acetyl-CoA is a 
key precursor of lipid synthesis and the sole donor of the acetyl groups for acetylation 
[187,192]. 

Acetyl-CoA, acting as a substrate for HATs, is crucial for histone acetylation. Altera-
tion of pools of intracellular acetyl-CoA manipulates histone acetylation [165,193], and 
lower nucleo-cytosolic acetyl-CoA limits histone acetylation and cell proliferation. Many 
protein acetylation modifications are indeed regulated by acetyl-CoA availability 
[194,195]. 

Histone acetylation is also affected by modulating enzymes that regulate acetyl-CoA 
syntheses such as acetate-dependent acetyl-CoA synthetase 2 (ACSS2) and citrate-de-
pendent ACL [165,196]. ACSS2 and ACL are two principal enzymes that generate Acetyl-
CoA for histone acetylation [187]. ACSS2 directly regulates histone acetylation in neurons 
and spatial memory in mammals [197]. 

2.3.2. Mitochondria and Histone Methylation 
a. Histone methylation 

The addition of methyl group from SAM on lysine or arginine amino acid residue in 
histone, usually on H3 or H4, is marked as histone methylation [198]. Lysine residues un-
dergo single, double, or trimethylation modification, while arginine residues only 
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undergo single and double methylation modification (symmetrically or asymmetrically), 
acting as active or repressive marks of gene expression. Common lysine methylations on 
H3, including H3K4, H3K79, and H3K36, are markers of active transcription, whereas 
H3K20, H3K9, and K3K27 are associated with suppressive transcription [199]. Histone 
methylation, as one of the most important histone marks, plays a critical role in gene ex-
pression, cell cycle, genome stability, and chromosome maintenance [200]. 
b. Enzymes of histone methylation 

Histone methylations are catalyzed by histone methyltransferase (HMTs) enzymes 
[200]. HMTs include lysine methyltransferases (KMTs) such as SET-domain-containing 
enzymes and Dot1-like proteins and arginine methyltransferases such as protein arginine 
methyltransferase (PRMTs) [201–203]. Histone lysine and arginine methylation can be re-
moved by histone demethylases (HDMs) [204,205]. Lysine demethyltransferases (KDMs) 
have been clustered into two families: the Jumonji domain depending on iron and oxoglu-
tarate as cofactors and amine oxidases relying on FAD as a cofactor [164,206–208]. The 
two families are also named Jumonji-domain histone demethylase (JHDM, Jumonji do-
main containing family) and LSD (lysine-specific demethylase). LSD1 can specifically re-
move the single and double methylation modification of histones H3K4 and H3K9, while 
Jumonji family can remove the modification of lysine trimethylation. Sites on H3K 4, 9, 
27, 36, 79, and H4K20 can be methylated, among which histones H3K4 and H3K9 are two 
common modification sites. 
c. Mitochondrial metabolites and histone methylation 

Metabolites in mitochondria regulate histone methylation. Besides serving as a co-
factor for TET-mediated DNA demethylation, α-KG also serves as a cofactor for JHDM 
family and HDM activity to modify epigenetic marks [209,210]. IDH1-mediated α-KG 
modulates trimethylation of H3K4 in the promoters of genes associated with brown adi-
pogenesis [211]. Ectopic expression of SDH inhibits histone demethylation and hydrox-
ylation of 5mC, suggesting that defective SDH contributes to tumor growth positively 
[93]. Nicotinamide N-methyltransferase (NNMT) is a metabolic enzyme that increases mi-
tochondrial function and reduces oxidative stress [212], meanwhile catalyzing the transfer 
of methyl moiety from SAM to nicotinamide. Cancer cells with the overexpression of 
NNMT exhibit alterations in SAM level and histone methylation, and with the procure-
ment of a more aggressive phenotype [213]. 

The histone methylation and acetylation are not separated modification processes, 
and they are dynamically interactive. For instance, histone H3K27ac distinguishes active 
enhancers from inactive/poised enhancer elements containing H3K4me1 alone [214]. 

2.3.3. Mitochondria and Histone Succinylation 
a. Concept of histone succinylation 

Lysine succinylation (Ksucc) is a newly discovered histone post-translational modi-
fication that changes the chemical environment of histones similar to other acylation mod-
ifications [215–217]. Histone lysine succinylation has been considered as an intermediate 
reaction of succinyl group (-CO-CH2-CH2-COOH) transfer from succinyl-CoA to ho-
moserine [218]. It refers to the process of covalently binding a succinyl group to the ε-
amine of lysine with the enzymatic or non-enzymatic mechanisms [219,220]. It brings 
more significant structural changes in space than other modifications like methylation and 
acetylation since succinylation changes the charge state of lysine residues to a high degree 
[215,220]. Most lysine succinylation is located in mitochondria, followed by the cytoplasm 
and the nucleus. 

Lysine succinylation was identified in E coli proteins first and later in mammalian 
proteins, which indicates that lysine succinylation is a highly evolved conserved marker 
in eukaryotes. [215,217]. Lysine succinylation generally accumulates at transcriptional 
start sites to modulate gene expression. Histone succinylation at H3K79 contributes to 
transcription and tumor development [221]. 
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b. Enzymes of histone succinylation 
The writers and erasers that are responsible for catalyzing the succinylation and 

desuccinylation are still under investigation, but accumulated evidence has indicated that 
succinylation is modulated by acetyltransferase and deacetylases [222]. Lysine acetyl-
transferase 2A (KAT2A, also named GCN5) has been identified as a histone succinyltrans-
ferase that catalyzes the succinylation of histone H3K79 [221]. Histone acetyltransferase 1 
(HAT1) succinylated histone H3 at K122, which could provide epigenetic and gene ex-
pression regulation in cancer cells [223]. The NAD+-dependent deacetylase SIRT5 located 
in mitochondria has been recognized as desuccinylase, and succinylation is sensitive to 
both the increase and decrease of SIRT5 [217,224–226]. Another deacetylase SIRT7 is an 
eraser of succinylation of histone H3K122 for modulating DNA damage response and ge-
nome stability [227]. 
c. Mitochondrial metabolites and histone succinylation 

Succinyl-CoA is the succinyl donor produced in the cytoplasm, nucleus, or in the 
mitochondrial tricarboxylic acid (TCA) [216]. The concentration of succinyl-CoA pro-
duced in TCA regulates the level of histone succinylation [216]. 

Intracellular succinyl-CoA is mainly synthesized in mitochondria and is produced 
from α-KG, succinyl-carnitine, and succinate [228]. Succinyl group output from mitochon-
dria to histone lysine can be achieved through permeable nuclear pores [229]. The oxoglu-
tarate carrier SLC25A11 transports α-KG from mitochondria [230,231], and α-KG is con-
verted to succinyl coenzyme A in the nucleus under the catalyzation of α-KG dehydro-
genase (α-KGDH). Succinyl-CoA provides materials for GCN5, and then GCN5 activates 
succinyl-transferase to succinylate a histone lysine [221]. 

The dysfunction of mitochondria affects histone succinylation, and defective TCA 
cycle metabolism results in histone hypersuccinylation and non-histone hypersuccinyla-
tion associated with transcriptional responses [232]. 

2.3.4. Mitochondria and Histone O-GlcNAcylation 
a. Concept of O-GlcNAcylation 

O-linked-N-acetylglucosaminylation (O-GlcNAcylation) is a post-translational mod-
ification by glycosylation that links a single GlcNAc molecule to the serine/threonine site 
on proteins by an O-linked β-glycosidic bond [233]. O-GlcNAcylation is a key integrator 
of cellular nutritional status and occurs in the nucleus, cytoplasm, and mitochondrion. It 
participates in the process of nutrient sensing and metabolism and plays crucial roles in 
physiology and physiopathology [234,235]. 
b. Enzymes of O-GlcNAcylation 

The addition and removal of monosaccharides are regulated by O-GlcNAc transfer-
ase (OGT) and O-GlcNAcase (OGA), respectively. O-GlcNAcylation is highly enriched on 
histone and other proteins in nuclear pore complexes [236–239]. OGT has three isoforms: 
nucleocytoplasmic OGT, mitochondrial OGT (mOGT), and the shortest form of OGT. The 
mOGT isoform is targeted to the mitochondrial matrix and is pro-apoptotic [240,241], and 
it tends to accumulate in the mitochondrial inner membrane. OGT utilizes UDP-GlcNAc 
to catalyze the addition of O-GlcNAc to target proteins. 

Histone O-GlcNAcylation that occurs on H2A and H2B may be linked to histone ex-
change, and core histones H3 and H4 can also be modified with O-GlcNAc [242–245]. 
Three sites of O-GlcNAcylation were mapped by tandem mass spectrometry on histone 
H2A Thr101, histone H2B Ser36, and histone H4 Ser47, respectively [246]. The modifica-
tion sites of O-GlcNAcylation on histone are distinct from H3 and H4 tail modification, 
which is linked to the regulation of gene expression more directly. O-GlcNAcylation on 
H3 Ser10 site is mitosis-specific and the O-GlcNAc is conditionally phosphorylated as 
well, which points out the crucial role of OGT in modifying histone H3 during mitosis 
[247–249]. The role of OGT in gene transcription regulation is probably associated with 
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polycomb repression, which is linked with the trimethylation of histone H3 at Lys-27 
[250–252]. 
c. Mitochondria and O-GlcNAcylation 

The synthesis of UDP-GlcNAc is from the hexosamine biosynthetic pathway (HBP), 
which is a series of enzymatic reactions requiring key metabolites, including glucose, glu-
tamine, ATP, and acetyl-CoA [253,254]. The pool of UDP-GlcNAc available for O-Glc-
NAcylation is influenced by many factors, including metabolic flux. Glutamine is one of 
these key metabolites, and the regulated entry of glutamine may be influenced by the 
synthesis of UDP-GlcNAc [255]. Acetyl-CoA, generated from the conversion of pyruvate 
via the mitochondrial pyruvate dehydrogenase complex during the oxidation of glucose 
and the β-oxidation of fatty acids, is one of the precursors of UDP-GlcNAc [256]. 

Mitochondria are considered the primary source of ATP production in the cell. Aden-
osine-monophosphate-activated protein kinase (AMPK) is a sensor of energy status 
whose activity is controlled by ATP/AMP ratio, and it serves as a guardian of metabolism 
and mitochondrial homeostasis. AMPK has been identified as a regulator of H2B Ser112 
O-GlcNAcylation, and the activation of AMPK decreases H2B Ser112 O-GlcNAcylation 
and H2B K120 ubiquitination [245]. 
d. O-GlcNAcylation and other modifications 

Besides the functions in O-GlcNAcylation, OGT also binds to the TET class of DNA 
cytosine demethylases that may serve as 5-methylcytosine erasers [257–259]. O-GlcNAcyl-
ation may promote DNA demethylation by interacting with members of the TET family 
proteins, thus favoring gene transcription. O-GlcNAcylation influences other PTMs of his-
tones indirectly and treating cells with glucosamine to increase O-GlcNAcylation is asso-
ciated with decreased phosphorylation of histone H3 Ser10 [249]. O-GlcNAcylation at 
Ser642 of histone deacetylase 4 (HDAC4) is cardioprotective in diabetes mellitus [260]. In 
addition, the O-GlcNAcylation of HDAC1 overexpressed in hepatocellular carcinoma 
(HCC) promotes cancer progression, thus inhibiting O-GlcNAcylation of HDAC1, re-
pressing the progression of HCC [261]. 

2.3.5. Mitochondria and Histone Lactylation 
a. Concept and function of histone lactylation 

Lactylation is a novel histone acylation code proposed in 2019 [262]. Twenty-eight 
lactylation sites on core histones in human and mouse cells have been identified [262]. 
Lactylation of histone lysine residues derived from lactate directly modulates gene tran-
scription from chromatin in a p53-dependent and p300-mediated manner [263]. Lactate is 
a critical energy source for mitochondrial respiration and a primary circulating TCA sub-
strate [264]. 

Lactylation plays important roles in inflammation and cancer. In BMDMs, the treat-
ment with lactate derived from tumor cells drives tumor-associated macrophages to an 
M2-like phenotype, and this polarization increases depending on the treating time 
[262,265]. Furthermore, histone lactylation regulates gene expression during M1 macro-
phage polarization. It also promotes oncogenesis by facilitating m6A reader protein 
YEHDF2 expression in ocular melanoma [266]. In addition, the elevation of exogenous 
lactate rescued the defect of B cell adapter for PI3K (BCAP)-deficient BMDMs to enhance 
histone lactylation [267]. In lung fibrosis, histone lactylation at the promoter regions of 
representative genes was increased in lactate-treated macrophages. 

Histone lactylation has been demonstrated as an epigenetic mark of the glycolytic 
switch. Lactate and acetyl-CoA are the key metabolites to bridge the glycolytic switch with 
two distinct epigenetic coding programs: lactylation and acetylation. Both can be gener-
ated from glycolysis. In malignant tumor cells, pyruvates are converted to lactate, and the 
glycolytic switch is adapted to meet the higher demands of fast cell growth and prolifer-
ation [268]. Lactate accumulation in tumor microenvironment leads to reprogrammed cell 
metabolism and induces a glycolytic switch or the Warburg effect [24]. 
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b. Regulation of histone lactylation 
Histone lysine lactylation is specially modulated by lactate level. Lactate is a major 

energy source for mitochondrial respiration and the major gluconeogenic precursor [269], 
and it has major influences on energy substrate partitioning. Lactate secreted by ferment-
ing cells can be oxidized or used as a gluconeogenic substrate by other cells and tissues, 
and the relation between lactate and mitochondria has been extensively reviewed else-
where [270,271]. The accumulation of lactate by exercise affects the expression of regula-
tory enzymes of glycolysis and mitochondrial biogenesis [272]. Lactate is the fulcrum of 
metabolic regulation in vivo [269]. 

Lactate metabolism influences epigenetics under diverse cellular conditions. Hy-
poxia induces the production of lactate by glycolysis and stimulates histone lactylation 
[262]. Mitochondrial inhibitors or hypoxia with increased lactate production amplify ly-
sine lactylation [273]. Histone lactylation and acetylation compete for epigenetic modifi-
cation of lysine and mark the levels of lactates and acetyl-CoA. Histone lactylation is reg-
ulated by the level of both lactate and acetyl-CoA, which functions as the donor of the 
acetyl group and affects the level of acetylation. 

2.4. Epigenetic Modification Regulates Mitochondrial Function 
Metabolites related to mitochondria play important roles in epigenetic regulation as 

mentioned above, and in turn, epigenetic modification also influences the function of mi-
tochondria. 

DNA and histone methylation affect mitochondrial function via the regulation of 
SAM levels. SAM-regulated histone methylation has a positive effect on energy metabo-
lism. The knockdown of NNMT, which catalyzes the methylation of nicotinamide with 
methyl from SAM, elevates SAM levels and increases H3K4 methylation in adipose tissue, 
and this enhances the key enzymes in the polyamine flux to increase systemic energy me-
tabolism [274]. Maternal one-carbon metabolism related to SAM also affects the off-
spring’s energy metabolism [275]. Moreover, elevated lysine-specific demethylase LSD1 
stimulates OXPHOS gene expression in NRF1 [276]. In addition, the differential DNA 
methylation patterns in skeletal muscle in obese and high-fat diet individuals alter the 
mitochondrial β-oxidation and mitochondrial number, while exercise training altering ep-
igenetic modifications can improve mitochondrial function [277,278]. 

Histone acetylation has close relations with mitochondrial functions. HDAC inhibi-
tors suppress oxidative stress and tissue damage caused by mitochondria dysfunction in 
mouse models [279]. HDA-1, the C. elegans ortholog of mammalian histone deacetylase 
(HDAC), is required for mitochondrial-stress-mediated activation of mitochondrial un-
folded protein response, and it modulates mitochondrial stress response and longevity 
[280]. HDAC3 is essential for shaping mitochondrial adaptations for IL-1β production in 
macrophages through non-histone deacetylation. Furthermore, the loss of histone 
deacetylase SIRT3 or SIRT6 can activate the key glycolytic enzymes and lead to an increase 
in aerobic glycolysis or Warburg effect [281]. ATP-citrate lyase (ACL) is the enzyme that 
converts glucose-derived citrate into acetyl-CoA, and histone acetylation level depends 
on ACL [165]. However, conversely, histone acetylation also stabilizes ACL to promote 
tumor growth. When the acetylation is restrained, the ACL is inhibited at both the tran-
scriptional and post-translational levels [282,283]. 

Different from methylation and acetylation, succinylation causes larger mass change 
and alters a positively charged side chain into a negatively charged one, thus causing a 
two-unit charge shift in the modified residues. Succinylation alters the rates of enzymes 
and pathways, especially mitochondrial metabolic pathways. For example, several SIRT5-
targeted lysine residues related to the SDH subunit and succinylation at these sites may 
disrupt Complex II subunit–subunit interactions and electron transfer [284]. Succinylation 
also suppresses SDH activity. SIRT5-KO liver exhibits a compromised Complex II and 
ATP synthesis function in vivo [285], and SIRT5 KO reduces fatty acid oxidation and 
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accumulation of long-chain fatty acyl-CoAs, as 60% of all proteins in fatty acid metabolism 
are succinylated [225]. This demonstrates that SIRT5 is a promoter of mitochondrial en-
ergy metabolism. 

Other modifications of histones such as phosphorylation, sumolyation, and ubiquiti-
nation also have an extensive and dynamic interplay with mitochondria. The dysregula-
tion of the balance between them and mitochondria leads to the disorder of metabolism 
and finally cellular homeostasis. 

Mitochondrial regulation on epigenetics not only can occur via mitochondria-regu-
lated metabolites, but also might occur via aerobic glycolysis (Warburg effect), which is 
tightly associated with mitochondrial OXPHOS activity. Inhibition of OXPHOS or mito-
chondrial synthesis may lead to the Warburg effect, and tumor cells switch their energy 
production from OXPHOS to glycolysis when mitochondrial energy is insufficient [286]. 
The Warburg effect leads to the increased production of lactate in cancer, and the lactate 
converted from pyruvate in tumor cells is the precursor for histone lactylation [262], and 
thus the Warburg effect regulates histone lactylation. Whether mitochondria have an ef-
fect on other epigenetics through the Warburg effect deserves further investigation. In 
turn, epigenetics also regulates the Warburg effect. For example, DNA methylation regu-
lates the enzymes of glycolysis and the mitochondria dysfunction caused by aberrant 
DNA methylation triggers aerobic glycolysis [287,288]. M2 isoform of pyruvate kinase 
(PKM2), a key rate-limiting enzyme, contributes to the metabolism shift from OXPHOS to 
aerobic glycolysis, and the acetylation of PKM2 is stimulated by high glucose and thus 
promotes the Warburg effect. 

 
Figure 2. Mitochondria metabolites and histone post-translation modification. 

HAT transfers acetyl group from acetyl-CoA to histone, leading to histone acetyla-
tion. HDACs, including the NAD+-dependent deacetylases sirtuins, remove the acetyl 
group from histones, and thus histone deacetylation occurs. The TCA intermediate me-
tabolites in mitochondria such as acetyl-CoA and NAD+ regulate the acetylation. HMT 
transfers the methyl group from SAM to the histone, leading to histone methylation. De-
methyltransferases such as LSD1 and JHDM remove the methyl group from histone, and 
thus histone demethylation occurs. JHDM requires FAD as a cofactor. Histone succinyla-
tion refers to the addition of succinyl group transferred from succinyl-CoA to histone. 
Histone succinyltransferase such as KAT catalyzes the succinylation of histone. Sirt5 lo-
cated in mitochondria is a desuccinylase. O-GlcNAcylation is regulated by OGT and OAT. 
OGT utilizes UDP-GlcNAc to catalyze the addition of O-GlcNAc onto target proteins. 
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Acetyl-CoA is one of the precursors of UDP-GlcNAc. Histone lactylation depends on in-
tracellular lactate levels, and lactate and acetyl-CoA are the key metabolites to bridge the 
glycolytic switch. The IDH mutation also leads to an increase of succinate, fumarate, and 
2-HG, and inhibits JHDM activity. 

3. Epigenetics in Normal Development and Tumorigenesis 
Cell fate is determined by the genes expressed, which are mainly regulated by epige-

netic modifications of the genome. Epigenetic regulatory mechanisms are heritable 
changes in a sequence of stable but reversible gene function modifications yet do not affect 
the DNA primary sequence [289]. Epigenetics is one of the primary mechanisms causing 
early programming of cell proliferation, differentiation, death, and disease [290]. Epige-
netics plays a key role in normal development such as embryonic development and stem 
cell differentiation. Its dysregulation often leads to diseases, including cancer. 

Two models have been proposed to account for tumorigenesis: the clonal evolution 
model and cancer stem cell (CSC) model [291–297]. CSCs generate cellular heterogeneity, 
harboring stem-cell-like properties such as self-renewal and aberrant differentiation po-
tential, and the differential hierarchy can be reversible under certain conditions [298–300]. 
Both genetic and epigenetic alterations are attributed to the stemness features installed in 
cancer cells. Cancer initiation and progression induced by oncogenic mutations are ac-
companied by significant epigenetic alterations. Epigenetic dynamics such as DNA meth-
ylation and histone modification patterns and nucleosome remodeling regulate cancer cell 
state [301,302]. Epigenetic modifications are associated with the silencing of tumor sup-
pressor and differentiation genes in various cancers, and they can also deregulate funda-
mental signaling pathways controlling self-renewal and differentiation, including Wnt, 
Notch, Myc, and Hedgehog pathways [303]. Besides stem cells, epigenetics also regulates 
other cells: epigenetic pathways functioning in T cell fate stability and plasticity have been 
reviewed [304]. In addition, epigenetic regulation on gene expression controls innate im-
mune cell differentiation, activation, and function [305,306]. 

Cell fate determination requires faithful execution of gene expression programs af-
fected by alteration in genome and epigenome, which are increasingly recognized to re-
spond to metabolic inputs. Metabolites such as acetyl-CoA, α-KG, SAM, NAD+, and O-
GlcNAc play crucial roles in cell fate determination by the regulation of epigenetic modi-
fications and gene expression. 

3.1. DNA Methylation in Cell Development and Tumorigenesis 
Most cell types display relatively stable DNA methylation patterns with up to 80% 

of CpG islands being methylated [307]. DNA methylation is essential for tissue develop-
ment and aberrant DNA methylation contributes to tumorigenesis. DNA methylation 
controls chromatin conformation together with other histone modifications [308]. 

3.1.1. DNA Methylation in Normal Development 
DNA methylation plays important roles in physiology, including stabilizing cell-fate 

decisions, cell development, cell differentiation, and cell signaling [309–312]. It functions 
as a defense mechanism in preventing genomic instability due to transposon movements 
or the insertion of endoparasitic sequences in the genome. In females, DNA methylation 
is involved in the regulation of housekeeping genes and tissue-specific genes, and it can 
silence one allele of imprinted genes and compensate for the extra copy of the X chromo-
some [308,313]. The methylation level of the genome of oocytes is less than that of sper-
matozoa [314]. DNA methylation on CpG island in lineage-specific genes is essential for 
cell stemness and differentiation in human female hematopoietic stem/progenitor cells 
(HSPCs) [308,315]. 

In undifferentiated human embryonic stem cells (ETS), the promoter of key transcrip-
tion factors OCT4 and NANOG genes are unmethylated or in a hypomethylation state 
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[316], but they are undergoing rapid DNA methylation on differentiation in vitro and after 
implantation in vivo [316–318]. The expression of stem cell transcription factors such as 
OCT4, NANOG, and SOX2 is closely associated with the self-renewal of stem cells 
[319,320], and their expression is controlled by their promoter methylation level. The par-
tial or full methylation of these pluripotency-associated genes leads to the downregula-
tion of their expression and differentiation of ES cells [318,321,322]. Human ETS has 
unique CpG methylation characteristics, and it works together with histone modifications 
to drive stem cell differentiation [323,324]. The lack of DNA methylation in stem cells is 
associated with the differentiation ability, especially in the activation of cell-specific genes 
[38]. Similar to ES cells, DNA methylation is also crucial for the differentiation and matu-
ration of the mammalian central nervous system (CNS) [325]. In fibroblasts, hundreds of 
DMGs involved in pluripotency and differentiation have been identified as being associ-
ated with lower transcriptional activity [326]. 

3.1.2. DNA Methylation in Tumorigenesis 
DNA methylation is the most extensively studied epigenetic mark for human dis-

eases [327]. Aberrant DNA methylation has been associated with pathological gene ex-
pressions in a variety of human cancers [328]. Hypermethylation leads to the inactivation 
of certain tumor-suppressor genes in its promotor regions, thus resulting in gene silence 
in different cancer types [59] (Figure 3A). The changes in DNA methylation and differen-
tially methylated regions (DMRs) have occurred in normal development and diseases 
[329,330]. Different DMR classes display tissue-specific DMRs [331,332], cell-type-specific 
DMRs, and DMRs arising in tumor heterogeneity [333–337]. Different classes of CpG is-
lands are subject to different modes of regulation [338]. The alternative promoters have 
been frequently used by tumors to increase the isoform diversity and to activate the on-
cogenes that are repressed normally, thus changing the tumor status and evading host 
immune attacks by immunoediting [339–342]. Pediatric tumors are more prone to muta-
tions and using epigenetic deregulation to promote tumorigenesis and progression com-
pared with cancers in adults [343–345]. A high methylation level with decreased TET1 
activity has been found to increase glioblastoma tumorigenesis and malignancy [346,347]. 

DNA methylation also regulates the neurodegenerative process. The dysregulation 
of 5hmC during brain development, including different 5hmC concentrations, affects gene 
regulation in neurodegenerative processes, and the reduction in TET activity in parallel 
with the reduction of 5hmC concentrations promotes neurodegeneration in the mouse 
model of Alzheimer’s disease [348–351]. 

3.1.3. DNA Methylation in Cancer Stem Cell 
DNA methylation includes hypermethylation and hypomethylation. Generally, hy-

permethylation of promoter DNA indicates that the gene is silenced, whereas hypometh-
ylation indicates that the gene is activated [352–354]. DNA hypermethylation of tumor 
suppressor genes and global hypomethylation of oncogenes contribute to the formation 
of cancer stem cells and cancer cells’ drug resistance [355]. Hypermethylation of the 
LDHA gene promoter silences its expression in IDH-mutant-derived brain tumor stem 
cells (BTSCs) [356]. DNA methylation can be reduced by mutant KRAS-mediated glutami-
nolysis to increase Wnt signaling pathway, thus increasing cancer cell stemness and drug 
resistance in colorectal cancer [357]. In addition, breast CSCs have specific DNA methyl-
ation signatures that distinguish them from their non-BCSC counterparts [358]. 

The expression of DNMTs plays an important role in cancer stem cell development. 
Genetic mutations of DNMTs lead to epigenetic alterations that control cellular fate. For 
example, mutation of DNMT3A accompanied by mutation of KRAS supports self-renewal 
and induces malignancy in AML, which shows the synergistic effect between genetic and 
epigenetic alteration in initiating self-renewal proliferation of CSC population and malig-
nancy [359,360]. DNMT1 promotes EMT to CSC in triple-negative breast CSCs. The inhi-
bition of DNMT1 suppresses triple-negative breast CSCs populations [361]. In liver 
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cancer, DNMT1-mediated methylation of BEX1 promoter leads to different stemness of 
cells in hepatoblastoma (HB) and hepatocellular carcinoma (HCC) and a subtype of HCC 
with high CSC features (CSC-HCC) [362]. The ubiquitin-like PHD and RING finger do-
mains 1 (UHRF1) factor recruits DNMT1 to preserve the status of DNA methylation dur-
ing DNA replication, and the UHRF1-DNMT1 complex is crucial for preserving genomic 
imprinting and overall epigenetic memory during cell divisions. Their activity is impaired 
upon cellular transformations into malignant states [363–365], and UHRF1 suppression 
promotes cancer stem cell differentiation to reduce metastasis [366]. 

DNA demethylation enzymes TET1 and TET2 not only promote somatic cells repro-
gramming into iPSCs but also play important roles in cancer stem cells. TET2 is essential 
for hematopoietic stem cell (HSC) differentiation and lineage commitment and is fre-
quently mutated in myeloid malignancies, and its inhibition contributes to HSC expan-
sion in aplastic anemia. The level of 5hmC has been demonstrated as an independent 
prognostic marker for renal cancer and is intimately associated with its overall survival 
[367]. The low expression of TET1 and 5hmC inhibited by Fisetin decreased proliferation 
and invasion of renal cancer stem cells [354]. Inhibition of TET2 and the corresponding 
hypermethylation enhanced the stem cell signature of AML stem cells. In glioblastoma, 
the CSCs possess increased levels of 5fC and 5caC [301,368].  

TET-mediated DNA oxidation is highly dependent on metabolic states that repro-
gram the epigenome to maintain the stemness and promote tumor growth and metastasis 
[301] (Figure 3A). Various metabolites affect TET activity. Succinate and α-KG serve as 
key regulators of self-renewal and differentiation through the modulation of TET en-
zymes. Succinate, an important metabolite in the TCA cycle, serves as a mitochondrial 
retrograde signal that exerts effects on the epigenome by inhibiting histone demethylases 
and TET family activity [90,93]. Succinate accumulation links to mitochondrial MnSOD 
depletion via SDH/succinate/TET axis, thus leading to aberrant nuclear DNA methylation 
and altered cell fate [369]. α-KG is also important for the facilitation of epigenetic remod-
eling during premalignant cells, in which p53 has been activated [370]. Inhibition or mu-
tation of SDH results in the accumulation of succinate and inhibition of α-KG-dependent 
enzymes, as mentioned above [92,93,371,372]. 

3.2. Histone Acetylation and Methylation in Normal Development and Tumorigenesis 
3.2.1. Histone Acetylation and Methylation in Normal Development 

Histone acetylation plays important roles in biological processes that are involved in 
cell proliferation and differentiation [290]. Histone acetylation at transcriptional enhanc-
ers reflects global cell-type-specific expression [373]. Pluripotent embryonic stem cells (ES) 
exhibit chromatin domains with both transcriptionally active and silent histone modifica-
tions [374]. In the early differentiation period, gene transcription is regulated by histone 
modifications during their temporal transcription [375]. Pluripotent embryonic stem cells 
(PSCs) require acetyl-CoA and histone acetylation for the maintenance of pluripotency 
[376]. The differentiation of PSCs leads to a metabolic switch from glycolysis to OXPHOS, 
which in turn promotes their differentiation since inhibition of glycolysis leads to loss of 
histone acetylation and the pluripotent state [376–378]. 

HATs stimulate transcription through the acetylation of histones, thus leading to the 
relaxation of nucleosomes [379]. HATs and HDACs transmit differentiation signals to in-
itiate appropriate epigenetic modifications, including the establishment of new histone 
modification or erasure of existing chromatin structure in in vitro differentiation of ES 
cells [380]. H3K9ac and H3K9me3 are almost undetectable in pluripotent ES cells and dra-
matically increase when cells leave the undifferentiated state in a short time [381]. 
H3K9me3 level increased within 2 days, corresponding to the deacetylation of this residue 
[382]. Maternal H3K27me3 controls DNA methylation-independent imprinting, and it is 
a hallmark of facultative heterochromatin that maintains transcriptional repression estab-
lished during early development in many eukaryotes, allowing genes to encode specific 
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transcription factors or early differentiation factors [374,383,384]. When the expression of 
pluripotent genes such as Oct4, Nanog, and Foxd3 is elevated, the genes’ chromatins are 
opened in stem cells and condensed after differentiation. The key enzymes of histone acet-
ylation, KATs, directly acetylate several key transcription factors such as p53, FOXO1, and 
C/EBPα to modulate the transcription activity and affect cell homeostasis [301,385–387]. 
Besides ES, epigenetics also plays important roles in somatic stem cells, and HDACs, es-
pecially HDAC1 and HDAC2 expression levels, decrease significantly upon tissue differ-
entiation, while HDAC3 and DNMT1 keep the same expression [388–390]. 

Histone acetylation and methylation affect each other; H3K4me1 and H3K27ac affect 
each other in different ways and play direct roles in nucleosome eviction and mRNA tran-
scription at enhancers, respectively [391]. ES cell chromatin is in a highly dynamic state, 
with global DNA hypomethylation and a general abundance of transcriptionally active 
chromatin marks such as H3K4me3 and acetylation of histone H4, which leads to rela-
tively relaxed chromatin of ES cells [38,392]. 

3.2.2. Histone Acetylation and Methylation in Tumorigenesis 
Histone lysine acetylation positively regulates gene transcription by promoting DNA 

accessibility via creating relaxation of chromatin structure and a more conducive environ-
ment for transcription, and the malfunction of HATs often perturbs appropriate gene-ex-
pression programs, thus leading to the development of disease [393] (Figure 3B). 

Histone methylation and acetylation levels are closely associated with tumor initia-
tion and growth. H3K27me3 induces gene silencing and regulates cell differentiation, and 
its dysregulation frequently happens in tumorigenesis [394,395]. Histone methylation 
reader protein ZMYND11 interacts with histone H3.3K36me3, thus leading to the sup-
pression of tumor growth [396]. The epigenetic mark H4K16ac of H4 is prone to higher 
acetylation with age in healthy cells, while it tends to disappear in regions of the genome 
near age- and AD-dependent genes [397]. 

Histone deacetylase plays an important role in tumorigenesis (Figure 3B). The in-
creased activity of HDAC2 and the decrease of H3K18/K23 acetylation have been found 
in AD [398,399]. KDACs, the erasers of acetylation, play a critical role in oncogenesis, and 
the inactivation of HDAC1 enhanced DOT1 activity and lymphomagenesis in mice [400]. 
Another typical example of epigenetics in modulating CSC properties is the epithelial-
mesenchymal transition (EMT) process. ZEB1 is the key transcription factor of EMT, and 
it drives non-CSC to CSCs. Histone acetylation of the ZEB1 poises its chromatin and pro-
motes EMT’s acquisition of CSC features in breast cancer [401–404]. Hypoxia inhibits the 
oxygen-dependent H3K27me3 demethylases and increases ZEB1 expression and prompts 
EMT’s acquisition of a CSCs phenotype [404]. 

The deacetylase sirtuin family plays an important role in cancer stem cells (Figure 
3B). The NAD+-dependent deacetylase sirtuin family members, especially SIRT3, SIRT4, 
and SIRT5 located in mitochondria, play important roles in epigenetics such as deacetyla-
tion, demalonylation, and desuccinylation, thus affecting various aspects of cell fate [405]. 

Sirt3, the mitochondrial antioxidant, deacetylates FOXO3 and upregulates antioxi-
dant enzymes such as manganese superoxide dismutase (MnSOD) to protect mitochon-
dria against oxidative damage and maintain hematopoietic stem cells (HSCs) homeostasis 
[406–408]. The upregulation of Sirt3 expression improves their regenerative capacity in 
aged HSCs [409]. SIRT3 is highly upregulated in colon cancer and correlates with metas-
tasis and tumor stages [410]. The knockdown of SIRT3 in ovarian cancer enhances the 
migration and invasion towards liver metastasis, while the overexpression of SIRT3 sup-
presses metastasis dramatically [411]. 

SIRT4 regulates the catabolism of multiple nutrients [412], and the loss of SIRT4 pro-
motes the self-renewal of breast cancer stem cells [413]. High expression of SIRT5 in-
creased migration and proliferation in prostate cancer cells and renal cell carcinoma 
[414,415]. SIRT5 deacetylates lactate dehydrogenase B (LDHB) and promotes its enzy-
matic activity, thus generating additional protons and increasing autophagy and 
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tumorigenesis in colorectal cancer, and the knockdown of SIRT5 reduces cancer cell pro-
liferation [416]. A high level of SIRT5 desuccinylates SDH and reduces its activity promot-
ing cancer cell proliferation, while SIRT5 silencing results in hyper-succinylation of SDHA 
and reactivates it, thus preventing the growth of cancer cells [415]. SIRT5 also desuccinyl-
ates serine hydroxymethyl transferase (SHMT2), and the inactivation of SIRT5 downreg-
ulates SHM2 succinylation and decreases its activity in serine catabolism and inhibits can-
cer cell growth [417]. Chemoresistant prostate cancer cells shift the metabolism from gly-
colysis to OXPHOS, and this chemoresistance is modified by all three mitochondria 
sirtuins [418–421]. SIRT6 plays important roles in the regulation of cancer cell metabolism 
and the promotion of cancer cell apoptosis [422–425]. SIRT6 directly binds to the CDC25A 
promoter and decreases the acetylation level of histone H3 lysine 9 to inhibit colorectal 
cancer stem cell proliferation [426]. 

3.2.3. Mitochondrial Metabolites Contribute to Normal Development and Tumorigenesis 
via Regulation of Epigenetics 

The cofactors participating in histone acetylation affect cell fate. For example, α-KG 
generated from glutaminolysis is important for the M2 activation of macrophages, and it 
orchestrates macrophage activation through metabolic and epigenetic reprogramming. 
Glutamine metabolism supports M2 activation by facilitating the demethylation of 
H3K27, which is a repressive epigenetic mark that prevents the expression of M2 marker 
genes [427,428]. Acetyl-CoA, serving as acetyl donors for acetylation and co-factors for 
deacetylase enzymes, is critical in determining both macrophage and dendritic cell differ-
entiation and function [429,430]. The treatment with acetate (a precursor of acetyl-CoA) 
increases H3K9ac and H3K27ac and delays early differentiation in human PSCs and 
mESCs, suggesting that a decline in acetyl-CoA drives the early differentiation in PSCs by 
reducing histone acetylation [376,431]. Therefore, acetyl-CoA is necessary for differentia-
tion via histone-mediated regulation of gene expression in adult stem cells [432]. 

The intracellular metabolite levels are subject to both cell-intrinsic metabolic pathway 
activity and factors in the extrinsic environment such as nutrient availability. For example, 
tissue-specific and systemic nutrient availability modulates stem cell fate via α-KG-de-
pendent dioxygenases, and this links the extracellular cues and cell fate decisions [84]. 
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Figure 3. DNA methylation and histone modification affect normal development and tumorigene-
sis. (A) DNA hypermethylation of tumor suppressor genes and hypomethylation of oncogenes in-
volved with tumorigenesis, tumor metastasis, and tumor drug resistance. DNA demethylation en-
zymes TET1 and TET2 play important roles in cancer stem cells. The loss of TET1/2 leads to hyper-
methylation and enhancement of cancer cell stemness. The status of DNA demethylases regulates 
CSC maintenance and differentiation. (B) The malfunction of HATs often perturbs the appropriate 
gene-expression program, leading to the development of disease. The key enzymes of histone acet-
ylation KATs directly acetylate several important transcription factors to modulate the transcription 
activity and affect cell differentiation and cell homeostasis. The deacetylase sirtuin family affects cell 
fate via deacetylation, demalonylation, and desuccinylation. Histone acetylation is involved in CSC 
activity and drug resistance. 

4. Reagents and Drugs Targeting Mitochondria and Epigenetics for Cancer Treatment 
4.1. Targeting Mitochondrial Metabolites and Enzymes in TCA in Cancer 

Targeting mitochondria in cancer has been reviewed often [9,433–438], and multiple 
mitochondria-targeted drugs have been developed [439–442]. Metabolites and enzymes 
in TCA cycles have been demonstrated to be therapeutic targets in cancers. 

The level of acetyl-CoA is treated as a key indicator of a cell’s metabolic state and a 
second messenger in cells [187], and its fluctuation is associated with gene expression via 
the global changes in histone acetylation, and it promotes the upregulation of cell-migra-
tion-and-adhesion-related genes in glioblastoma [443,444]. Furthermore, acetyl-CoA pro-
duction by specific metabolites promotes cardiac repair after myocardial infarction by his-
tone acetylation [445]. In addition, acetyl-CoA metabolism supports pancreatic tumor-
igenesis, and it is used in histone acetylation and in the mevalonate pathway facilitating 
cell plasticity and proliferation, which suggests potential to target these pathways [446]. 
Acetyl-CoA carboxylase (ACC) is an ATP-dependent carboxylation of acetyl-CoA, and 
this rate-limiting enzyme in de novo fatty acid synthesis has also been demonstrated as a 
cancer therapy target [447]. 

Citrate is a key metabolite that bridges many important metabolic pathways. Abnor-
malities of citrate-metabolizing enzymes such as citrate synthase enzyme and ACL hap-
pen in various cancers [448–451]. Targeting citrate and citrate enzymes is a novel thera-
peutic strategy in cancer treatment [452]. Isocitrate dehydrogenase (IDH) enzymes cata-
lyze the oxidative decarboxylation of isocitrate and therefore play key roles in the Krebs 
cycle and cellular homeostasis. IDH1 and IDH2 catalyze the conversion of isocitrate to 
αKG in the cell cytoplasm and mitochondria, respectively. They have been shown to in-
duce cancer stem cell differentiation successfully in AML patients, and the IDH mutants 
produce oncometabolite d-2-hydroxyglutarate that inhibits downstream 2-oxoglutarate-
dependent epigenetic modifiers, thus resulting in differentiation arrest of blast cells [453]. 
IDH-mutated human malignancies include glioblastoma [212,454], AML [455,456], intra-
hepatic cholangiocarcinoma, chondrosarcoma, and thyroid carcinomas [457,458]. 
Enasidenib and ivosidenib are potent and selective inhibitors of mutant IDH2 and IDH1, 
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respectively, and both drugs have been approved by the Food and Drug Administration 
(FDA) for the treatment of AML [78]. 

The metabolite α-KG is membrane-impermeable, and intracellular α-KG inhibits 
starvation-induced autophagy and it has no direct respiration-inhibitory effect [80]. α-KG 
is an effector of p53-mediated tumor suppression, and the elevated intracellular levels of 
succinate (a competitive inhibitor of αKG-dependent dioxygenases) can blunt p53-driven 
tumor suppression [370]. 

Succinate plays an important role in inflammatory, hypoxic, and metabolic signaling 
[459], and targeting succinate and succinate metabolism can be a potential therapeutic 
method in aortic aneurysm and dissection, and in ischemia/reperfusion injury [460,461]. 
Dimethyl fumarate (DMF), a derivative of the Krebs cycle intermediate fumarate, is an 
immunomodulatory drug used in patients with multiple sclerosis and psoriasis [462,463]. 

Malate is a standard component in fluid therapy within a wide range of medical ap-
plications [464], and sunitinib malate has been used in the treatment of urothelial cancer 
[465]. 

Malate dehydrogenase (MDH) catalyzes the reversible interconversion of malate and 
oxaloacetate and their transport [466], and it has unique pharmacological selective and 
specificity properties and can be used as the potential antiparasitic target for drug devel-
opment [467]. For example, urine malate dehydrogenase 2 can be used as a biomarker for 
the early detection of non-small-cell lung cancer [468]. Oxaloacetate (OAA) is a competi-
tive inhibitor of human lactate dehydrogenase A (LDHA) in cancer cells, and there is an 
inverse correlation between lactate and OAA concentration in cells from patients with 
myeloma and normal healthy individuals, which indicates the relevance of OAA as a reg-
ulator of the Warburg effect in rapidly proliferating cells in humans [469]. Oxaloacetate 
treatment has a neuroprotective effect in rodent models of seizure and neurodegeneration. 
In amyotrophic lateral sclerosis (ALS) mice model, oxaloacetate treatment evaluates the 
neuromuscular function and lifespan [470]. Oxaloacetic acid (OA) is an intermediate of 
citric acid and a potential natural anti-pigmentation agent, and it can inhibit tyrosinase 
[471]. 

4.2. Targeting Epigenetics in Cancer 
4.2.1. Targeting DNA Methylation 

Targeting epigenetics in cancer has emerged as a promising anticancer strategy. The 
analysis of epigenetic changes in DNA may help to identify new druggable targets for the 
treatment of cancer [472,473]. DNA methylation profile alteration leads to DNA instability 
and triggers tumorigeneses. Hypermethylation of tumor suppressors or hypomethylation 
of oncogenes may arise in diseases such as cancers [474–476]. DNA-methylation-targeted 
drugs have been developed widely. Nucleoside-derived inhibitors 5′-AZA, decitabine, 
and zebularine were approved by the FDA for the treatment of various types of cancer 
[477–479]. 
a. Targeting DNMTs 

Since 5′-AZA is unstable and highly toxic to cells, far less toxic DNMT inhibitors were 
developed, including RG108, which is a non-cytidine analog successfully tested in human 
prostate cancer cells, breast cancer cells, and colon cancer cells [480–483]. Hydralazine and 
procainamide act as competitive inhibitors by preferentially binding to DNMT1 [484,485]. 
SGI-1027 and its regioisomer MC3343 cause the degradation of DNMT1 [486], suppression 
of growth of leukemia cell line, and, in osteosarcoma, patient-derived xenograft [487,488]. 
The combination uses of AH507 (JAK 1/2 inhibitor) and SGI-1027 have a synergistic effect 
on the suppression of survival and proliferation of cervical cancer cells [489]. GSK3685032, 
a potent first-in-class DNMT1-selective inhibitor with improved in vivo tolerability, yields 
superior tumor regression and survival mouse models of AML [490]. CM272, a 
G9a/DNMT1 inhibitor, inhibits cholangiocarcinoma tumoroids and xenograft growth sig-
nificantly [491]. UHRF1-DNMT1 is responsible for DNA methylation in DNA replication, 
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and UHRF1 links DNA methylation and histone modifications. The downregulation of 
UHRF1/DNMT1 is upstream of many cellular events, including G1 cell arrest, demethyl-
ation of p16, and apoptosis [492]. UHRF1-DNA binding domain has been proposed as a 
drug target for cancer therapy [493–495]. UHRF1/DNMT1 axis is also a regulator of senes-
cence [496]. 

Besides small molecular inhibition of DNMTs, other strategies to inhibit DNMT1 in-
clude the use of antisense oligonucleotides and miRNAs such as MG98 to suppress renal 
cell carcinoma [497]. Epigallocatechin-3-gallate, a polyphenol flavonoid, is involved in 
both DNA demethylation and modifications of histone acetylation and methylation [498]. 
Procaine (a local anesthetic) is capable of reducing the methylation level of CpG island in 
some cancers such as hepatoma, breast cancer, and gastric cancer [499] by inhibiting the 
binding of DNMT1 to the target genes [486,500]. 

Besides inhibiting DNMTs to suppress DNA methylation, the activation of DNA 
methylation can also be a therapeutic strategy. The DNMT activator budesonide supple-
mentation increases DNA methylation and decreases tumor size [501,502]. 
b. Targeting demethylases 

DNA demethylation, as a potential target for cancer epigenetic therapy, has been re-
viewed before [503]. 

The demethylase TET 2 is an α-KG- and Fe2+-dependent dioxygenase catalyzing the 
iterative oxidation of 5mC, and the mutation and dysregulation of TET2 contribute to the 
development of multiple hematological malignancies [504]. Hydroxymethylation of DNA 
leads to hypomethylation of DNA in lupus [505]. Increased expression of TET enzymes in 
monocytes and T cells leads to abnormal global DNA hydroxymethylation in early RA 
patients, and methotrexate treatment partly reduces the level of DNA hydroxymethyla-
tion in rheumatoid arthritis [506]. TET inhibition by AGI-5198 and HMS-101 compound 
leads to tumor growth suppression in glioblastoma and AML cells [507,508]. In all, mod-
ification of DNA methylation either by hypo- or hypermethylation is effective in different 
types of tumors. 

4.2.2. Targeting Histone Methylation 
Targeting histone methylation has been reviewed [509]. Both histone methyltransfer-

ases and demethylases can be targets in cancer. 
The disruptor of telomeric silencing 1-like (DOT1L), a histone H3K79 methyltrans-

ferase, is a target for many diseases [510]. It sensitizes RB cells to chemotherapeutic drugs 
by impairing the DNA damage response, thereby potentiating apoptosis [511]. Many in-
hibitors were developed to target DOT1L, and among them, EPZ-5676 has been in clinical 
trials, but the clinical result is modest, and long-time treatment leads to drug resistance in 
AML [512–514]. 

Histone demethylase LSDl, the first identified demethylase of histone methylation, 
belongs to the FAD-dependent family of monoamine oxidases [164]. The dysregulation 
and overexpression of LSD1 are hallmarks of a number of human diseases [515]. LSDl 
inhibitor CC-90011 induces the cancer stem cell to differentiation in AML and small-cell-
lung cancer (SCLC) cell lines, with antitumor efficacy, and CC-90011 is currently in phase 
2 trials in patients with first-line, extensive-stage SCLC [515]. 

4.2.3. Targeting Histone Acetylation 
Histone acetylation renders a more relaxed DNA structure to facilitate the binding of 

transcription factors and other proteins for gene expression. Histone acetylation enzymes, 
including HATs and HDACs, are potential drug targets in many diseases [516,517]. 

CBP/p300, functioning as histone acetyltransferases and transcriptional co-factors, 
represents an attractive target for various diseases, including malignant tumor cancers 
such as leukemia and prostate [518–520]. CBP/p300 inhibitors have been widely devel-
oped, including pyrazolone derivatives, oxazolidinedione, barbituric derivatives, etc. 
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[519]. The treatment with p300/CBP inhibitor B029-2 specifically decreases H3K18Ac and 
H3K27Ac and displays significant antitumor effects on hepatocellular carcinoma (HCC) 
cells in vitro and in vivo [521]. Its bromodomain inhibitor CCS1477, identified by CellCen-
tric, is the only CBP/p300 inhibitor currently in clinical trials for the treatment of hemato-
logical malignancies and prostate cancer [519,522,523]. 

Bromodomain and extra-terminal domain (BET) proteins, including BRD1, BRD2, 
BRD3, BRD4, and BRDt, act as “readers” of acetylated histones, and they can recognize 
H3K27ac through their bromodomains [524,525]. BET inhibition has been applied in both 
solid tumors and hematological malignancies [526]. Blocking the binding between BRD4 
and chromatin by BET inhibitor JQ1 inhibits the proliferation and differentiation in BRD4-
dependent tumors [527]. 

Many HDAC inhibitors have been developed and characterized in tumors, thus caus-
ing tumor cell differentiation and apoptosis and resulting in the inhibition of tumor 
growth in animals [528,529]. HDAC inhibitors have been applied in many clinical trials 
for hematologic and solid cancers [530]. Some of the inhibitors have been approved by 
FDA and targeting lactylation suggests novel onco-therapeutic opportunities [268]. His-
tone deacetylation (HDAC) inhibitor mocetinostat synergizes with gemcitabine to inhibit 
in vivo pancreatic xenograft growth by disrupting EMT and the CSC phenotype [531]. 
Inhibition of HDACs with trichostatin A and vorinostat promotes epithelial differentia-
tion, thus disrupting tumor sphere formation and subcutaneous tumor xenograft growth 
[532]. Abexinostat is a potent and pan-HDAC inhibitor with a favorable pharmacokinetic 
profile and no expected drug-drug interactions with pazopanib [533]. 

4.2.4. Targeting Histone Lactylation 
Lactate-derived lysine lactylation in histones serves as a new type of histone mark 

[266]. Lactylation and lactate have been proposed for cancer treatment. Histone lactylation 
could drive oncogene expression and accelerate tumorigenesis by activating the m6A 
reader protein, YTHDF2, which is a novel potential histone lactylation target for treating 
ocular melanoma [266]. The function of lactylation and targeting lactylation in tumorigen-
esis and development deserve further investigation. 

5. Conclusions and Perspectives 
In this review, we have presented an extensive discussion on mitochondria function 

in tumorigenesis from an epigenetic perspective. Even the primary function of mitochon-
dria in cellular metabolism is energy production, and the metabolites generated in this 
process contribute to tumorigenesis by influencing gene expression and cell signaling via 
epigenetic regulations [85]. The interconnected metabolites generated in the TCA cycle 
communicate to the epigenetic machinery by providing precursors for epigenetic modifi-
cations, including DNA methylation and post-translation modification of histones. Post-
translation modification of histones regulates the interaction of histones with DNA and 
the ability to recruit chromatin remodeling complexes necessary for transcription, repli-
cation, recombination, repair, and mitosis. Epigenetic regulation is a dynamic process that 
allows a high degree of plasticity of cell fate in response to tumor microenvironment. 

The key metabolic enzymes in the TCA cycle such as IDH, SDH, and FH are mutated 
in various cancers, and these enzymes and other metabolites or intermediates in mito-
chondria have been proven to be tumor targets. Inhibition of the key enzymes in epige-
netics such as methyltransferases or histone acetylases/deacetylases can reactivate epige-
netically silenced tumor suppressor genes and thus decrease tumor cell growth. Some of 
the inhibitors targeting cancer stemness lead to cancer stem cell differentiation and sup-
press its growth by changing cell fate. Much more research can be observed in studies on 
epigenetics, which plays important roles in human diseases and is demonstrated as ther-
apeutic targets in the treatment and diagnosis of cancer and proliferative diseases. Our 
current understanding and summary are not comprehensive enough to include all kinds 
of epigenetics regulation, but we believe that the recognition of the importance of 
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understanding tumorigenesis, combined with mitochondrial metabolites and epigenetics, 
would be helpful for the design of therapeutic interventions. 
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