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Abstract: Transposable elements (TEs) are mobile genetic elements that constitute a sizeable portion 

of many eukaryotic genomes. Through their mobility, they represent a major source of genetic var-

iation, and their activation can cause genetic instability and has been linked to aging, cancer and 

neurodegenerative diseases. Accordingly, tight regulation of TE transcription is necessary for nor-

mal development. Chromatin is at the heart of TE regulation; however, we still lack a comprehensive 

understanding of the precise role of chromatin marks in TE silencing and how chromatin marks are 

established and maintained at TE loci. In this review, I discuss evidence documenting the contribu-

tion of chromatin-associated proteins and histone marks in TE regulation across different species 

with an emphasis on Drosophila and mammalian systems. 
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1. Introduction 

Eukaryotic genomes are historical records of transposable element (TE) integration 

and mobilization events that occurred over millions of years. TEs and their remnants (de-

generated TE sequences) represent a large fraction of eukaryotic genomes, constituting 

approximately half of the human genome. Transposable elements are mostly repetitive 

DNA sequences, and as their name indicates, they are capable of moving within the ge-

nome. Once considered “junk” DNA, it is now clear that TEs can both negatively and 

positively impact their host genomes (Figure 1A). TEs can threaten genomic stability 

through their ability to move around the genome; the insertion of a TE into a coding gene 

or a gene regulatory element impacts gene structure and expression and can lead to dis-

eases such as cancer, hemophilia or neurodegenerative disorders (Figure 1B) [1,2]. TEs 

can also trigger chromosome deletions, duplications, inversions and translocations 

through ectopic recombination between TEs belonging to the same family [3] (Figure 1C). 

TE-driven genomic rearrangements have been responsible for major genomic expansions, 

and there is evidence that they have contributed to speciation [4–6]. Intact TEs can code 

for proteins that allow them to hop within the genome; however, most TE sequences de-

generate over time and lose this ability [7]. Nevertheless, they can still play important 

roles in the host genome. Some have become host cell genes, a phenomenon known as TE 

domestication. This is the case of the Syncytin genes involved in placental development 

[8] (Figure 1A,D). In addition to producing coding transcripts, some TEs can be tran-

scribed to produce non-coding RNAs. These non-coding RNAs can exert specific biologi-

cal functions, as is the case of a transcript produced by the LINE-1 retrotransposon that 

works as an RNA scaffold during mouse early developmental stages [9] (Figure 1E). Ad-

ditionally, a growing body of evidence shows that TE sequences have been co-opted to 

serve as regulatory elements to host genes. TEs carry cis-regulatory elements that, by du-

plication and insertion, can redistribute transcription factor binding sites and alter gene 

expression patterns. Epigenomic analyses indicate that a large fraction of mammalian 
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regulatory binding sites (promoters/enhancers) have been provided by TE-derived se-

quences (Figure 1F) [10,11]. TE derived cis-regulatory elements can also influence chro-

matin architecture by serving as binding sites for CTCF (the CCCTC-binding factor), a 

sequence-specific DNA-binding protein that contributes to the establishment of chroma-

tin loops [12,13]. Sometimes, TE presence itself can regulate host genome expression by 

modifying chromatin accessibility. For example, TEs can act as heterochromatin nuclea-

tion centers by inducing the spread of silencing marks from the TE to the adjacent cis-

regulatory elements of host genes, thus inducing their repression (Figure 1G) [14]. How-

ever, TEs can also create de novo insulator regions, shielding a gene from heterochromatin 

expansion and allowing its expression [15–17].  

In summary, TEs, through their capacity to impact gene expression patterns and in-

duce genome instability, are an important source of genetic variation and a driving force 

of genomic evolution. Thus, understanding how TEs are regulated is a fundamental goal 

in biology. In this review, following a brief overview of TE classification, I focus on the 

current state of knowledge concerning the chromatin-based mechanisms of TE regulation 

with examples mainly taken from Drosophila, mice and humans.  
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Figure 1. Impact of TEs on their host genome. (A) Examples of how TEs can impact genomes. (B) 

Schematic representation of a how insertion of a transposable element (TE) into the open reading 

frame of the coagulation factor VIII (F8) gene can induce insertional mutagenesis. This mutation 

was found in patients with hemophilia [1]. (C) Schematic representation of TE-induced ectopic re-

combination. (D) An example of TE domestication. Ancient env genes from ERVs have evolved into 

syncytin genes, which are involved in placenta formation [8]. Another example not represented here 

is that of Rag1 and Rag2, which are involved in V(D)J somatic recombination in the immune system 

of vertebrates [18]. (E) An example of a TE transcript (LINE1) acting as an RNA scaffold for chro-

matin regulators and transcription factors. (F) TE sequences carry transcription factor binding sites, 

and their insertion can lead to novel gene-regulatory patterns in the host organism. (G) Example of 

how a TE can modulate chromatin by inducing the spread of heterochromatin. Abbreviations: E, 

exon; TE, transposable element; LTR, long terminal repeat; ORF, open reading frame; UTR, untrans-

lated region; CR, chromatin regulator; TF, transcription factor. 

2. Classes of TEs 

Transposable elements are broadly classified on the basis of their mechanism of transpo-

sition as class I elements (retrotransposons) and class II elements (DNA transposons). Class I 

elements are transcribed into an RNA intermediate and use reverse transcriptase to form a 

new copy of their DNA, which is then inserted into the host genome (copy and paste) (Figure 

2A). Class I elements are subdivided, on the basis of the presence or absence of long terminal 

repeats (LTRs), into LTR and non-LTR elements (Box 1). For LTR elements, the retrotranscrip-

tion occurs in cytoplasmic virus-like particles, and the resulting dsDNA is then imported into 

the nucleus, where an integrase inserts it into the host genome. For non-LTR retrotransposons, 

retrotranscription occurs at the target locus of the host genome, a process known as ‘target-

primed reverse transcription’ [19]. Class II elements encode a transposase enzyme that excises 

the parental sequence from a donor site and reintegrates it into another location in the genome 

(cut and paste) (Figure 2B). Therefore, in contrast to retrotransposons, they generally do not 

accumulate in copy number. However, they have adopted strategies to increase in copy 
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number by transposing during host DNA synthesis from replicated to unreplicated sites or by 

taking advantage of the error-prone homologous recombination repair process [20]. More re-

cently, rolling-circle elements (e.g., Helitrons) have been identified as a distinct group of abun-

dant DNA transposons that do not replicate via the “cut-and-paste” mechanism but through 

a “peel-and-paste” mechanism. It has been hypothesized that the sense strand is “peeled” off, 

serving as a template to synthesize a second strand to form a circular double-stranded DNA 

(dsDNA) intermediate (Figure 2B) [20]. 

 

Figure 2. Schematic representation of the mobilization mechanisms of transposable elements. (A) Sche-

matic representation of the “copy-and-paste” mobilization mechanism of retrotransposons. Retrotrans-

posons replicate through an RNA intermediate and a reverse transcription step. LTR retrotransposons 

produce a double-stranded DNA (dsDNA) intermediate that integrates into a new locus, whereas non-

LTR retrotransposons retrotranscribe directly at the target locus after cleaving genomic DNA, a process 

known as ‘target-primed reverse transcription’. (B) Schematic representation of the “cut-and-paste” and 

“peel-and-paste” mobilization mechanisms of DNA transposons. Both mobilization mechanisms require 

the excision of the transposon DNA from its original locus and its reintegration into another locus, but 
the “peel-and-paste” mechanism requires the formation of a circular double-stranded DNA (dsDNA) 

intermediate. The mechanism of replication of maverick and crypton elements has not been determined. 

(C,D) Classification of eukaryotic transposable elements (as proposed by Wicker et al. [21,22]). Genetic 

structures of representative transposable elements from each order. Yellow boxes represent open reading 

frames (ORFs), and grey boxes represent non-coding domains. Element lengths are not to scale. Abbre-

viations: LTR, long terminal repeat; ORF, open reading frame; UTR, untranslated region; ENV, envelope 

protein; GAG, capsid protein; RT, reverse transcriptase; RH, ribonuclease H domain; ITR, inverted ter-

minal repeat; TR, terminal repeat; EN, endonuclease; YR, tyrosine recombinase; TIR, terminal inverted 

repeats; Tase, transposase; REP, replication initiator; Hel, helicase; C-INT, integrase; ATP, packaging 

ATPase; CYP, cysteine protease; POL B, DNA polymerase B. 
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Independent from their mechanism of amplification, transcription is a crucial step in the 

replication of all groups of transposons. In the case of retrotransposons, RNA serves as a tem-

plate for both the translation of TE proteins and for reverse transcription. For DNA transpos-

ons, transcription allows the expression of the transposase, which is essential for mobilization. 

These observations underline the need to fully understand the mechanisms underlying TE 

transcriptional regulation. 

Box 1. Classification of Transposable Elements. 

The classification of TEs is constantly being updated thanks to the development of 

novel tools that allow for a more refined TE classification and the discovery of new TE 

types. Traditionally, TEs have been classified into two classes on the basis of the DNA 

or RNA intermediate of their element: retrotransposons (class 1) and DNA transposons 

(class 2) (Figure 2A,B). Retrotransposons can be further classified into five orders based 

on their structural organization and mechanistic aspects of replication: long terminal 

repeats (LTRs), long interspersed nuclear elements (LINEs), short interspersed nuclear 

elements (SINEs), DIRS-like elements (DIRSs) and Penelope-like elements (PLEs) (Fig-

ure 2C). LTR elements are characterized by the presence of 5’ and 3’ non-coding long 

terminal repeat sequences that control the expression of retroviral genes. LINEs contain 

a 5’UTR and a polyA signal and encode all the proteins necessary for retrotransposition. 

SINEs are non-autonomous elements, the retrotransposition of which relies on func-

tions coded by coexisting LINEs. DIRS-like elements have diverged from the other re-

trotransposons because they do not possess an integrase (INT) but rather use a tyrosine 

recombinase (YR) to integrate in the host genome. PLEs harbor an ORF coding for a 

protein that contains reverse transcriptase (RT) and endonuclease (EN) domains. PLEs 

are absent from mammalian genomes but can be found in some other eukaryotic ge-

nomes, including Drosophila, where they can cause hybrid dysgenesis syndrome, 

which is characterized by simultaneous mobilization of several unrelated TE families 

in the progeny of crosses involving different strains of the same species. 

DNA transposons (class 2) are subdivided into the following orders: terminal in-

verted repeats (TIRs), Cryptons, Helitrons and Mavericks (Figure 2D). TIRs are charac-

terized by the presence of terminal inverted repeats (TIRs) and encode a transposase 

that mediates excision and integration through binding to TIRs. Cryptons are simple 

transposons consisting in a single ORF coding for a tyrosine recombinase (YR). He-

litrons code for a helicase. They replicate via the “peel-and-paste” mechanism by form-

ing a circular double-stranded DNA (dsDNA) intermediate, earning the name of roll-

ing-circle transposons. Mavericks are large DNA transposons encoding various pro-

teins, including a DNA polymerase and an integrase.  

3. TE Silencing 

TE insertions and ectopic recombination between TEs can be harmful for the host 

genome. Additionally, independently of transposition, excessive TE transcription in the 

germline and in the soma can interfere with host cell function by activating the interferon 

response [23,24]. Therefore, eukaryotic genomes have developed a range of molecular 

mechanisms to silence TEs. Small RNAs are important tools to induce TE silencing in 

many organisms, including nematodes, plants, flies and yeasts. In eukaryotes, several 

classes of small RNAs associate with members of the Argonaute protein family to regulate 

gene and transposon expression both transcriptionally and post-transcriptionally. 

Whereas in flies and mammals, the importance of small-RNA-mediated TE silencing in 

somatic tissues is less clear, PIWI-interacting RNA (piRNAs), small noncoding RNA of 

23−31 nucleotides (nt), play a pivotal role in TE silencing in the germline. Originally iden-

tified in Drosophila [25] but later found to be evolutionarily conserved, piRNAs originate 

from intergenic DNA elements known as piRNA clusters, which are rich in transposon 

sequences. piRNA precursors transcribed from these clusters are exported to the 



Cells 2022, 11, 2501 6 of 29 
 

 

cytoplasm, where they undergo primary piRNA biogenesis [26–34], which consists of 

their endonucleolytic cleavage, followed by loading into Piwi protein. Three PIWI pro-

teins have been described in Drosophila (Piwi, Aubergine (Aub) and Argonaute 3 (Ago3)) 

and mice (Piwil1, Piwil2, and Piwil4), whereas most primates have four PIWI genes 

(PIWIL1-4). The piRNAs loaded onto PIWI proteins undergo 3′ end processing and 2′-O-

methylation at their 3′ termini [35–37]. In germline cells, in addition to primary piRNA 

biogenesis, a secondary piRNA biogenesis pathway known as the ‘Ping-Pong’ amplifica-

tion loop amplifies the piRNA pool to achieve TE post-transcriptional silencing [38,39] 

Mature piRNAs can suppress TE expression either post-transcriptionally by induc-

ing the degradation of TE RNAs (post-transcriptional gene silencing (PTGS)) or transcrip-

tionally (transcriptional gene silencing (TGS)) by driving PIWI to TE transcripts via RNA-

RNA pairing and tethering chromatin modifiers that direct the deposition of repressive 

chromatin marks at TE loci. TE TGS has been found to operate in multiple organisms, 

including flies and mice [26,35–41].  

Many excellent recent reviews describe how small RNAs can induce TE silencing 

[38,42–44]. In this review, after providing a brief overview of chromatin, I will focus on 

describing the proposed mechanisms by which chromatin could influence transcriptional 

TE silencing. 

4. Chromatin  

Finely tuned transcription of transposable elements requires a dynamic regulation of 

chromatin structure, and the precise role of chromatin marks in this process is a subject of 

intense study. Chromatin is organized into structurally distinct domains called hetero-

chromatin and euchromatin. Euchromatin is generally associated with active transcrip-

tion and is characterized by an open, unfolded structure that ensures the accessibility of 

DNA to the transcriptional machinery, thereby favoring gene transcription. Heterochro-

matin is densely packed and mostly transcriptionally silenced. Heterochromatin can be 

further subdivided into constitutive heterochromatin, including gene-poor and repeat-

rich regions proximal to telomeres and centromeres, and facultative heterochromatin, in-

cluding regions interspersed within euchromatin that are silenced in a cell-type-specific 

manner. Heterochromatin plays critical roles in ensuring genome integrity by safeguard-

ing mitotic fidelity, by preventing aberrant recombination between repetitive regions and 

by silencing the expression of transposons and satellite DNA [45].  

Chromatin domains and subdomains of chromatin are distinguished by specific com-

binations of histone post-translational modifications (PTMs), DNA modifications and 

chromatin-bound factors (proteins and RNAs). At the molecular level, several mecha-

nisms are in place to regulate chromatin, including addition and removal of DNA modi-

fications or histone PTMs. Here, I will focus on those chromatin marks and factors that 

are currently associated with TE transcriptional regulation.  

4.1. Brief Overview of the Role of DNA Methylation in TE Silencing  

DNA methylation is a chemical modification that provides essential epigenetic infor-

mation and has been implicated in TE silencing, genomic imprinting, X inactivation and 

regulation of gene expression [46]. Deregulation of DNA methylation results in embryonic 

abnormalities in mice and is a common feature of many cancer types [46]. 5-methylcyto-

sine (5mC) is a widespread DNA modification present in many organisms, from bacteria 

to humans, often in the context of a CpG dinucleotide. However, some eukaryotes, includ-

ing Drosophila melanogaster, Caenorhabditis elegans and Saccharomyces cerevisiae, either lack 

or have very low levels of 5mC [47], indicating that alternative mechanisms exist in these 

organisms to fulfill the role played by DNA methylation in vertebrates. 

Cytosine methylation (5mC) occurs mostly in CpGs dinucleotides, which are abun-

dant in repetitive sequences in intergenic regions, and in so-called CpG islands (CGIs), 

which are short stretches of CpGs nucleotides enriched in promoter regions. CGIs are 

generally refractory to DNA methylation, and, when present, methylation in CGIs 
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strongly correlates with gene silencing [48]. Therefore, DNA methylation is broadly con-

sidered to be a repressive epigenetic mark.  

5mC is deposited by DNA methyltransferases (DNMTs), which, in eukaryotes, are 

classified as DNMT1 or DNMT3. DNMT1 preferentially methylates hemimethylated CpG 

dinucleotides following DNA replication, thus enabling maintenance of 5mC across cell 

division, whereas DNMT3-type enzymes catalyze de novo deposition of 5mC.  

Disruption of these enzymes has provided important information with respect to 

their role in TE silencing. In the plant Arabidopsis thaliana, in the fungus Neurospora crassa 

and in Danio rerio (zebrafish), loss of DNMT function results in accumulation of TE tran-

scripts and increased transposition [49–52]. In Dnmt1 knockout mice (KO), intracisternal 

a particle (IAP) retrotransposons, which are predominantly young and active endogenous 

retroviruses (ERVs), are highly derepressed [53]. Mutation of Dmmt3C, a methyltransfer-

ase specifically expressed in male fetal germ cells, results in activation of evolutionarily 

young families of retrotransposons [54]. Similarly, inactivation of a DNMT cofactor 

DNMT3L in mouse male germ cells results in reactivation of IAP and LINE1 retrotrans-

posons and male sterility [55,56] 

In mammalian somatic cells, DNA methylation of TEs is generally stably maintained. 

Nonetheless, retrotransposon activation has been observed in the brain and is correlated 

with reduced 5mC levels [57]. Furthermore, global DNA hypomethylation is a common 

feature of cancer cells and is associated with aging. Consistently, TEs were found to be 

reactivated in these contexts [58,59]. Whether TE activation associated with aging contrib-

utes to neurodegenerative disorders remains to be established. In cancer, TE expression 

and activation can have a double role. On one hand, TEs can induce new mutations by 

inserting themselves within oncogenes, tumor suppressor genes or their regulatory re-

gions, thus altering their expression [55,60]. On the other hand, TE reactivation can elicit 

an immune response that leads to cell death and sensitizes tumor cells to immunotherapy 

[24,56]. Paradoxically, DNMT inhibitor (DNMTi) efficacy might be partly attributed to TE 

activation and consequent activation of the antiviral response, as DNMTi treatment has 

been shown to lead to an antiviral interferon response [23,61]. 

In addition to 5mC, other DNA modifications have been implicated in TE silencing, 

including N6-methyl adenosine (6mA) and N-4 methylcytosine, although their specific 

roles have not been fully established [62–64]. In this review, I will focus on the role of 

histone marks in TE silencing. To readers who would like to read more about the role of 

DNA methylation in TE silencing, here are some excellent and extensive reviews on the 

subject [46,65,66]. 

4.2. Histone Marks 

Histones are subject to many kinds of post-translational modifications, the most ex-

tensively studied of which are acetylation, methylation, phosphorylation, ubiquitination 

and, more recently, SUMOylation. These chemical modifications confer specific proper-

ties to histones and contribute to either the opening or compaction of chromatin. Histone 

modifications are dynamically regulated by the activity of so-called “writer proteins”, 

which add histone marks, and “eraser proteins”, which remove the marks. Multiple writ-

ers and erasers with varying activities have been identified. Importantly, histone PTMs 

and DNA modifications serve as binding docks for “reader” domain-containing proteins 

that recognize these modifications. These reader proteins can carry additional domains 

capable of modifying chromatin, and/or they can reside in complexes with other proteins 

capable of adding or removing specific marks [67].  

Histone lysine acetylation is associated with productive transcription. Adding an ac-

etyl group to lysines adds a negative charge to the histone, thus reducing the interaction 

between histones and DNA. In addition, the acetylated lysines are recognized by different 

factors, including several bromo-domain-containing proteins that can actively remodel 

chromatin and regulate the recruitment of the transcriptional machinery [68]. Similarly, 

phosphorylation of serines and threonines opens chromatin by adding a negative charge 
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to histones but also by evicting silencing complexes [69]. In contrast, histone methyl marks 

do not alter the charge of histones, and different methyl marks can be found either on 

actively transcribed (e.g., H3K4me3) or in silenced chromatin loci (e.g., H3K9me3). Spatial 

arrays of methylated histone lysines are thought to serve as a scaffold for the assembly of 

repressive and activating complexes. This is also the case for histone SUMOylation and 

ubiquitination, which were originally associated with silencing but that were later found 

to also act as signals to recruit activating complexes [70,71]. 

Other histone modifications have been reported, including crotonylation, butyryla-

tion, propionylation, tyrosine hydroxylation, biotinylation, neddylation, O-GlcNAc, ADP 

ribosylation, N-formylation, proline isomerization and citrullination [72]. However, be-

cause their role in TE regulation is largely unknown, they will not be discussed in this 

review. 

Crosstalk networks exist among histone marks and offer a means of leveraging de-

sired, diversified outcomes. For example, the presence of one specific mark can favor or 

prevent the deposition of a second mark, and combinations of specific sets of marks (chro-

matin states) have been associated with specific functional outcomes [73]. The correlation 

between the presence of specific histone marks and the transcriptional status of a gene 

lead to the hypothesis that histone marks alone and in combination are the basis of a lan-

guage or “code” that instructs changes in gene expression [74,75]. However, this language 

is quite complex, as various combinations of marks can result in similar outcomes, and 

each mark could be interpreted in different ways depending on the local chromatin envi-

ronment, on the 3D folding of the genome and on the availability of effector proteins. This 

rich and complicated language generated by the diversity of histone PTMs confers the 

possibility of modulating and finetuning chromatin to achieve specific outcomes. The role 

played by histone PTMs in TE silencing is only starting to be dissected, and it will be 

discussed in the rest of this review. 

4.3. Roles of Histone Marks 

In addition to DNA methylation, histone modifications have also been shown to play 

a role in TE regulation. DNA methylation often overlaps with histone marks so that the 

two reinforce each other, ensuring stable TE repression [76,77]. However, certain classes 

of TEs seem to be relatively hypersensitive to the loss of either DNA or H3K9 methylation 

in specific developmental contexts. For example, in mouse embryonic stem cells, simulta-

neous knockdown of the three DNMTs only affects IAP expression, whereas individual 

depletion of the histone H3K9 methyltransferase SETDB1 (SET domain bifurcated 1) af-

fects ERV expression [70,71]. Importantly, repressive histone marks might play an essen-

tial role in TE silencing when germ cells and embryos undergo phases of epigenetic re-

programming in which DNA is hypomethylated [78,79]. These early developmental 

phases coincide with a transient upregulation of TE transcription followed by a wave of 

repression. Whereas emerging evidence suggests that regulated TE expression is associ-

ated with normal embryogenesis, excessive and widespread TE deregulation can pose a 

risk with respect to the integrity of the genome [80,81]. Therefore, deposition of repressive 

histone marks could minimize the potentially negative consequences of TE derepression 

and activation in this particularly sensitive stage. Furthermore, histone methyl marks may 

play a prominent role in TE silencing in organisms where DNA methylation is low or 

absent, as is the case in Drosophila.  

4.4. Histone Methylation 

Histone methylation mainly occurs on lysine (K) and Arginine (R) residues. Histone 

methylation influences the transcription of genes by recruiting effector proteins, which in 

turn mediate the assembly of protein complexes that drive gene activation or silencing. 

Histone methylation is dynamic, and its tight regulation contributes to the coordinated 

expression of specific gene networks during normal development. The association of his-

tone Arginine methylation with gene expression is poorly understood; in contrast, a 
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strong correlation has been established between the state of methylation on specific his-

tone lysines and gene transcription. Lysines can be mono-, di- or trimethylated, and de-

pending on the degree of methylation, the residues affected and the chromatin context in 

which the methylation occurs, the presence of the methyl mark can have a positive or 

negative effect on transcription. H3K9 and H3K27 methylation is generally repressive; 

however, whereas H3K9me3 is abundant in pericentric heterochromatin and TEs, 

H3K27me3 is generally deposited in genes located in facultative heterochromatin and si-

lenced in a cell-type-specific manner (Figure 3). In addition to H3K9me2/3 and 

H3K27me3, other histone marks are enriched in heterochromatin, including H4K20me3, 

H3K64me3 and H3K56me3 [45].  

Euchromatin-enriched histone marks include acetylated lysines and methylated 

H3K4, H3K79 and H3K36. Genome-wide studies have shown that H3K4me3 is enriched 

at the transcriptional start site (TSS) of transcriptionally active genes with H3K4me2 and 

H3K4me1 just downstream, creating a gradient of H3K4 methylation [82] (Figure 3). 

H3K4me1 is also enriched in enhancers [83]. Methylated H3K79 and H3K36 are normally 

enriched in gene bodies [84]. Certain genes can harbor simultaneously “repressive” and 

“activating” marks in their regulatory regions (Figure 3). These so-called “bivalent do-

mains” were discovered in lowly expressed developmental genes in embryonic stem cells 

and were found to be enriched in both H3K4me3 and H3K27me3 marks [85]. During cell 

differentiation, the loss of either the activating or the repressive mark primes the gene for 

either activation or repression, depending on the stimulus received [85]. This is a way to 

ensure that the appropriate genes are expressed in each tissue in a timely manner.  

 

Figure 3. Modulation of chromatin organization and gene transcription by histone lysine methyla-

tion. A schematic representation of euchromatin and heterochromatin showing the main lysine me-

thyl marks on histone H3 and their prevalent localization in the genome (euchromatin and hetero-

chromatin). Abbreviations: K, lysine; TSS, transcriptional start site; M, methyl residue. 

4.5. H3K9 Methylation, a Defining Feature of TEs? 

Histone 3 lysine 9 di and trimethylation (H3K9me2/3) is the hallmark of constitutive 

heterochromatin. H3K9 methylation is generally abundant in inactive genes and trans-

posons. H3K9-decorated heterochromatin domains undergo profound rearrangement 

during development, and their dynamic regulation is essential for establishing and main-

taining specific cell fates [86,87].  
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It has been proposed that H3K9me2/me3 induces silencing by serving as a binding 

site to recruit heterochromatin protein 1 (HP1) [88–90]. HP1 molecules multimerize and 

recruit additional chromatin factors to promote chromatin condensation and repression 

of transcription [91,92]. Nevertheless, some genes in heterochromatin can be actively tran-

scribed despite the presence of H3K9 methylation in their gene body. It has been proposed 

that in these cases, H3K9 methylation marks act to suppress spurious transcription de-

rived from TE promoters located in introns and flanking sequences [16]. In mammals and 

in plants, H3K9 methylation is often coupled with DNA methylation. DNA methyltrans-

ferases have been detected in shared complexes with H3K9 methyltransferases, and the 

two appear to mutually bolster their functions to ensure DNA inaccessibility [67].  

In the fission yeast S. pombe, the establishment of H3K9 methylation requires the en-

zymatic activity of one histone methyltransferase (HMTase), the Clr4 protein [90]. How-

ever, in other organisms, including Drosophila and mammals, multiple H3K9 methyl-

transferases exist and share a highly conserved SET domain, which is responsible for their 

catalytic activity. In mammals, the known H3K9 methyltransferases are suppressor of var-

iegation 3-9 enzymes (Suv39h1 and Suv39h2 in mammals, known as Su(var)3-9 in Dro-

sophila), G9a, GLP (G9a-like protein), SetDB1 (SET domain bifurcated 1, known as Eg-

gless in Drosophila) and SETDB2. Studies suggest that each enzyme is partly redundant 

with the other H3K9 HMTs, with a variable degree of redundancy depending on the fam-

ily of TEs and the developmental timing [93]. However, some specificities exist, as Suv39h 

enzymes seem to preferentially catalyze H3K9 trimethylation in constitutive heterochro-

matin; G9a mostly mediates H3K9 dimethylation in euchromatin; and SetDB1, also known 

as Eggless in Drosophila; catalyzes histone 3 lysine 9 trimethylation in transposons. These 

conclusions are based on the fact that Suvar3–9 mutants in Drosophila, as well as double 

Suv39h1 and Suv39h2 loss in mammals, result in a drastic reduction in H3K9 me2/me3 

levels but not H3K9me1 in pericentric heterochromatin [94,95] whereas KO of G9a in ES 

mouse cells results in a reduction in H3K9 methylation, mostly in euchromatin [96], and 

KO of SETDB1 in mouse ES cells and Drosophila ovarian somatic cells results in TE up-

regulation [71,97].  

The activity of H3K9-HMT is counterbalanced by histone demethylases, which re-

move methyl marks from K9 residues. These so-called “erasers” include members of the 

Jumonji (JmjC)-domain-containing family, with JMJD2/KDM4 proteins acting on 

H3K9me2/me3 and JMJD1/KDM3 acting on H3K9me2/me1 [98–100]. Additionally, the ly-

sine-specific demethylase 1 (LSD1/KDM1A) initially identified as an H3K4 demethylase, 

has been subsequently proposed to demethylate H3K9me2/me1 in certain contexts [101]. 

The existence of several enzymes targeting H3K9 complicates the analysis of the role 

of this modification in mammals, and only recently, a compound mutant for the known 

SET-domain H3K9 methyltrasferases (KMTs) (Suv39h1/Suv39h2, Eset1/Eset2 and 

G9a/Glp) was generated in mouse embryonic fibroblasts (MEFs) [93]. In these mutant 

cells, H3K9 methylation levels were undetectable, and heterochromatin organization was 

strongly affected. RNA-Seq experiments showed the derepression of multiple classes of 

retroelements. Interestingly, comparison of the compound mutants with mutants lacking 

the function of each set of paralogous H3K9 KMT suggests that distinct enzymes have 

both specific and overlapping functions, with, for example, the ERV1 family being more 

sensitive to Eset1 depletion and the ERVK family to G9 and Glp depletion [93].  

In C. elegans, only two H3K9 methyltransferases are known (MET-2 and SET-25), and 

their compound mutation results in decreased H3K9 methylation, correlating with in-

creased expression of a subset of transposons and satellite repeats. MET-2/SET-25 double 

mutants are viable, but they are sterile, and they are subject to increased genome instabil-

ity [94,102]. Whereas MET-2 appears to be essential for the repression of satellite se-

quences, SET-25 represses a subset of DNA and RNA transposons [94]. 

Depleting histone methyltransferases to study transposon regulation, although use-

ful, has limitations. Many of these KMTs have other substrates apart from histones, con-

founding the analysis of the biological contribution of the H3K9 methyl mark per se. 
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Although mutating the H3K9 residue is difficult in metazoans due to the repetitive nature 

of their histone genes, generation of histone mutants is possible in some animal models 

and has provided insights into the role of H3K9 methylation in transcriptional silencing. 

For example, Drosophila H3K9R mutant flies display strongly reduced HP1 deposition in 

pericentric heterochromatin, as well as increased expression of transposable elements and 

piRNAs [95].  

4.6. Role of the KRAB-Znf Family of Transcription Factors in the Recruitment of H3K9 

Methyltransferases 

Although H3K9-HMTs and HP1 proteins can bind DNA, it is believed that the spe-

cific recruitment of these enzymes at TE loci mostly relies on additional factors, such as 

small RNAs and transcription factors. 

Several members of the Krüppel-associated box zinc-finger protein (KRAB-Zfp) fam-

ily of transcription factors have been shown to bind retrotransposon sequences in mice 

and humans [103–106]. It has been hypothesized that KRAB-Zfp proteins have evolved to 

recognize the different retrotransposons present in eukaryotic genomes [103]. Examples 

of KRAB-Zfps that bind retroelements are Zfp809 and Zfp708. These proteins, through 

their KRAB domain, are able to recruit the adaptor protein TRIM28/KAP1 (KRABS-asso-

ciated protein 1), which, in turn, recruits SETDB1 [107–111]. In humans, SETDB1 recruit-

ment by KAP1 is mediated by autoSUMOylation of its bromodomain [112]. SETDB1 de-

pendent H3K9 methylation allows for the recruitment of HP1 and de novo DNA methyl-

ation [113] (Figure 4A). Another interaction partner of KAP1 is the human silencing hub 

(HUSH) complex (composed of TASOR, Mpp8 and periphilin 1), which recruits SETDB1 

and an ATP-dependent chromatin remodeler, MORC2 [114,115], and was shown to si-

lence evolutionarily young genes and retrotransposons [116]. A recent study suggests that 

the HUSH complex contributes to genome surveillance by silencing intronless invading 

DNA, including pseudogenes and retrogenes derived from recent transposition events 

[117]. 
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Figure 4. Models of chromatin-mediated transposon-silencing mechanisms. (A) Schematic repre-

sentation of the factors implicated in TE silencing in Drosophila (B) and in mammals. Multiple 

mechanisms exist to repress TEs both in flies and in mice, including piRNA-directed silencing me-

diated by the Piwi/MIWI2-piRNAs complex, DNA methylation-dependent silencing mediated by 

DNMTs (in mammals), KDM1a-dependent histone demethylation and KRAB-ZNF-KAP1-mediated 

silencing. Whether these layers of control of TE silencing collaborate on the same TEs or act on dif-

ferent TEs or in different cell types/tissues remains to be fully elucidated. 
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4.7. piRNA-Dependent Recruitment of H3K9 Methyltransferases 

Small-RNA-dependent recruitment of chromatin factors at TE loci constitutes an im-

portant mechanism of TE silencing in many organisms. It has been proposed that small 

RNAs might be necessary for the initial establishment of repressive H3K9 marks at TE loci 

both in germline and somatic cells [118,119]. In Drosophila, piRNA-loaded Piwi, in com-

plex with Panoramix/Silencio (Panx) and Asterix (Arx), recognizes nascent TE transcripts 

via RNA–RNA pairing [35,97,120–123]. This piRNA-guided target recognition complex 

(Piwi/Panx/Arx) relies on the activity of the histone H3K9 methyltransferase Eggless (Egg) 

and its cofactor, Windei, on TE loci to promote TE silencing [97,120,124,125]. Additionally, 

it has been shown that SUMOylation by the SUMO E3 ligase Su(var)2-10 is also important 

for TE silencing, and it has been proposed that Su(var)2-10 recruits the histone H3K9 me-

thyltransferase Eggless (Egg) and its cofactor, Windei, to TE loci, thus promoting TE si-

lencing (Figure 4A) [16]. Recent data also show that Panx is SUMOylated, although in a 

Su(var)2-10-independent manner, and that Panx SUMOylation, which is Piwi-dependent, 

is required for its interaction with the zinc finger protein small ovary, a factor implicated 

in heterochromatin formation [126]. However, specific depletion of Piwi in the nucleus 

results in a reduction in H3K9 methylation that is limited to a subset of TE families, indi-

cating that Piwi-independent mechanisms exist [127]. Interestingly, Piwi depletion also 

results in an increase in the activating H3K4me2 mark at some TE loci [127], suggesting 

that Piwi represses a subset of TEs through association with protein complexes responsi-

ble for maintaining low levels of H3K4me2. This possibility is supported by an involve-

ment of the histone demethylase dLsd1 in TE silencing. This demethylase acts on 

H3K4me2 residues, and depletion of dLsd1 activity has recently been shown to provoke 

an increase in the transcription of many TE families in the ovaries, both in the germline 

and in somatic cells [128,129]. Additionally, repression of a reporter construct by artificial 

tethering of Panoramix is impaired by knockdown of dLsd1 and its cofactor, coREST [120]. 

Furthermore, the histone deacetylase Rpd3, a known partner of coREST, has been impli-

cated in TE silencing, together with the chromatin remodeler mi-2 and the zinc-finger 

transcription factor MEP-1 [130]. All these factors have been shown to physically interact 

with components of the piRNA-guided target recognition complex in Drosophila 

[128,130]. Therefore, a model to achieve silencing of at least some TE loci could rely on the 

sequential activity of multiple chromatin factors, whereby dLsd1 would demethylate 

H3K4me2, which could in turn allow for H3K9 deacetylation by Rpd3 and subsequent 

H3K9 methylation by Egg. Such a scenario would limit the level of activating marks and 

increase the levels of repressive marks, potentially promoting TE silencing. It will be in-

teresting to determine the hierarchy of events that leads to silencing and to determine 

whether all these factors are recruited by the piRNA-guided target recognition complex. 

Additionally, multiple recent studies implicate Nfx2, a paralog of the nuclear export factor 

Nfx1, in Panoramix-mediated, piRNA-guided TE silencing. Nfx2-containing complexes 

were named either SFiNX (silencing factor interacting nuclear export variant), PICTS 

(Panx-induced cotranscriptional silencing), PPNP (Piwi–Panx–Nxf2– P15) or Pandas 

(Panx–Nxf2 dependent TAP silencing) by the four groups that reported them [131–134]. 

More recently, the dynein light-chain LC8/Cut-up was shown to interact with Panx and 

to drive the dimerization of the PICTS complex. The authors also showed that Cut-up is 

essential for Panx-dependent TE silencing [135]. Further investigations will be required to 

determine the precise roles of these factors in TE silencing and heterochromatin formation.  

In mouse germline cells, piRNA-loaded MIWI2, in addition to allowing the deposi-

tion of repressive chromatin marks, also allows de novo DNA methylation [26]. It has 

been proposed that MIWI2 recruits DNMTs at TE loci (Figure 4B), but the mechanisms 

remain to be elucidated. Two recent papers shed some light on the mechanisms by show-

ing that in the mouse male germline, two MIWI2-associated factors, SPOCD1 and TEX15, 

are required for de novo DNA methylation of a subset of TEs [136,137]. 

In summary, a feature of TE silencing pathways in multiple species is that hetero-

chromatin formation is initiated by recognition of nascent transcripts by a PIWI family 
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protein bound to a small RNA. Thus, nascent TE transcripts contribute to TE silencing. 

Interestingly, although both TE sequences and piRNA clusters are marked by H3K9 meth-

ylation, TEs are silenced, whereas piRNA clusters produce piRNA precursors. In Dro-

sophila, the different outcomes (silencing vs. transcription) could be due to the fact that 

H3K9 methyl marks are read by HP1 at TEs and by Rhino, an HP1 paralog, at a subset of 

piRNA clusters [138–140]. Another layer of control could be at the level of nuclear export, 

because whereas piRNA precursor are normally exported in the cytoplasm [141,142], a 

study showed that TE transcripts export is inhibited by Nxf2 [131]. In any case, it remains 

to be determined to what extent H3K9 methylation is a cause versus a consequence of TE 

silencing. Studies have shown that the presence of H3K9 methylation does not always 

preclude transcription, especially when located outside of the TSS, and some heterochro-

matic genes require H3K9 methylation for their proper expression [35,143]. Moreover, ge-

nome-wide studies have revealed that TEs are marked by a complex pattern of chromatin 

modifications, including H4K20, H3K27 and H4R3 methylation; histone biotinylation and 

sumoylation; and the deposition of H3.3 variants [144].  

4.8. H3K27 Methylation, an Ancestral form of TE Silencing? 

H3K27 methylation is deposited by the catalytic subunits of the polycomb repressive 

complex 2 (PRC2) (EZH1 and EZH2 in humans), which methylate K27 [145] through their 

SET domains. The PRC2 complex is crucial for maintenance of stable differentiation [146], 

and mutations of PRC2 components have been identified in a variety of human cancers 

[147]. Whereas H3K27 methyl marks are associated with silent protein-coding genes and 

are a key component of facultative heterochromatin, they are not abundant at TE loci. 

However, PRC2 and H3K27methyl marks can be relocalized to repeat regions when DNA 

methylation and/or H3K9 methylation are perturbed either through mutation of writers 

or of readers of these marks or during early mammalian developmental, when DNA hy-

pomethylation occurs naturally [78,148]. Therefore, H3K27me3 could be used as a backup 

mark for TE silencing in situations where H3K9 methylation and/or DNA methylation are 

impaired [149]. Interestingly, TEs of some ancestral eukaryotes, including ciliates and bry-

ophytes, are marked by the presence of H3K27 methylation domains [149]. Similarly, in 

Paramecium tetraurelia, H3K27 and H3K9 methyl marks coexist in multiple TE families, 

and the ortholog of Ezh2, Ezl1, is implicated in their silencing [150]. Ezl1 interaction with 

components of small RNA/RNAi machinery appears to be responsible for its targeting of 

TEs [151]. It has been hypothesized that H3K27 methylation is an ancestral mechanism of 

TE silencing that has been largely replaced by a more stable silencing by H3K9 methyla-

tion and DNA methylation at the onset of multicellularization when the disadvantages of 

TE activation outweigh their possible advantages, especially in the germline. H3K27 

methylation could still play a role in some TEs in mammals, as Leeb and colleagues 

showed that IAP and MLV elements are derepressed in double-knockout mouse ES cells 

for a component of the PRC1 and for a component of the PRC2 complex [152]. 

4.9. Role of Histone 4 in TE Silencing 

Trimethylated histone H4 lysine 20 (H4K20me3) is enriched in heterochromatin, and 

H4K20me3 peaks are associated with LINEs, ERVs, satellite DNA and low-complexity 

repeats in human sperm and somatic (K562) cells [153]. In mice, H4K20me3 is catalyzed 

by the activity of SUV420H1 and SUV420H2 enzymes, and knockout of SUV420H2 in 

mouse ES cells results in derepression of repetitive DNA elements [154]. H4K20me3 is 

often found to co-occur with H3K9 methylation and DNA methylation in repetitive ele-

ments [144,155,156]. It has been proposed that H3K9 methylation acts upstream of H4K20 

methylation, as depletion of K9 histone methyltransferases prevents the trimethylation of 

H4K20 by SUV420H1 and SUV420H2 in repetitive regions [71,157,158].  

However, at specific loci, H4K20me3 can occur independently of H3K9me3, as is the 

case for the Charlie DNA transposon family in mouse ES cells, IAP retrotransposons in 

quiescent cells and in young DNA transposon subfamilies in early developmental stages 
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of Xenopus tropicalis [159]. An independent study showed that the DNA methylase 

DNMT1 directly recognizes the H4K20me3 mark via its first bromo-adjacent homology 

domain (DNMT1BAH1), and this association potentiates the enzymatic activation of 

DNMT1 and could stabilize the repression of the LINE1 element [156]. 

H4K20 methylation is not the only H4 modification implicated in TE silencing. ChIP-

Seq analysis in murine embryonic stem cells (ESCs) revealed an enrichment in dimethyl-

ation of arginine 3 on histone 4 (H4R3me2), a mark associated with transcriptional repres-

sion in LINEs, SINEs and LTR transposons [144,160]. Consistently, conditional loss of the 

protein arginine methyltransferase 5 (PRMT5), which is responsible for H4R3 methyla-

tion, in primordial germ cells (PGCs) causes upregulation of LINE1 and IAP transposons. 

It is important to highlight that PRMT5 depletion in PGCs also results in sterility and ac-

tivation of a DNA damage response [161]. The authors proposed that PRMT5 is involved 

in guaranteeing transposon silencing and maintenance of genome integrity at times when 

the DNA is hypomethylated [161]. 

4.10. Sumoylation 

Small ubiquitin-like modifier (SUMO) is a highly conserved, ubiquitin-like small pro-

tein. SUMO covalent attachment to target proteins modulates their function. SUMO is 

added to its targets through a conjugation cascade implemented by the activities of E1 

(activating), E2 (conjugating) and E3 (ligase) enzymes [162]. This post-translational mod-

ification (PTM) can be reversed by SUMO-specific proteases [163]. 

SUMOylation has been shown to play a role in the formation of heterochromatin 

from yeast to mammals [112,164–169], and a genome-wide screen in Drosophila identified 

components of the SUMO pathway as factors required for TE repression [122]. In addition, 

it has been shown that auto SUMOylation of KAP1 in humans and Su(var)2–0 in Drosoph-

ila is required for SetDB1 recruitment in TEs. Additional SUMOylated proteins beyond 

KAP1 and Su(var)2–10 might also be required for SetDB1 recruitment and/or for TE re-

pression. Accordingly, the “SUMO spray” hypothesis posits that SUMOylation of multi-

ple proteins containing the rather common SUMOylation consensus sequence (including 

histones) could collectively contribute to the recruitment and maintenance of repressive 

effector complexes in TEs [16,170]. This hypothesis is in line with recent findings demon-

strating that chromatin bound Panx is SUMOylated in a Piwi-dependent manner and that 

Panx SUMOylation is required for its interaction with the corepressor factor small ovary 

(Sov) [126]. 

4.11. “Active” Histone Marks at TE Loci 

TEs are not universally repressed, as shown by an increasing number of studies re-

vealing that TEs can be activated in stage-specific patterns [81,171]. For example, in the 

earliest stages of mouse development (from zygote to blastocyst stage), many retrotrans-

posons are actively transcribed and contribute to embryonic development [9,172]. In the 

human and Drosophila brain, some retrotransposons are not only expressed, but they can 

also actively transpose, and it has been proposed that they contribute to the diversification 

of neuronal cell populations [173,174]. Additionally, many TEs have been shown to be 

reactivated under pathological conditions, including cancer [175–177]. However, the 

mechanisms underlying their dynamic regulation remain largely unknown. 

Analysis of ChIP-Seq data from mouse ESCs shows that whereas TEs harbor repres-

sive marks, they can also be labeled by a wide array of active marks, including histone 

acetylation, as well as H3K4me1 and me3 [144]. Quantification of the levels of the various 

chromatin marks at TEs in different human tissues and developmental stages shows that 

although a median of only 8% of TEs are in an active state in each epigenome, on average, 

49% of TEs can be in an active state in at least one genome. Certain classes of TEs (notably, 

SINEs), certain tissues (brain and blood) and cancer cell lines are enriched relative to other 

classes/tissues for active marks [178]. Interestingly, ChIP-Seq data in ESCs show that re-

pressive and active marks coexist for some TEs [144]. Although this coexistence could be 
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an artifact reflecting the difficulty of mapping reads to a specific TE within a repetitive 

family, analyses of unique regions close to TEs obtained by qPCR amplification indicate 

that H3K9me3 and H3K27ac do coexist at some of the loci tested. Re-ChIP would be 

needed to verify whether the coexistence of these marks is due to a pooling effect, as the 

ChIP-Seq data were obtained from pooled cells. If confirmed, the coexistence of repressive 

and activating marks, the so-called bivalent domains, in some TEs in ESCs cells might 

mean that these TEs are kept in a poised state to be either quickly activated or repressed 

depending on the context [144]. Intriguingly, ChIP analysis of H3K9me3 and H3K4me3 in 

early mouse embryogenesis shows that these two marks are enriched in IAPs—LINE-1 

and SINE B2—in the two-cell stage, whereas by the eight-cell stage, H3K4me3 levels have 

decreased and H3K9me3 levels remain unchanged [179]. Given that these TEs are highly 

expressed in the two-cell stage and their expression declines in the eight-cell stage, the 

authors suggest that their silencing in this developmental stage is a consequence of the 

loss of the activating marks rather than to the acquisition of H3K9 methyl marks [81]. 

These data thus suggest that the expression of some repetitive elements may be regulated 

by methylation and demethylation of H3K4.  

4.12. H3K4 Methylation  

H3K4 methylation is a mark that strongly correlates with active transcription. In bud-

ding yeast, a single SET1 methyltransferase is charged with all H3K4 methylation. In con-

trast, Drosophila possesses three H3K4 HMTs (dSET1, TRX and TRR), whereas further 

expansion in vertebrates has resulted in six H3K4 HMTs (SETD1A, SETD1B, MLL1, MLL2, 

MLL3 and MLL4). These enzymes play important and non-redundant roles during devel-

opment, and many of them have been implicated in human diseases [69,180]. The en-

zymes responsible for removing the methyl marks from H3K4 are the histone demethyl-

ase KDM5 and LSD1, which remove H3K4me3/me2 marks and H3K4me2/me1 marks, re-

spectively. Studies in a variety organisms suggest an important role of LSD1 in TE silenc-

ing. Transcriptomics analysis performed in murine ES cells and in Drosophila ovaries 

showed that KDM1A/dLsd1 depletion leads to increased expression of transposable ele-

ments [128,129,181]. Upregulation of transposable elements is associated with an increase 

in H3K4 methylation at target TEs [128,181], suggesting that the catalytic activity of 

KDM1A might be required for TE silencing. Furthermore, KDM1A/LSD1 was shown to 

physically interact with two important players of TE silencing, KAP1 in mice [181] and 

Piwi in Drosophila, although it remains to be established whether the interaction between 

Piwi and dLsd1 is direct [128]. Another study in mice showed that KDM1A null oocytes 

give rise to zygotes that are arrested by the two-cell stage and that this arrest is accompa-

nied by perturbation in the expression of retrotransposons [182]. Importantly, in human 

cells, KDM1A inhibition causes TE reactivation, which in turn triggers an immune re-

sponse that renders cancer cells more susceptible to immunotherapy [24]. Together, these 

data raise the possibility that active demethylation of H3K4 marks by LSD1 is required for 

silencing of transposable elements.  

Conversely, depletion of the H3K4 methyltransferase MLL2 in mouse ES cells results 

in a decrease in H3K4me3 in a subset of young L1 subfamilies. This catalytic activity seems 

to be required for expression of these young L1s, as overexpression of enzymatic dead 

MLL2 results in downregulation of their expression [183]. 

4.13. H3K36 Methylation 

H3K36me3 is enriched in gene bodies, where it is thought to prevent cryptic tran-

scription, whereas H3K36me2 is mainly found at TSS and intergenic regions and is re-

garded as an activating mark [69]. However, one recent study in Drosophila showed that 

large H3K36me2 domains are present in pericentromeric regions enriched for TE se-

quences and that H3.3K27M and H3.3K36M mutations cause a redistribution of H3K36 

methylation marks away from transposon-rich regions, as well as deregulation of TEs 

[184]. This work raises the intriguing possibility that H3K36me2 could act as a repressive 
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mark at TE loci, either directly or indirectly, through crosstalk with the heterochromatin 

machinery. 

4.14. H3.3 

H3.3 is a variant of the canonical H3.1 and H3.2 histone and differs from them only 

by four or five amino acids. In contrast to H3.1 and H3.2, which can only be incorporated 

into chromatin in the S phase, H3.3 can be deposited throughout the cell cycle [185]. H3.3 

has been generally associated with gene activation. However, in mouse embryonic stem 

cells, H3.3 localization is not limited to euchromatic genes but intersects with H3K9me3-

marked ERVs. Importantly, in H3.3 KO ES cells, the levels of H3K9me3 are reduced in 

TEs normally harboring H3.3 and correlate with derepression of their adjacent genes and 

with activation of IAP [186]. The authors propose that H3.3 deposition at TE loci precedes 

H3K9 methylation and contributes to the silencing of a subset of TEs [186] 

4.15. Histone Acetylation 

Histone acetylation is a hallmark of transcription, as it is widely correlated with ac-

tively expressed genes; however, genome studies show that some transposable elements 

can also carry histone acetyl marks [144,178]. For example, ChIP-Seq analysis of H3K9ac 

distribution in A. thaliana revealed that although the majority of the signal was located in 

actively expressed genes, approximately 300 TEs were marked by H3K9 acetylation [187]. 

In Arabidopsis, this mark is removed by HDA6, a histone deacetylase that has been im-

plicated in TE silencing [188,189]. Similarly, the Drosophila histone deacetylase Rpd3 has 

also been shown to contribute to TE silencing [130]. Interestingly, treatment with the 

HDAC inhibitor valproic acid (VPA) increases the chromatin accessibility of SINE ele-

ments in the adult visual cortex of mice [190]. Although the data are still sparse, it is plau-

sible that histone acetylation would mark active transposons in specific developmental 

times, such as in preimplantation embryos when some TEs are actively transcribed. Fur-

thermore, the implication of HDACs and other “erasers” in TE silencing indicates that, at 

least in some cases, TE silencing needs to be actively maintained through the continuous 

removal of active marks. 

4.16. The Emerging Role of Nuclear Architecture  

Chromosome conformational capture and microscopy-based techniques have re-

vealed that active and inactive chromatin domains tend to separate in space. Heterochro-

matin regions tend to cluster, forming tridimensional structures defined as “B” compart-

ments, whereas active regions segregate in space into “A” compartments [191,192]. Within 

these compartments, chromatin folds into smaller domains that preferentially interact 

with themselves, commonly defined as topologically associating domains (TADs) 

[191,192]. 

The three-dimensional (3D) structure of the genome can influence gene expression, 

but its specific role in TE regulation has received little attention to date. 

High-throughput chromosome conformation capture (Hi-C) in Drosophila ovarian 

cells depleted of Piwi shows that whereas long-range contacts are minimally affected by 

Piwi KD, short-range intra-TAD interactions in a subset of piRNA-targeted TEs are 

strongly decreased [193]. Similar results were obtained upon knockdown of Piwi cofactor 

Nxf-2 [193]. Using a tethering system to monitor Piwi–piRNA-mediated reporter silencing 

in ovarian cells, the authors showed that the increase in H3K9me3 and H1 mark is pre-

ceded by a decrease in H3K27 acetylation and H3K4me3 levels. Similarly, they observed 

that changes in nuclear localization precedes changes in chromatin conformation [193]. 

Therefore, they propose that Piwi–piRNA-mediated TE silencing occurs in a stepwise 

manner, whereby removal of active histone marks and relocalization within the nucleus 

is followed by an increase in repressive histone marks and chromatin conformation 

changes, thus proposing that Piwi triggers spatial regulation of TE loci [193]. 
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Additionally, TEs contain functional regulatory sequences that could impact chro-

matin folding. These include binding sites for CTCF, which has a known role in chromatin 

loop and domain boundary formation. A recent paper provides evidence that in humans 

and mice, CTCF sites derived from TEs contribute to loop formation and that deleting two 

of these TEs in human cell lines eliminates these loops [194]. Based on an example in which 

TE deletion results in a loop shift to an alternative, ancient TE-derived CTCF site nearby, 

the authors argue that TE transposition could provide redundant CTCF motifs to assure 

the stability and robustness of 3D folding [194]. Confirming this intriguing possibility will 

likely require directed mutation of TE-derived CTCF sites. 

4.17. Interplay between m6A RNA and Chromatin at TE loci 

Similarly to DNA and protein, RNA can be modified by distinct types of modifica-

tions. One such modification, N6 methyladenosine (m6A), was recently linked to TE regu-

lation. m6A is a modified base that is present in many coding and non-coding RNAs, pre-

dominantly at stop codons and 3′UTRs [195–197]. The presence of the m6A mark has been 

shown to influence gene expression and to play a role in early development and in cancer 

[198]. At the molecular level, this modification is co-transcriptionally deposited by me-

thyltransferase-like 3 (MTTL3) in complex with its cofactor, methyltransferase-like 14 

(METTL14), or by methyltransferase-like 16 (MTTL16) [199–201]. More recently, another 

enzyme, methyltransferase ZCCHC4, was shown to be able to deposit this mark [202]. 

Conversely, m6A can be erased by the m6A demethylase fat mass and obesity-associated 

protein (FCO) [203,204] or AlkB homolog 5 (ALKBH5) [205]. Additionally, many proteins 

are able to read this modification, including the YT521-B homology (YTH) family proteins 

and insulin-like growth factor-2 mRNA-binding protein (IGF2BP) family proteins [206]. 

Genome-wide analysis of METTL3 localization in mouse embryonic stem cells 

showed that METTL3 primarily localizes in heterochromatin and that it is enriched in IAP 

retroelements [207]. The authors then generated Mettl3 KO cells and observed that these 

cells featured significant decreases in H3K9me3 and H4K20me3 on IAP elements, which 

correlated with increased transcript levels. This increase was not due to altered RNA sta-

bility but, rather, to chromatin changes [207]. Consistently, Mettl3 interacts with SetDB1 

and TRIM28. An independent study by Chelmicki et al. also reported significant upregu-

lation of IAP transcripts upon acute METTL3 and METTL14 degradation; however, the 

authors did not observe changes in chromatin marks at IAP loci in the short term [208]. 

Both studies revealed that IAP transcripts carry m6A marks recognized by Ythd-domain-

containing proteins, and Chelmicki et al. showed that m6A marks decrease IAP transcript 

stability [208]. Another study showed that Ythdc1 KO in mESC cells also results in TE 

upregulation [209]. Through a series of genome-wide approaches (RIP-Seq, ChIP-Seq and 

ChiRP-Seq), Liu and colleagues found Ythdc1 to be enriched in retrotransposons, such as 

IAP and LINE1, with concurrent enrichment of H3K9me3, m6A marks and SETDB1 at 

these loci [209]. These epigenomic analyses and other biochemical evidence suggest that 

Ythdc1 mediates the establishment of H3K9me3 marks at TEs through its binding to m6A-

modified LINE1 transcripts. [209,210]. In addition, Liu et al. and Chen et al. independently 

showed that Ythdc1 loss affects the transcription of genes implicated in the two-cell em-

bryo (2C) program [209,210] through m6A-modified, LINE1-dependent silencing of the 

Dux locus, a transcription factor-coding gene, which is essential for two-cell fate and 

which was previously shown to be regulated by LINE1 RNA [9].  

Although some discrepancies between the studies need to be resolved, globally avail-

able evidence indicates that m6A-modified transcripts derived from TEs can influence TE 

expression and heterochromatin deposition both in cis and in trans contexts. These recent 

findings pave the way to a more detailed and mechanistic study of the role of “epitran-

scripts” in the control of gene and TE expression. 
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5. Summary, Significance and Future Directions 

In summary, it is clear that chromatin plays a significant role in the regulation of TEs. 

Nevertheless, many aspects of this regulation remain to be identified. One important point 

to address is to what extent histone marks play a causal role in TE silencing/activation. 

For example, although several studies in multiple organisms show that H3K9 methylation 

is a hallmark of TEs, some studies show that H3K9 methylation is not sufficient to ensure 

silencing of TEs and may not always be required. The precise cascade of events that leads 

to TE silencing in different contexts and the mechanisms responsible for the maintenance 

of this silencing and for their transgenerational inheritance remain elusive. Another im-

portant mechanistic question concerns the dynamics of TE regulation during develop-

ment and in adult cells: which classes of TEs are expressed and in which developmen-

tal/pathological contexts? What is their biological role? How exactly are they dynamically 

regulated, and how is TE silencing maintained? Because nascent TE transcripts are re-

quired to induce silencing, it is possible that a certain level of active marks is present in 

the initial stages of silencing and that they are removed by erasers to allow for the depo-

sition of H3K9 methylation and DNA methylation, as well as the silencing of TE loci, 

which are then stably maintained by repressive complexes. Alternatively, the process 

might be more dynamic, and the balance between active and repressive marks may need 

to be continuously maintained by the interplay between “erasers” and “writers”. Study-

ing this interplay between histone “writers” and “erasers”, including histone methyltrans-

ferases and demethylases, in TE silencing could provide some answers to this question. 

Additionally, the role of TAD and 3D chromosome organization in TE silencing is just 

beginning to be explored, as is the issue of whether 3D conformation affects integration 

sites. Similarly, it will be important to determine the impact of TE integration on local 

folding.  

There are more than 1000 classes of TEs present in many copies, and some studies 

show that they are differentially regulated and can harbor distinct sets of chromatin 

marks. Nevertheless, which combination of marks is present in which context in a given 

specific TE is unclear. Importantly, deciphering the language behind the complex of epi-

genetic marking of TEs will provide insights into the regulatory mechanisms governing 

this still “dark” part of the genome. One major barrier to the bioinformatic analysis of TE 

sequences is their repetitive nature [211]. Advances in genome-wide technologies, as well 

as the development of new experimental and computational strategies to solve the 

longstanding issue of TE mapability, have the potential to further expand our understand-

ing of the role of chromatin in TE regulation and shed light on the biological impact of 

TEs in eukaryotic genomes. Furthermore, the development of single-cell RNA-Seq 

(scRNA-Seq) strategies has allowed for the monitoring of gene expression at single-cell 

resolution, providing a powerful tool to observe cell activity and study cell-to-cell heter-

ogeneity. However, in the majority of studies performed using scRNA-Seq technologies, 

TEs have been overlooked. Recently, two new algorithms were developed that can quan-

tify TE expression in scRNA-Seq datasets [212,213]. Using these tools, the authors found 

that many TEs are specifically expressed in different cell types not only during embryonic 

development but also in mature somatic cells [212,213]. Developing tools to analyze the 

pattern of expression of TEs across different cell types and developmental stages will be 

essential to establish the contribution of TEs to cellular heterogeneity and to disease.  

In recent years, it has become evident that TEs become derepressed and active in 

many diseases, including cancer and neurodegenerative disorders. In cancer cells, in-

creased TE expression and reactivation correlates with the loss of repressive chromatin 

modifications [214]. TE transposition can cause new mutations, as shown in colon cancers, 

where LINE1 insertions were found to compromise the function of the tumor suppressor 

adenomatous polyposis coli (APC) [215,216]. TE transcription can also induce the activa-

tion of neighboring oncogenes, a process known as onco-exaptation. A large-scale study 

examining RNA-Seq datasets from more than 7000 tumor samples revealed at least one 

onco-exaptation event in half of the tumor samples [176]. In addition to disrupting the 
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sequence and/or expression of tumor suppressor genes and oncogenes, TE reactivation 

and derepression can affect the host genome in other ways. Expression of TE-derived pro-

teins, such as ORFp1, a protein that controls LINE-1 retrotransposition, has been observed 

in many cancers, although the precise role of these proteins in tumorigenesis has not been 

established [59]. Additionally, LINE-1 and LTR can be the source of double-stranded 

RNAs (dsRNA) that can induce gene silencing [217]. Interestingly, it has been docu-

mented that TE-derived transcripts can activate the interferon response [23], and this 

property can be exploited to boost immunotherapy. Specifically, studies have shown that 

the use of epidrugs, such as DNMT inhibitors or LSD1 inhibitors, can induce TE expres-

sion, resulting in activation of an immune response, and that the combination of these epi-

drugs with immunotherapy results in increased death of cancer cell [23,24]. Similarly, TE 

activation has been observed in neurodegenerative disorders. Interestingly, TE activation 

is often observed in healthy brains and has been linked to the diversification of the neu-

ronal cell population [218]. However, TE activation seems to increase with age, especially 

in patients with neurodegenerative diseases [219,220]. According to the “transposon the-

ory of aging“, a reduction in the cell defense mechanisms and a loss of heterochromatic 

marks during aging results in increased TE activation. An increased understanding of the 

epigenetic mechanisms underlying TE regulation can be expected to encourage the explo-

ration of novel therapeutic avenues employing epidrugs for cancer or other human dis-

eases. 
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