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W N e

Abstract: Brain disorders represent 32% of the global disease burden, with 169 million Europeans
affected. Constraint-based metabolic modelling and other approaches have been applied to predict
new treatments for these and other diseases. Many recent studies focused on enhancing, among others,
drug predictions by generating generic metabolic models of brain cells and on the contextualisation
of the genome-scale metabolic models with expression data. Experimental flux rates were primarily
used to constrain or validate the model inputs. Bi-cellular models were reconstructed to study the
interaction between different cell types. This review highlights the evolution of genome-scale models
for neurodegenerative diseases and glioma. We discuss the advantages and drawbacks of each
approach and propose improvements, such as building bi-cellular models, tailoring the biomass
formulations for glioma and refinement of the cerebrospinal fluid composition.

Keywords: brain metabolism; metabolic modelling; glioma; neurodegenerative diseases; astrocyte;
neuron

1. Introduction

In Europe, 169 new million cases of brain disorders were reported in 2019 [1]. Neu-
rological disorders, brain and central nervous system (CNS) cancer, strokes, and mental
disorders are all examples of brain disorders [2]. The high toll on the life quality of patients
suffering from neurodegenerative diseases (NDD) and the societal burden that are increas-
ing with the ageing of the western population. Alongside cardiovascular diseases and
cancer, NDD are a major health care challenge, with dementia being the most expensive
disease to manage [3]. While the annual cost of dementia is 1.5 times more than cancer
in the UK, research funding for dementia is only 30% of cancer [4]. Brain cancers can be
considered rare diseases with an estimated 308,000 new cases and 251,000 new deaths
worldwide in 2020 [5] of which glioblastoma (GBM) accounts for more than half of ma-
lignant CNS cancers [6]. However, unlike NDD, which develops over decades, the life
expectancy of GBM patients is 5% survival over five years [7]. However, both NDD and
GBM are incurable, age-related (the median age of diagnosis for GBM is 65 years old [6]),
and show metabolic deficiencies or rewiring that could be exploited as potential drug
targets [8].

Lower grade gliomas (LGG), a less aggressive glioma form than GBM, is more hetero-
geneous in prognosis and response to treatment and is characterised by lower proliferation
speed [9]. More than 80% of LGG have mutations in isocitrate dehydrogenases that play
a central role in metabolism as catalysing reaction in the Krebs cycle, redox homeostasis,
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Astrocyte

biosynthesis of lipids, and glutamine metabolism [9,10]. These LGG are classified into as-
trocytoma (AST) and oligodendroglioma (ODG) based on the glial cell type they originated
from. GBM and LGG also have different preferred energy sources. Glucose, the main fuel
of neurons [11], and glutamine, required for the biosynthesis of neurotransmitters [12], are
abundant in the brain microenvironment and have been linked to GBM invasion [13,14].
The Warburg effect is a hallmark of GBM with a shift from oxidative phosphorylation
(OXPHOS) and TCA cycle to glycolysis for energy production [15]. The upregulation of
glycolysis and downregulation of OXPHOS and TCA is linked to poor survival in GBM [16].
This increased glycolysis rate, even under hyperoxia, increases GBM chemoresistance [17].
Furthermore, this metabolic shift allows channelling carbon and nitrogen fluxes into the
biosynthesis of nucleotides via the pentose phosphate pathways (PPP) [18]. The PPP also
permits reducing NADP+ to NADPH and hence maintains oxidative homeostasis [18]. A
lesser-known GBM subtype, mitochondrial GBM, was identified by multi-omics analysis
with decreased glycolysis and increased OXPHOS (reverse Warburg effect) [19]. This re-
verse Warburg effect occurs in late tumour formation and is characterised by sensitivity to
OXPHOS inhibitors [19]. Neuron-glioma metabolic interactions through neurotransmitters
can change glioma progression [20]. Mainly, dysregulation in neurotransmitter exchange
such as of glutamine and gamma-aminobutyric acid (GABA) emerges as part of the GBM
metabolic remodelling [20]. Glutamine, a neurotransmitter precursor, is required in gly-
colytic cells to fuel the TCA cycle and the biosynthesis pathways. Unlike GBM, LGG shows
low glycolysis [21], which may explain their relative decreased proliferation and ODG
growth is robust to glutamine starvation [22]. Similarly, GABA may be linked to increased
GBM stemness [23] where the pharmacological inhibition of GABA release of the GBM
cells reduced GBM growth [24]. The main astrocyte-neuron metabolic interactions under
healthy conditions in addition to glioma and NDD are summarised in Figure 1.
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Figure 1. Dysregulated metabolic reactions between astrocytes and neurons in healthy conditions,
NDD and glioma. Under healthy conditions, astrocytes provide metabolic support with nutrients to
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neurons and carry out neurotransmitter and ROS detoxification [25]. As glial cells are becoming
malignant in glioma, they shift from OXPHOS to glycolysis [16] and FAO [26] for energy generation.
Moreover, astrocytic glutamine transport to the neuron is disrupted [27] in glioma, and glutamine
uptake by the glial cell is increased [12]. Meanwhile, in NDD, neurons shift to reduced glycolysis and
OXPHOS to decrease the produced energy [25]. In some NDD, the bi-cellular transport from astrocytes
to neurons of both GSH and glutamate are decreased [25], with the former accumulating ROS and
peroxidated fatty acids from the neuronal activity [28]. The peroxidated fatty acids are exacerbated
by the deceased astrocytic FAO. Because of the difference in astrocytic glycolysis between glioma and
NDD, astrocytic lactate transport to the neuron is increased in glioma [29]; meanwhile, it is decreased
in NDD [25]. Other cellular interactions were excluded for simplification, such as astrocyte-glioma
cell interactions [30], oligodendrocytes, microglia and the different neuron cell types. FAO: fatty acid
oxidation, GLUT1/3: glucose transporter 1/3, GSH: glutathione, MCT: monocarboxylate transporters,
OXPHOS: oxidative phosphorylation, ROS: reactive oxygen species. Parts of the figure were drawn by
using pictures from Servier Medical Art. Servier Medical Art by Servier is licensed under a Creative
Commons Attribution 3.0 Unported License (https:/ /creativecommons.org/licenses /by /3.0/).

Besides glycolysis and neurotransmitter metabolism, deregulation of the lipid metabolism,
notably cholesterol metabolism, was shown to accumulate in GBM due to an increase
in uptake and a downregulation of the efflux pathway. Cholesterol accumulation is a
hallmark of cancer [31]. Due to the role of cholesterol in signalling and membrane plasticity,
deregulation of cholesterol pathways often leads to uncontrolled proliferation and cell
invasion and migration. Cholesterol can scarcely pass through the brain-blood barrier
(BBB) [32]. This limits the pool of cholesterol in the brain, which is synthesised mainly by
the astrocytes. The effect of cholesterol biosynthesis on GBM is debated, and the results are
not consistent between studies. Cholesterol biosynthesis was found upregulated in GBM
neurospheres, tumour initiating cells, cell lines, and patient samples, and a factor related
to decreased patient survival and tumour growth [33-36]. This upregulation allowed
statins (cholesterol biosynthesis inhibitor) to reduce the growth of GBM tumour initiating
cells [35]. In another study, cholesterol biosynthesis has reduced expression in GBM cell
lines [37]. The reduced cholesterol biosynthesis in GBM cell lines is supported by GBM
resistance to statins [38]. On the other hand, AST cells with an upregulation in this pathway
are sensitive to atorvastatin [39]. Besides cholesterol deregulation, an upregulation of
fatty acid synthesis, and beta-oxidation has been described in GBM [26]. In a nutrient-
rich microenvironment, beta-oxidation channels fatty acids to cancer cell proliferation.
Meanwhile, in lower nutrient levels, fatty acids are diverted to OXPHOS to produce ATP
and precursors for amino acids and nucleotide synthesis. Inhibition of fatty acid oxidation
(FAO) and carnitine transport show synergistic effects in GBM cell lines” survival [40].
Moreover, the transporter of very long fatty acids SLC27A3 is upregulated in glioma but
not in the healthy brain and are linked to patient survival. Genetic knockout of SLC27A3
decreased stearic acid uptake and reduced the GBM cell line US7MG growth [41]. Recently,
some GBM xenografts were found to be resistant to glycolysis inhibitors with upregulation
of OXPHOS and dependency on FAO [42]. Combination of glycolysis and FAO inhibitors
synergistically decreased the growth of these resistant xenografts [42]. These studies show
GBM'’s ability to shift energy dependency from glycolysis to FAO and the potential of FAO
pathway that could be exploited for drug repurposing [41].

Besides neurons and astrocytes that play a central role in gliomas, other glial cell types,
oligodendrocytes and microglia, were described to play a role in tumour progression [43].
Oligodendrocytes are cells engulfing the neuron axon with the myelin sheath to maintain
neuronal signal [44]. Similar to astrocytes, oligodendrocytes provide metabolic support
of nutrients to neurons such as lactate and pyruvate [44]. In addition to ODG and mixed
glioma originating from oligodendrocytes, oligodendrocytes increase the invasiveness of
GBM [45]. Microglial cells are the resident immune cells of the CNS, dedicated to the main-
tenance of CNS homeostasis. These cells are implicated in numerous processes essential for
tissue development and maintenance-remodelling-repair of the neural environment [46].
Microglia play important roles in the adult brain but also earlier during brain develop-
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ment [47]. These cells are able to eliminate extra synapses (synaptic pruning) but also to
eliminate dying neurons by phagocytosis. Microglia are also devoted to rapidly reacting
to any kind of pathological insults (pathogens, debris, dying cells, aberrant proteins) [48].
Similar to macrophages, microglia generate an immune response to pathogens or any
insults [49]. An excessive microglial reactivity can play a critical role in the development
and progression of brain diseases.

Microglia can switch from a quiescent state to pro-inflammatory or anti-inflammatory
phenotypes and vice-versa [50]. This change of phenotype is often accompanied by
metabolic shifts [51]. Pro-inflammatory microglia are known to quickly release a large panel
of pro-inflammatory compounds such as cytokines, chemokines but also reactive oxygen
and nitrogen species (ROS/RNS) [51]. Anti-inflammatory microglia will be important in
order to calm down the inflammation and to favour tissue repair [51]. For this purpose,
anti-inflammatory microglia produce high levels of anti-inflammatory cytokines. The ex-
pression of anti-inflammatory phenotype biomarkers can be used to differentiate between
grade 2 and 4 astrocytoma [52]. In addition, GBM subtypes show significant percentages
of microglia cells in the microenvironment, with the mesenchymal subtype having the
highest percentage and lowest survival [53]. Microglia, monocytes, and macrophages make
nearly 30-50% of the GBM tumour weight [54]. Little is known about the exact metabolic
role of the two microglia phenotypes in GBM [29]. While both phenotypes are expressed in
the different stages of GBM, more pro-inflammatory microglia are activated in early glioma
development using glycolysis and OXPHOS for energy [29]. In a second stage, the pro-
inflammatory microglia depend on glycolysis mainly due to inflammation-induced hypoxia.
This second stage is characterised by nitric oxide formation and lactate production [29].
Lastly, the high concentration of lactate in the microenvironment and lack of oxygen
favour the anti-inflammatory phenotype. The overrepresentation of anti-inflammatory
macrophages in glioma induces immunosuppression, increasing glutamine uptake and
angiogenesis through vascular endothelial growth factor (VEGF) expression [29].

Despite the diversity of NDD pathologies, including Parkinson’s (PD), Alzheimer’s
(AD), Huntington’s and amyotrophic lateral sclerosis, they share several metabolic hall-
marks. Cell death of neurons in many NDD has been observed due to protein misfolding
and accumulation [55]. Ageing, oxidative stress, and mutations are the main factors for
protein misfolding [56]. The pathological protein accumulation can be either intra- or
extracellular depending on the disease [57]. This in turn causes malfunctions with mem-
brane receptors and further distribution in the neural signalling [57]. Moreover, protein
accumulation increases lipid oxidation and mitochondrial dysfunction [28]. Glial cells
such as astrocytes and oligodendrocytes show a supportive rule in alleviating the cellular
damage and redistributing metabolites to neurons in NDD [58]. Similar to neurons, cellular
damage in astrocytes and oligodendrocytes occurs due to protein accumulation that causes
loss of normal functions such as the distribution of neuronal lactate uptake from glial
cells and gain of toxic functions [59,60]. Hypomyelination of oligodendrocytes induced
by protein accumulation is further accelerating neuron damage [60]. Microglia protect
from neurodegeneration by maintaining synaptic remodelling and phagocytosis of dead
cells. Similar to neuron cells, intracellular protein accumulation may cause loss of the
astrocytes and microglia normal functions that may aggravate NDD [59,61]. An increase in
microglial phagocytic activity has been shown concomitant to an increase in the produc-
tion of anti-inflammatory mediators and a decrease of pro-inflammatory mediators [62].
Balance between pro-inflammatory/anti-inflammatory microglia activation shows im-
proved prognosis and treatment of NDD [63]. Mainly, shifting from pro-inflammatory to
anti-inflammatory activation decreased neuroinflammation in some NDD [64].

In most NDD, neuronal glucose uptake is downregulated and glucose metabolism
is impaired [65]. The alteration in glucose metabolism and the downregulation of GLUT
transporters lead, together with the mitochondria dysfunction, to lower energy levels that
aggravate the pathologies. Mitochondrial dysfunction does not only impair cellular energy,
but as mitochondria play a key role in calcium and redox homeostasis, they also contribute
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to redox stress. Furthermore, dysfunction in OXPHOS increases the production of ROS that
will further increase mitochondrial damage and eventually initiate apoptosis [66]. Lipid
peroxidation is another hallmark of many NDDs in early development due to mitochondrial
damage and increased ROS [28]. Some by-product metabolites of lipid peroxidation are
potential biomarkers for different NDDs such as isoprostanes in AD and malondialdehyde
in PD [66]. Lastly, metabolism of polyamines such as spermidine and spermine is also
deregulated in NDD. Both metabolites are antioxidants and have antiapoptotic properties
with expression in neurons and glial cells. Deregulated polyamine metabolism was detected
in AD, and PD and was accompanied with mitochondrial damage and apoptosis [67].

Constraint-based metabolic modelling (CBM) and genome-scale metabolic models
(GEM) are commonly applied to study metabolism and, notably in cancer, where it was
used to understand rewiring strategies and predict repurposable drugs [68] and drug
off-targets [69]. GEM is an in silico representation of the metabolism where the interactions
between metabolites and the biochemical reactions are formulated in a sparse stoichio-
metric matrix and the relationship between genes and reactions by Boolean rules (GPR
rules). Moreover, GEM is used to simulate the role of the microbiome in the development
of PD [70,71] or to study psychiatric diseases [72] and AD [73] in humans and PD-like
phenotypes in mice [74]. However, brain metabolism has specific properties that must
be considered before applying CBM. The brain is protected by the BBB that controls the
exchange of metabolites between cerebrospinal fluid (CSF) and the blood [75]. The per-
meability of the BBB can be altered in numerous diseases, which also impacts the CSF
composition and the brain microenvironment [76], a feature that can be further used to
constrain metabolic models. Furthermore, the metabolism of neurons and glial cells is
interconnected and numerous exchanges between glial cells, notably astrocytes that are
part of the BBB, have been described. For instance, glial cells store glucose in the form of
glycogen, and, when required, glycogen fuels glycolysis [77]. The produced lactate can
then be taken up by surrounding neurons [78]. Hence, for the study of some diseases, a
bi-cellular or multicellular model is more suitable than an averaged brain model that lacks
the required resolution.

In this review paper, we survey brain GEMs that could be used to study brain cancer,
NDD or other brain disorders. We focus mainly on the modelled cell type, the type of
model (single versus bi-cellular models), the curation level and the overall quality of the
model in terms of the gene, metabolite and reaction annotations. We further consider
the type and quality of data used to support the inclusion of reactions in the models as
well as the validation used in the different studies. The model size, the inclusion of cell
type-specific pathways and the optimisation function were also used to assess the models’
completeness and specificity. We further compare the metabolite composition in models
with a biomass function to assess their specificity in the investigated system. Finally, we
highlight the strengths of the different GEMs, in terms of applied constraints, data utilised
for model-building and validation that could be incorporated in future models and suggest
some improvements.

2. Materials and Methods
2.1. Literature Search for Manually Curated Brain GEMs

An extensive literature review was performed to gather brain GEMs. To distinguish
between the different curation levels, we classified the metabolic models into three classes:
curated, semi-curated, and automatically generated (AG). In this review, we focused mostly
on curated and semi-curated models.

Curated: models built starting from a list of biochemical reactions collected from
literature or databases to which reactions were then added to fill the gaps or add the missing
information. Alternatively, the starting point can also be an automatically generated GEM.
However, most pathways have been carefully checked to eliminate reactions with no or
low support from the literature that is not required for modelling purposes and to add
missing reactions but are known to be present in the studied system.
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Semi-curated: models built using a generic reconstruction or an automatically gen-
erated model that was curated via the addition of constraints, modifications (addition
and removal of reactions) in key pathways or required to combine two models in a
bi-cellular model.

Automatically generated: models built automatically using a model-building algo-
rithm such as FASTCORE [79], FASTCORMICS [80], rFASTCORMICS [68], GIMME [81],
mCADRE [82], PRIME [83], iMAT [84], RegrEX [85], and tINIT [86] from a GEM, and
expression data (transcriptomic or proteomic) without or with limited manual curation.

2.2. Inclusion and Exclusion Criteria of Publications

Publications focusing on building curated and semi-curated GEMs for the human brain
and using CBM were included. In addition to curated and semi-curated models, only one
AG GEM was included for relevance to GBM. Five types of brain GEMs were excluded from
this review: (1) AG GEM without validation, (2) curated GEM with a follow-up included
in the present review, (3) dynamic metabolic models in the brain, (4) publications with no
publicly available model files in the supplementary files or BioModels, and (5) Non-human
GEM. Dynamic metabolic models were excluded as they are out of the scope of the current
review, and they were already covered in a previous review [87]. We also focused on human
GEM as being more relevant for personalised medicine. Due to missing abbreviated names
for some GEM, we referred to each model by the last name of the first author and the date
of the publication.

2.3. Metadata Gathering for Determining the Extensiveness of the Manual Curation

After selecting brain GEM publications, basic information was retrieved from each
publication regarding the model used as template, cell type, diseases, and data used during
model building or validation. Moreover, the detailed types of the different omics and
experimental data were collected with the number of samples to identify the extensiveness
of the manual curation of the model.

2.4. Determining Model Sizes and Common Genes

The model files were imported using the COBRA Toolbox V3 [88], and the number of
reactions, genes and metabolites were determined. The median, minimum and maximum
numbers were computed for publications with more than two GEM. Since some reactions
may not be able to carry a flux at all, the number of flux-consistent reactions were identified
using FASTCC [79]. Moreover, the brain GEMs” model genes were mapped to ENTREZ IDs
to compare the overlap between the different models using the UpSet plot in R. Two generic
models, Recon3D and Human1, were used in the gene overlap analysis. The intersection
and the union of the model genes were retrieved for publications with more than two GEM.

2.5. Determining the Level of Completeness and Specificity of the Brain GEM

To evaluate the specificity and the completeness of the human brain GEM, tissue
gene categories were retrieved from the Brain Atlas [89] of the Human Protein Atlas
(HPA) [90]. HPA classifies the protein-coding genes into five categories according to the
expression level in a target tissue compared to other tissues. These categories were retrieved
for the human brain and mapped to the ENTREZ identifiers. The five categories were
grouped for simplification into two types: Supported (which includes “Elevated in brain”,
“Elevated in other but expressed in brain” and “Low tissue specificity but expressed in
brain”), and unsupported (which includes “Not detected in brain” and “Not detected in
any tissue”). The different HPA data were mapped to the genes of the brain GEM, and to
two generic models, Recon3D and Human1, to assess the fraction of genes of each model
that are supported or unsupported in the brain by the HPA protein data. Two scores were
calculated for each brain GEM, specificity and completeness. Model specificity (indicated as
two numbers) is the number of supported or unsupported genes in each GEM. In contrast,
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model completeness is the ratio of the model supported or unsupported genes to the total
count of genes in each category.

2.6. Evaluation of Objective Function and Validation Used in the Brain GEM

The brain GEMs were further evaluated by their objective function (OF) and used
validation data to determine the strengths and limitations of these GEM. Different brain
GEMs include different OFs depending on the diseases of interest. These OFs were cate-
gorised into tailored or generic based on the manual curation. In addition, the rationale
for choosing a specific OF according to the research question was summarised. The OFs
of the GBM GEMs were compared using their metabolite composition. Moreover, the
data used for validation in the brain GEMs were outlined and their importance for the re-
search question was discussed. Finally, the limitations and the strengths of the brain GEMs
were summarised based on the choice of the template model, model-building technique,
study design, use of constraints data, presence of sink reactions, heuristic thresholds in the
discretisation of the expression data, and applying standard identifiers.

3. Results

In this review, we discuss nine publications that focus on reconstructing GEMs that
could be employed for NDD, brain cancer and other brain diseases. The selection of these
models was based on their public availability (see Supplementary File S1 Table S1), the
curation level and/or the pertinence to GBM. By curation, we understand the contextuali-
sation of the models with constraints retrieved from literature or published experimental
data, the addition of reactions specific to the cell type of interest, the choice of the OF and if
the OF was tailored to the cell type of interest. Finally, we discussed the validations used in
the different publications and the strengths and limitations of these GEMs.

3.1. Selected Brain Metabolic Models Could Be Potentially Reused for NDD and Glioma

The main difference between the curated and semi-curated is the extension of the
curation. For example, Thiele2020, considered curated, defines 578 core reactions (reactions
supported by literature in the brain) and added 43 metabolites to the list of metabolites
passing BBB. While Baloni2020 completed the list of BBB metabolites with an additional 372,
no core reactions were added. Five curated, three semi-curated and one AG GBM GEM
were selected. Most of these GEMs integrated transcriptomic and proteomic data for model-
building, while only two GEMs used metabolomics data to define exchange reactions (see
Supplementary File S1 Table S2).

3.2. Lewis2010 (iNL403)

Lewis2010 [91] is a bi-cellular GEM of a neuron and an astrocyte with 1073 reactions
and 987 metabolites [91]. This GEM was built by extracting the reactions of glycolytic,
mitochondprial, and transport pathways from the generic reconstruction Recon 1 [92]. The
presence of each of these reactions in the brain was determined based on expression from
different sources. Lewis2010 was curated by adding brain cell type-specific (astrocyte and
neuron) biochemical reactions [91]. The models were then contextualised using manually
selected neuron cell type-specific reactions to build glutamatergic, GABAergic, and cholin-
ergic neurons. In addition, the model bounds were constrained using uptake rates obtained
from the literature.

3.3. Sertbas2014 (iMS570) from Tunahan Cakir Lab

Sertbas et al., 2014 [93] expanded the brain reconstruction of Cakutr et al., 2007 to obtain
a bi-cellular astrocyte and neuron model with 630 reactions and 530 metabolites from the
literature [93]. ATP production and glutamine/glutamate exchange were added as OF,
whereas GABA exchange was included to ensure the coupling of the exchange reactions
between the astrocyte and the neuron model.
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3.4. Ozcan2016 (iMS570g) from Tunahan Cakir Lab

Since the curated Sertbas2014 only includes non-cancerous OFs, Ozcan et al., 2016 [94]
added 29 reactions to integrate a tailored growth OF [94]. Among the 29 reactions, 25
are biomass-related and four reactions are linked to glutamine metabolism in GBM. The
tailored OF was formulated based on the contribution of both the astrocyte and the neuron
to the dry weight of the white matter.

3.5. Martin]iménez2017

A curated astrocyte GEM [95] was reconstructed using the Human Metabolic Atlas
(HMA) [96] and microarray data of foetal cortical astrocytes. The completeness of the model
was assessed by identifying gaps that were filled by adding astrocyte-specific reactions
based on enzymes present in the HPA [90]. Lastly, experimental constraints specific to hy-
poxia were used to compare the activated reactions under normal and hypoxic conditions.

3.6. Thiele2020

Thiele et al., 2020 [97], built two sex-specific multi-tissue models (Harvey and Harvetta
for male and female, respectively) of 26 organs with >80,000 reactions [97]. Reactions for
the protein and drug metabolism pathways were removed initially from the Recon3D
model [98], before assembling according to the connections of the different organs. The two
multi-tissue models were built using FASTCORE [79] from the assembled reconstructions
and organ-specific core reactions from omics data and literature. Exchange reactions of the
organs and extracellular fluid such as the CSF were constrained by metabolomics data from
the Human Metabolome Database [99]. Meanwhile, the exchange reactions between the
extracellular fluid of the different organs and the systemic blood circulation were obtained
from the literature. Moreover, organ-specific models were further extracted from the two
multi-tissue models as standalone consistent GEMs. The man and woman brain GEMs will
be referred to as Thiele2020_Harvey and Thiele2020_Harvetta.

3.7. Baloni2020

Baloni et al., 2020 [100] built seven brain region-specific GEMs using the Recon3D
model [98] and transcriptomic data from different brain regions of healthy and AD patients
with the mCADRE algorithm [82]. The reactions of the drug metabolism pathway were
removed from the Recon3D model. Then, the transcriptomic data were discretized using
the top 25th percentile cut-off to obtain a set of reactions used as input for mCADRE.
After the building, the model was constrained using metabolites passing the BBB from
Thiele2020, bile acid metabolites from targeted metabolomics of brain samples, uptake
rates obtained from Lewis2010 and other literature sources were integrated. Furthermore,
gap filling was performed using HPA expression [90] to determine gene presence. Finally,
the OF of Sertbas2017 was integrated into the GEM.

3.8. EcheverriPeiia2021 (Neuro-Glia_GEM)

EcheverriPefia et al., 2021 [101] integrated two AG GEMs [102], to build a bi-cellular
neuron-glia metabolic model. These models were obtained using Recon 2 [102] and
HPA [90] as input for the MinMax algorithm [103]. To identify the metabolic pathways
changes related to Arylsulphatase A (ARSA) deficiency, EcheverriPena et al., 2021 added
reactions of sulfatide degradation from the myelin band. The added reactions made the
glial cellular compartment more specific for oligodendrocytes.

3.9. Lam2021

Lam et al. [104] analysed telomeric ageing in AD and PD compared to healthy controls
by aggregating gene expression data from six sources via batch correction. The combined
AD and PD samples were stratified into three subclasses using unsupervised clustering.
Four semi-curated GEMs were built from the expression of the three clusters in addition to
the control samples using tINIT [86] from the RAVEN Toolbox [105]. The template model for
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model-building was an adipocyte GEM, iAdipocytes1850 [106], after mapping the gprRules
from the generic reconstruction HMR3 [107] and constraints from Baloni2020 [100]. Flux
balance analysis and reporter metabolite analysis were applied to define the different
pathways and metabolites between the three combined AD-PD GEMs and the control
GEM. These pathways and metabolites were validated using semi-curated Zebrafish GEMs
built from normal and enhanced ageing. The Zebrafish GEMs were built from Zebrafish
expression data of wildtype and mutant TERT gene responsible for telomere maintenance.

3.10. Larsson2020 [108]

Larsson2020 [108] merged 139 patient-derived AG GEMS to build a GBM model using
tINIT [86]. These 139 AG GEMs were built by Uhlén et al. [109] using the generic recon-
struction HMR2 [107] and the RNA-Seq data of GBM from the TCGA-GBM dataset [110].
Furthermore, single-gene deletion was performed on both the patients and the generic
GBM models using FastGeneSL [111]. Then, the genes whose in silico knockout might affect
healthy tissues were excluded by evaluating the effect of a knock-out on 77 pre-defined
metabolic tasks (defined as metabolites that must be produced from a defined minimal
media or a set of metabolites) on an AG healthy brain model from the HMA [96]. The
different data used by the brain GEMs, their curation status and cell types are summarised
in Table 1.

Table 1. Curated, semi-curated and automatically generated human GEMs in the brain and their as-
sociated phenotypes. The list of metabolic models in the human brain was classified as curated, semi-
curated or AG according to the level of manual curation after model-building. The detailed omic types
for the “Data” column and the number of samples are summarised in Supplementary File S1 Table S2.

Model Used as Curation

Model Goal Template Status Cell Type Diseases Data
-Human Protein Reference
Building a Database [112]
curated -HINV [113]
Lewis2010 bi-cellular human Astrocyte- -HUPO brain proteome project [114]
(iINL403) [91] brain metabolic Recon 1[92] Curated Neuron AD -Literature information for transport
model to study reactions between compartment
AD -Constraints for neuron cell types.
-Microarray data of AD
Identifying . .
Sertbas2014 biomarker Cakur et al., 2007 Astrocyte- . -Mlcroarray of'the S NDD.
; . Curated Six NDD  -Literature-derived constraints for a
(iMS570) [93] metabolites for [115] Neuron .
- healthy brain
six NDD
. Astrocyte- -Curated growth objective function
Metabolic - . .
- .. Neuron Three -Literature-derived constraints for 26
Ozcan2016 rewiring Sertb C d | . G . for G
(iMS570g) [94] pathways in three ertbas2014 urate: (glutamatergic, BM reactions for GBM
GABAergic, subtypes  -Microarray data of the three GBM
GBM subtypes . . .
cholinergic) cell lines
s -Microarray data of foetal cortical
MartinJiménez2017 Building an astrocytes
[95] astrocyte quel HMA [96] Curated Astrocyte Hypoxia Literature-derived constraints for
reconstruction .
healthy astrocyte exchange reactions
-Human Proteome Map [116]
Building - HPA [90]
. sex-specific, -CSF metabolites from Human
Thle[z(l)e7?i020 multi-organ, Reconi&;:;]Model Curated Whole-brain Metabolome Database [99] and other
whole-body resources.
model -Organ-specific reactions from

literature
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Table 1. Cont.

Model Goal Mo{‘::iglzetg as Cgtr:tt:;n Cell Type Diseases Data
-RNA-Seq data for brain regions
from post-mortem of normal and
Analysing the AD patients
Baloni2020 effect of b i.Ie acid Recon3D Model Semi- Seven brain -Metabolomi.cs of.primary and
synthesis in AD . AD secondary bile acids from the
[100] in different brain 98] curated reglons t-mortem brai 1
post-mortem brain samples
regions -BBB reactions from Thiele2020
-Constraints from Lewis2010
-Human Protein Atlas
Building a Two tissue AG
EcheverriPefia2021 bi-cellula.r models from .
(Neuro- neuron- ghali Recon 2 [102] Semi- . MetaChromatlf{eactions of the sulfatide
Glia_GEM) model to identify (Glia: curated Neuron- Glia leukodys- degradation from the myelin band
[01] pathways linked ~ MODEL1310110064, trophy & 4
to ARSA neuron:
deficiency MODEL1310110033)
-RNA-Seq of healthy brain from
HPA [90] & GTEx [117]
-CAGE expression of healthy brain
A1 samples from FANTOMS [118]
Analysing 1Adlﬁ)06cytgi}11850 Semi -RNA-Seq of AD and PD brain
Lam2021 [104] telomeric ageing [106] wi e Whole-brain AD,BD  samples from Rajkumar dataset
. gprRules from curated
in AD and PD HMR3 [107] [119] and Zhang/Zheng dataset
[120,121]
-Single-cell RNA-Seq of AD and PD
brain samples from ROSMAP [122]
-Constraints from Baloni2020 [100]
Predicting
non-toxic 139 AG
essential genes patient-derived
for GBM & models [109] -RNAseq of TCGA-GBM [110]
Larsson2020 [108] identifying using HMR2 AG GBM -Healthy brain GEM from HMA [96]
metabolic generic -CRISPR-Cas9 data for GBM [123]
pathways for reconstruction

GBM low & high

[107]

overall survival

3.11. Manual Curation Included Tissue-Specific Constraints, Added Reactions, and Compartments

A curation can either be a refinement of a curated or an AG GEM by the addition or
removal of reactions, metabolites and flux rates. Four models incorporated experimental
flux rates to contextualise their models to represent healthy brain cell models (Sertbas2014,
Lewis2010 and MartinJiménez2017), and GBM (Ozcan2016). Most experimental flux rates
are specific to a cell type (mostly glial or neuronal), while others, such as glucose uptake, are
measured at the BBB. While Sertbas2014 assumed equal glucose consumption for the glial
and neuron model, Ozcan2016 divided the overall brain glucose, oxygen and glutamine
uptakes based on the neuron and glial proportion in the white matter mass.

Four models included a compartment to simulate the exchange between the models
and the BBB, Lewis2010, MartinJiménez2017, Thiele2020, and Baloni2020. Furthermore,
metabolites that cannot cross the BBB were defined in Thiele2020, and the respective
transporters were removed. Overall, to better model the physiology of the studied dis-
eases, the models have to be adapted by adding or removing reactions or by applying the
constraints based on experimental measurements obtained from diseased patients or cell
lines. Besides whether there is binary information if a metabolite passes or not passes the
BBB, or what metabolites can be uptaken by a specific cell type, experimental rates can
be used to validate and constrain the model prior to the reconstruction. Sertbas2014 and
Martin]Jiménez2017 collected 14 and 23 flux rates corresponding to hypoxia in astrocyte and
healthy astrocyte—neuron models, respectively (see Supplementary File S2 Tables S6-58).
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The second type of manual curation of brain GEMs consists of the addition of new
brain-specific reactions. For example, Lewis2010 added manually reactions for the acetyl-
choline synthesis, which is decreased in the neurons of AD patients. These reactions were
identified by flux balance analysis on the generic reconstruction Recon 1. Meanwhile, reac-
tions linked to the ARSA gene, which is responsible for the degradation of the sulfatides in
the myelin sheath, were added in EcheverriPena2021.

3.12. The Completeness Is Highly Variable between the Models While Having a Similar Specificity

The size of the models in terms of the number of reactions, metabolites and genes
varies greatly between the models and ranges from 639 to a median of 5942 reactions
for Baloni2020 (see Table 2), and only 35 genes were shared among the models after the
conversion of the model gene identifiers to ENTREZ gene identifiers (Supplementary File S1
Figure S1). This low overlap results to some extent from the comparison between bi-cellular
glial-neuron, astrocyte, and whole-brain models. However, the low overlap also results
from the strategy used during the model building. Two bottom-up models (Sertbag2014
and Ozcan2016) were smaller and focused mainly on the central brain metabolism. The
size of the remaining seven models correlated with the size of the reconstruction used as a
template for the building process that varies between 2469 consistent reactions for Recon 1
to 10,600 for Recon3D.

Table 2. Model statistics for the brain GEMs. The curated and semi-curated models were retrieved as
explained in Supplementary File S1 Table S1. For studies with more than two models (Larsson2020,
Baloni2020 and Lam?2021), the median sizes and range were computed. The number of reactions
was determined for consistent models of these studies using FASTCC [79]. Since the models used
different gene identifiers, the identifiers were mapped to ENTREZ genes.

Model Reactions (I:{oer:it?(t;l: Metabolites Genes Gene Field Format ENNI}II{IEEQE;:;S
Lewis2010 1073 727 987 403 ENTREZ Gene 403
Sertbas2014 630 589 523 570 Gene Symbol 532
Ozcan2016 659 644 548 569 ENTREZ Gene 569
MartinJiménez2017 5659 4848 5007 3765 Ensembl Gene 3674
Thiele2020_Harvey 3602 3510 2201 1836 ENTREZ Transcript 1548
Thiele2020_Harvetta 3602 3508 2203 1843 ENTREZ Transcript 1551

Baloni2020 * 5942 (5341-6328) 5327 (4870-5696) 3784 (2808-3926) 1684 (1524-1846)  ENTREZ Transcript 1409 (1292-1559)
EcheverriPefia2021 3831 3622 2473 1375 ENTREZ Transcript 1148

Lam?2021 * 3283 (3274-3334) 2774 (2658-2815) 2122 (2118-2138) 1523 (1478-1572) Ensembl Gene 1516 (1478-1572)

Larsson2020 *

3917 (2226-4877)

2951 (1382-3276) 1649 (1178-2086) 1840 (1103-2034) Ensembl Gene 1838 (1102-2031)

* Brain GEMs with more than two models per study.

MartinJiménez2017 has 948 genes that were not included in any of the other brain
models (Supplementary File S1 Figure S1) but also has the highest number of supported and
unsupported genes by the HPA protein data in the brain according to the HPA (Figure 2).
Similarly, Thiele2020 and Baloni2020 share 2762 (26.1%) and a median of 5110 (48.2%)
reactions, respectively, with the Recon3D model. The ratio between the supported and
unsupported genes in the brain is rather conserved across the brain models and generic
GEMs (Figure 2A), showing that, to include more supported genes in the brain, inactive
reactions in the brain had to be included. In terms of completeness, MartinJiménez2017
included a higher percentage of the supported and unsupported genes in the brain. Taken
together, two strategies were used, bottom-up (Sertbag2014 and Ozcan2016) and top-
down (MartinJiménez2017, Thiele2020, Baloni2020, EcheverriPeia2021, Lam2021, Lars-
son2020), that do not dictate the quality of the model but rather have an impact on their size.
Lewis2010 used a compromise between the two approaches by reconstructing a subnetwork
using GIMME and expression data. While focusing mainly on three pathways and the
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Count of model genes in
the Human Protein Atlas Classes

Model Specificity

fulfilment of metabolic tasks associated with the synthesis and metabolism of acetylcholine,
the inclusion of transcriptomic data allowed us to obtain a larger model than the ones using
the bottom-up approach. Regarding specificity and completeness, increasing the number
of brain-specific reactions causes the inclusion of genes that are considered unsupported by
the HPA [90].

B Model Completeness
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Figure 2. Completeness of the human brain metabolic reconstructions is linked to less specificity
according to the Human Protein Atlas brain-specific category. (A) The genes of the brain recon-
structions in addition to the Recon3D model and Human1 were classified into five categories based
on differential tissue expression of the brain. These five categories were grouped into supported
(in blue) and unsupported (in red). Model genes outside the HPA coding genes were coloured in
blue. (B) Since the total number of genes in each category differs, completeness was computed as
the ratio of model genes in a category and the total number of genes in that category. The number
and completeness of supported and unsupported genes are higher in MartinJiménez2017 than in
Humanl, which indicates the loss of brain specificity by increasing the completeness of the model.

117

Generic models are highlighted with

3.13. Glutamine/Glutamate/GABA Exchange Is a Brain-Specific Objective Function for
Non-Glioma Models

The choice of the OF and its formulation should be tailored to the modelled cell
type and condition. Thus, we compared the OFs used for non-glioma and glioma models
to evaluate their relevance to brain functions (see Table 3). The OF is a reaction with
the set of metabolites needed for a cell to carry out a specific task. The main task of
the neuron cells is resetting the action potential by Na*/K* ATPase, which is costly in
energy [124]. This energy generated as ATP comes from either glycolysis or tricarboxylic
acid cycle and OXPHOS. Many hypotheses have been proposed for the specific roles
of glial and neuronal cells in the transport of energy substrates, such as the astrocyte—
neuron lactate shuttle theory (ANLS) [78]. The ANLS theory states that the glucose is
transported from the blood vessels to the astrocyte and then metabolised through glycolysis
to produce lactate supplied to neurons. Hence, lactate production could be used as OF.
However, for non-glioma, like for other healthy tissues, ATP production or maintenance is
more commonly chosen. In the whole-brain Thiele2020, two maintenance OFs were used:
biomass_maintenance and biomass_maintenance_noTrTr in normal and fasting conditions,
respectively. In the brain bi-cellular models, glutamate, glutamine and GABA cycles are
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used as an additional OF to ensure a coupling between the two models. Furthermore,
MartinJiménez2017 used only glutamate uptake and glutamine release for their role in the
detoxification of neurotransmitters from the CSE. In summary, ATP production, biomass
maintenance, glutamate, glutamine, GABA cycles and neurotransmitter exchange reactions
can be used as OFs for non-glioma brain models depending on the cell type.

Table 3. Objective functions used in the brain-specific models and the rationales for using these
objective functions. [m]: mitochondria, [X]: extracellular, [c]: cytosol.

Model Objective Function(s)

Rationale for Choosing the OF

ATP demand for both astrocyte and neuron cell:

Lewis2010 DM_atp(c): atp[c] + h20[c] => adp[c] + h[c] + pilc]

Production of the cholinergic neurotransmitter is
ATP-dependent.

1—Maximisation of the sum of
glutamate/glutamine/GABA cycles.
2—Setting the value of the sum of the three-cycle
fluxes to the optimal solution, then minimising
the Euclidean norm of fluxes.

Sertbas2014

The 1st OF ensures compact coupling of the intercellular
exchange between the astrocyte and neuron.
The 2nd OF ensures fluxes with minimal utilisation of
metabolic enzymes.

Curated biomass growth reactions:
Ozcan2016 2.9404 protein + 0.9074 lipid_WM + 0.1091 RNA +
24 ATP => biomass + 24 ADP

Adjusting the contribution of neurons and astrocytes of
macromolecules based on their percentage in the white
matter, and the macromolecules composition of the
white matter.

(A) ATP production: . .
ADP[m] + 4 H+[c] + Pi[m] => ATP[m] + 3 H+[m] The 1st OF ensures the consumption qf different

+ H20[m] metabolites for energy production.

MartinJiménez2017 . The 2nd OF resembles the astrocyte role in detoxification
(B) Glutamate uptake and glutamine
. of the extracellular glutamate produced by neurons, and
release:Glutamatex] + Glutamine[c] => secretion of glutamine needed by the neuron
Glutamate[c] + Glutamine[x] & y ’
The brain model did not have a default OF but
rather the model included different OFs for Biomass maintenance did not include DNA molecules
. different scenarios: (dgtp[n], detp[n], datp[n], dttp[n]) as the brain cells do
Thiele2020 . . :
1—Biomass maintenance not replicate.
2—Biomass maintenance with no transcription The 2nd OF resembles a fasting condition.
and translation
Baloni2020 Equal to MartinJiménez2017
EcheverriPefia2021 ATP synthesis Modelling the hlghly. oxidative state qf the excited
neuron releasing neurotransmitters
Lam?2021 ATP synthesis
Larsson2020 Growth OF of the generic reconstruction HMR2

3.14. GABA and Ornithine Were Included in the Biomass Formulation of a GBM-Specific
Biomass Function

Only Ozcan2016 and Larsson2020 are modelling high-proliferative cells, and, accord-
ingly, they used the biomass reaction as an OF. While Larsson2020 used the generic biomass
function included in all HMR reconstructions, Ozcan2016 built a tailored biomass function
for glioma that could be adapted to future GBM models. Ozcan2016 added to the healthy
Sertbas2014 24 pseudo reactions and a final biomass reaction for which the coefficients
were adjusted in function of the contribution of each cell type of the white matter (94%
in glial and 6% in neuron). By comparing the metabolite composition of the two OFs, we
identified some differences between the two models, notably, GABA and ornithine present
uniquely in Ozcan2016 and, glycogen, cysteine, proline, and tryptophan (included in the
generic biomass function of Larsson2020) (Figure 3). In addition, Larsson2020’s OF shows a
higher diversity of phospholipids than Ozcan2016, as the former is reconstructed from the
generic HMR?2 that covers the lipid metabolism exhaustively [107]. The neurotransmitter
GABA, which is missing in the Larsson2020’s OF, was shown to control the proliferation
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ornithine
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and growth of glioma [24]. Meanwhile, glycogen, which is absent in Ozcan2016’s OF,
is required for cancer cell survival [125] and optimal glucose utilisation under hypoxia
conditions [126]. As a result, GABA and glycogen should be potentially added to future
GBM OFs.

ADP lysine

ATP phenylalanine o -
alanine serine

arginine tyrosine CcTP glyccl{gen
asparagine valine GDP pro m:
aspartate methionine GTP tryptophan
cholesterol threonine uDP Chqlesteryl ester
glutamate cardiolipin utp 1,2-diacyl-sn-glycerol
glutamine sphingomyelin dATP mhonoicvl_ilycerf:;
glycine phosphatidyl-choline dCTP  Phosp a.tl ic aci
histidine Phosphatidyl-ethanolamine dGTP 2-lysolecithin pool
isoleucine phosphatidyl-serine dTTP TAG-LD pool
leucine phosphatidyl-inositol

Ozcan2016 Larsson2020

Figure 3. GABA, ornithine and some phospholipids are different between the tailored glioblas-
toma and the generic OFs. Two brain GEMs have a biomass function: Ozcan2016 and Lars-
son2020. Both models” OFs share 26 metabolites, mostly amino acids, cholesterol, and phospholipids.
While Ozcan2016’s OF has six unique metabolites, notably GABA and ornithine, Larsson2020’s
OF has 20 unique metabolites such as cysteine, glycogen, proline, tryptophan, nucleotides and
fatty acids.

3.15. CRISPR-CASS9 Screens, Experimental Fluxes and Simulating Metabolic Dysregulation Are
Used as Validation

Validation of the various in silico predictions produced with the metabolic mod-
els is crucial for ensuring the quality of the curated, semi-curated or AG models.. Sert-
bas2014 and Ozcan2016 compared the predicted and measured flux rates for healthy and
GBM,, respectively. In addition, Lewis2010 validated the predicted cholinergic neurotrans-
mission and ATP production rates with experimental data. Larsson2020 compared the
predicted essential genes for GBM, against high throughput CRISPR-Cas9 data [123]. Mean-
while, Martin]Jiménez2017 collected the dysregulated metabolic reactions (up- or down-
regulations) in metachromatic leukodystrophy from literature to compare the predicted
dysregulated reactions. Flux rates can thus be employed for either model contextualisation
or validation, as long as the same data are not used for both. Furthermore, in the absence
of experimental data, information on the up- and down-regulation of metabolic pathways
of a disease retrieved from different literature can be used as an alternative for validation.
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4. Discussion
4.1. Limitations in the Brain Models Include Non-Standard Reaction Identifiers and the Use of
Outdated Model-Building Algorithms

This review focused on human brain metabolic models summarising the different
resources used for building better brain models. These models resembled differences in
cell type from uni- and bi-cellular models, whole-brain and region-specific models. While
the previous nine models gather information and data which can be employed for re-
constructing future brain-specific models, the models themselves have some limitations
that restrict their future use (see the summary of the strengths and drawbacks in Table 4).
EcheverriPefia2021 only used the unchanged flux of neurotransmitters after ARSA knock-
out as a quality check and would require a more thorough validation before any future
use. Because the link between TERT mutation and AD is still debated [127], using TERT
mutation of zebrafish in Lam?2021 as a validation of telomeric ageing in AD and PD may
be insufficient. The two curated models (Sertbas2014 and Ozcan2016) use non-standard
reaction identifiers, making modifications or comparisons to databases or other models
more difficult [128,129]. Moreover, EcheverriPefia2021 integrated two AG models built by
MinMax [103], an algorithm published in 2008 and no longer considered to conform to the
state-of-the-art, from tissue-specific expression data and Recon2 [102]. While Baloni2020
was built using the Recon3D model, a heuristic threshold of the top 25-percentile was
used to discretise the transcriptomic data, which strongly affects the quality of the models
as shown by Opdam et al. [130]. Furthermore, unlike Thiele2020, manual curation with
constraints and added reactions in Baloni2020 were applied after the building by mCADRE.
This resulted in blocked reactions in Baloni2020 that were solved using 398 sink reactions.
Likewise, in EcheverriPefia2021, manual curation was mostly applied to combine two
AG models. Instead of using the generic model HMRS3 itself, Lam2021 was built from
an adipocyte-specific GEM after mapping the gprRules from HMR3, which may not be
directly relevant to brain function. Lewis2010 was based on Reconl (2007) [92], which has
numerous shortcomings. The metFormulas field, which determines the chemical elements of
each metabolite, was missing in four models (Sertbas2014, Ozcan2016, MartinJiménez2017,
EcheverriPefia2021). This missing field prevented evaluating the mass balance of these
models with MEMOTE [131]. Some brain GEMs incorporated boundary constraints from
previous GEMs, without the required recalculation due to the use of different input recon-
structions and biomass formulations. Despite the drawbacks of these reconstructions, the
resources employed by these models can be reused (see Table 4). Finally, among the nine
brain models, Thiele2020 and MartinJiménez2017 are the most curated models and, unlike
Sertbas2014 and Ozcan2016, use standard annotations and are larger. Thiele2020 was built
using state-of-the-art context-specific algorithms and reconstructions [88]. Furthermore,
constraints and brain-specific reactions obtained from literature were fed to FASTCORE [79]
already as input, allowing for building of higher quality models. MartinJiménez2017, in
the pursuit of completeness, might have also lost specificity. Generally, using AG or
semi-curated models with only a few refinements built by older algorithms and input
reconstruction should be avoided. Instead, it would be advisable to rebuild the models
using Recon3D [98] or Human1 [132] and more recently published building algorithms,
while integrating the resources of the previous models as input for the algorithms (Table 4).
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Table 4. Some advantages and drawbacks in the brain GEMs.

Model Strengths Drawbacks
-Inclusion of a compartment for BBB
(Endothelium AndBlood) with 55 metabolites that can
bypass through it (Supplementary File 52, Table 53) -The generic reconstruction used as input is

Lewis2010 -Adding brain cell type-specific reactions from literature outdated and has lots of Short-comines
(Lewis et al., 2010 [91], Supplementary Table S1) &
-Comparison with experimental data of cholinergic
neurotransmission rate
-Constraining with literature-derived constraints. ;gsg;% non-standard reaction identifiers in the

Sertbas2014 -Comparison with experimental flux ratios for healthy Missine metFormula field that prevents
brain cells (Supplementary File S2, Table S6 and S7). g 1. . p .

evaluating the stoichiometric consistency
-Constraining with literature-derived constraints. ;Ejg;% non-standard reaction identifiers in the

Ozcan2016 -Comparison with experimental flux ratios for GBM “Missing metFormula field that prevents

(Supplementary File 52, Table 59). evaluating the stoichiometric consistency
-High rate of included genes that are

-Constraining with literature-derived constraints unsupported in brains

MartinJiménez2017 (Supplementary File 52, Table S8) -The discretization method used for the

-Validation with dysregulated reactions in ischemia expression data is not explained

(MartinJiménez et al., 2017 [95], Table 4) -Missing metFormula field that prevents
evaluating the stoichiometric consistency

-Extracting core reactions from literature and other

expression data (Supplementary File S2, Table S5)

Thiele2020 -Defining permeable and impermeable metabolites -Discretization of the Human Proteome Map

across the upplementary File 52, Table using a heuristic thresho
he BBB (Suppl y File S2, Table S3) ing a heuristic threshold
-Defining CSF metabolic composition from different
metabolomics data (Supplementary File 52, Table 54)
-Updating the list of Thiele2020 for metabolites passing LBSEZ?{E?EZ:{;?{?G expression data using a
. the BBB (Supplementary File S2, Table S3) : .

Baloni2020 . . . Manual curation on the AG models after
-Inclusion of constraints from Lewis2010 and OF from model-building with mCADRE
Martinjiménez2017 -Gap filling with 389 sink reactions

-Individual AG models [102], used for
integrating into a neuron-glial model, were built
. . . .. using the outdated MinMax algorithm
EcheverriPena2021 3?%25;5?5?%25 of myelin sheath degradation in -Manual curation by adding reactions after
& yte. integrating the two AG models
-Missing metFormula field that prevents
evaluating the stoichiometric consistency
-Using an adipocyte GEM with gprRules of the
Lam2021 generic HMR3 instead of using the genetic
reconstruction itself
-Removing essential toxic genes using predefined tasks
Larsson2020 for a healthy cell. -AG reconstruction only

-Validation of the predicted GBM essential genes against
CRISPR-Cas9 data.

4.2. A High Completeness Is Obtained at the Cost of the Specificity

The selected models presented in this review follow two different approaches. The
first is a bottom-up approach that aims to build a model around a few brain-specific
pathways. The second is a top-down approach that aims to remove inactive pathways in
the brain from a generic reconstruction, a database or an expression data. While bottom-up
approaches were less comprehensive and often not genome-scale, the top-down strategies
were lacking in the review paper in specificity, with the ratio of highly versus unsupported
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in brain models comparable to the generic GEM used as input. An enrichment of tissue-
specific genes and reactions is expected in context-specific models compared to their
input reconstruction [133]. This lack of specificity could have resulted from the choice
of the low expression threshold and/or the use of data from different brain regions with
different metabolisms that blurred the specificities of each area. Thus, the balance between
completeness and specificity should be observed during building brain models.

4.3. Using Standard Identifiers and Confidence Scores Are Required for Model Comparison
and Improvement

Furthermore, using non-standardised identifiers for reactions and metabolites renders
the reuse of Sertbag2014 and Ozcan2016 more difficult. In general, GEMs should be built
with Ensembl transcript identifiers over ENTREZ gene identifiers as different transcripts
might code for different isoforms that are not all functional [128,134]. Added reactions
should highlight the amount of supporting literature. They should preferably have at
least two supporting publications that prove experimentally that a reaction occurs in the
tissue of interest. For semi-curated and AG models, it is advisable to use the gathered
information from these studies, and reconstruct new models with a state-of-the-art model-
building algorithm [133] and a recent generic reconstruction such as Recon3D and Humanl,
rather than using the models directly. Moreover, heuristic thresholds for discretization
during model-building should be avoided. These thresholds affect the quality of the output
models [130], as the number of included genes, and by extension, reactions, is highly
dependent on these thresholds. Confidence scores and supporting literature identifiers for
manually added reactions are absent for some models. Therefore, confidence scores and
supporting PubMed identifiers should be clarified and included as fields in the model file
as SBML XML or MAT files. This confidence field should highlight if the manually added
reactions are from literature, expression data, or for modelling purposes (i.e., gap-filling).
In addition, several models could not be included in these studies, as being not available or
in a non-standard format such as Excel files rendering their use more difficult.

4.4. The Application of Constraints to the Generic Model Prior to the Context-Specific Model
Reconstruction Increases Predictability

The quality and extensiveness of the manual curation of these brain models varied
strongly among the studies. Generally, the tailoring and inclusion of OF, adding core
reactions from literature, and medium constraint exchange reactions to the BBB should be
applied to the generic input model before the reconstruction with an algorithm and forced
to be included in the output model. This tailoring might require some adjustment in the
code of some algorithms but would avoid extensive post-reconstruction curation. After
reconstruction, some refinement will still be required to include some reactions or pathways
lacking support from the input transcriptomic and literature data. GEMs should be flux
consistent or include the number of non-blocked reactions in the main text, as blocked
reactions and reactions that can only carry a flux due to sink reactions would need to be
removed for most modelling purposes. Reporting these blocked reactions would help any
future manual curation replace these sink reactions based on recent biochemical evidence.

4.5. Constraining with Flux Rates Should Be Adjusted to the Generic Model

Medium constraints can either be binary, such as adding a BBB compartment or
continuous such as flux rates or exo-metabolomics data. While the most updated list
of metabolites that can bypass the BBB is used in Baloni2020, Thiele2020 also compiled
a list that cannot pass this barrier, which can filter drugs and metabolites and predict
blood biomarkers for brain diseases. Due to various diseases’ alterations in the BBB
function, metabolites bypassing the BBB may need to be updated in the models according
to the diseases under study by either metabolomics data of the CSF or based on literature
search. For instance, metabolomics of the LGG identified dysregulated metabolites in
the CSF [135] that can be used to update the healthy CSF composition from Thiele2020
for medium constraining of LGG. In GBM, tumour cells infiltrate and disrupt the BBB.
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Infiltrating GBM cells produce VEGF, downregulating the tight-junction proteins, and
promoting angiogenesis and hypoxia [136]. Similarly, metabolomic analysis of NDD
identified increased metabolites in the CSF such as kynurenine, ceramide, nitric oxide,
neopterin, and other dysregulated metabolites that differ between NDDs [137]. Exo-
metabolite data can be used to fine-tune medium constraining. The uptake and production
rates of 213 metabolites of 60 cancer cell lines of NCI-60 [138] include two GBM and three
astrocytoma cell lines. These flux rates were used to calculate the fluxes using a core
cancer reconstruction from Recon 2, and the boundaries were then adjusted to Recon 2
(Zielinski et al., 2017 [139], Supplementary Data, “FBA constraints” sheet). In addition,
>99% of the carbon demand of the cancer cells is met by these 23 metabolites. The calculated
boundaries would need to be recalculated but could allow refining the boundaries of future
models. Similarly, differences in the generic models and the units of flux rates should be
considered while employing constraints from one model to another.

4.6. Metabolic Tasks of Brain Cell Functions Could Be Employed in Addition to Tailoring the OF

The previous brain models” OFs are condition-specific, either for a healthy brain or
glioma. Instead of applying the same OF for both neuronal and glial cells, the OF should be
tailored to the cell type. In addition to neurotransmitter detoxification and ATP production,
the OFs of glial cells could include lactate production and glutamate uptake. The OFs of the
neurons may include the production of various neurotransmitters and the uptake of lactate,
glutamine, and pyruvate [140]. Rather than using optimisation functions, defining tasks
that should be fulfilled at a given flux rate would often make more sense. Additionally,
enforcing the biomass maintenance, lactate secretion and others to have a non-zero baseline
reaction could be used to model the low proliferation of healthy glial cells compared to
gliomas. Even with the above-mentioned brain GEM, manually curated GEMs for LGG,
microglia and other relevant cell types are still missing, and only an AG GEM for LGG has
been built so far [68]. Microglia GEM can be built from expression data of microglia with
the OFs taken from a curated macrophage GEM (ATP production, redox maintenance, NO
production, production of extracellular matrix precursors, and polyamine production) [141].
Microglia GEM may then be further integrated into a multicellular GEM of GBM in order
to understand cellular interactions between the microglia, astrocytes, neurons and GBM
cells. Dendritic cells are another immune cell resident in the brain that increases tumour
proliferation upon activation via glycolysis shift [142]. Other peripheral immune cells such
as macrophages, monocytes, regulatory T cells and cytotoxic T lymphocytes penetrate
the BBB after the damage of tumour growth [142,143]. Modelling these immune cellular
interactions, especially the resident cells, with glioma GEM can help in understanding the
metabolic modelling of the immune microenvironment. In general, generic biomass OF
forces the addition of pathways that might not be active in some brain cells. Therefore,
tailoring at least the metabolite composition of the biomass OF with the biochemical
knowledge of the glioma would improve the predictions and, notably, the prediction of
essential genes that are not predicted due to the inclusion of alternative pathways that are
inactive in the brain.

4.7. Bulk Regional Expression Data of the Brain May Serve as an Alternative for Capturing
Cellular Heterogeneity

Despite the recent developments of single-cell expression in capturing intercellular
heterogeneity, robust and rigorously benchmarked tools for integrating single-cell expres-
sion into the metabolic model-building at genome-scale are non-existent for now. In the
future, these tools might help in building accurate multicellular brain GEMs without the
need for intensive manual curation. In addition, brain disorders being influenced by many
cells of a specific region, they can also be affected by the impairment of other regions, e.g.,
cellular damage in NDD and conditioning in glioma extends to the nearby regions [144].
Regional expression profiling of the brain outweighs conventional bulk expression in cap-
turing the regional vulnerability for different diseases [145]. Previous brain reconstructions
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tried to simulate brain heterogeneity through multicellular models (Ozcan2016), indepen-
dent regional brain models (Baloni2020), or multicellular, independent regional models
(Lewis2010). The connection information (i.e., exchange reactions) of the different brain
regions can help in building an interconnecting multi-regional model similar to multi-tissue
models [97,146]. Similarly, a multi-regional model can be extended from the healthy brain
to GBM. Regional expressional profiling using isolated GBM samples based on histomor-
phological features identified regional heterogeneity in five regions (infiltrating tumour,
cellular tumour, pseudo-palisading cells around necrosis, leading-edge, and microvascular
proliferation) [147]. These five regions were mapped recently to a proteomic model of three
pathways (KRAS-, MYC-, and hypoxia). The KRAS-, MYC, and hypoxia pathways were
identified with three main phenotypes: migration, proliferation, and altered metabolism,
respectively [148]. Consequently, building a multi-regional reconstruction for GBM could
identify the metabolic regional heterogeneity and vulnerability.

Taken together, the choice of the brain model depends on the focus of the study. To
study the NDD, a bi-cellular model might be more suitable than a whole-brain model that
would be more relevant for the interplay between different organs and the brain. The brain
models Thiele2020 and Martin]Jiménez2017 can be further contextualised using a context-
specific algorithm, expression data, and additional constraints to obtain more specific
models. Finally, the data collected in these studies can be included in the reconstruction
process of new models.
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