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Abstract: In clinical routine, the diagnosis of cystic fibrosis (CF) is still challenging regardless of
international consensus on diagnosis guidelines and tests. For decades, the classical Gibson and
Cooke test measuring sweat chloride concentration has been a keystone, yet, it may provide normal or
equivocal results. As of now, despite the combination of sweat testing, CFTR genotyping, and CFTR
functional testing, a small fraction (1–2%) of inconclusive diagnoses are reported and justifies the
search for new CF biomarkers. More importantly, in the context of precision medicine, with a view to
early diagnosis, better prognosis, appropriate clinical follow-up, and new therapeutic development,
discovering companion biomarkers of CF severity and phenotypic rescue are of utmost interest.
To date, previous sweat proteomic studies have already documented disease-specific variations of
sweat proteins (e.g., in schizophrenia and tuberculosis). In the current study, sweat samples from
28 healthy control subjects and 14 patients with CF were analyzed by nanoUHPLC-Q-Orbitrap-
based shotgun proteomics, to look for CF-associated changes in sweat protein composition and
abundance. A total of 1057 proteins were identified and quantified at an individual level, by a
shotgun label-free approach. Notwithstanding similar proteome composition, enrichment, and
functional annotations, control and CF samples featured distinct quantitative proteome profiles
significantly correlated with CF, accounting for the respective inter-individual variabilities of control
and CF sweat. All in all: (i) 402 sweat proteins were differentially abundant between controls
and patients with CF, (ii) 68 proteins varied in abundance between F508del homozygous patients
and patients with another genotype, (iii) 71 proteins were differentially abundant according to the
pancreatic function, and iv) 54 proteins changed in abundance depending on the lung function. The
functional annotation of pathophysiological biomarkers highlighted eccrine gland cell perturbations
in: (i) protein biosynthesis and trafficking, (ii) CFTR proteostasis and membrane stability, and (iii) cell-
cell adherence, membrane integrity, and cytoskeleton crosstalk. Cytoskeleton-related biomarkers
were of utmost interest because of the consistency between variations observed here in CF sweat
and variations previously documented in other CF tissues. From a clinical stance, nine candidate
biomarkers of CF diagnosis (CUTA, ARG1, EZR, AGA, FLNA, MAN1A1, MIA3, LFNG, SIAE) and
seven candidate biomarkers of CF severity (ARG1, GPT, MDH2, EML4 (F508del homozygous),
MGAT1 (pancreatic insufficiency), IGJ, TOLLIP (lung function impairment)) were deemed suitable
for further verification.
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1. Introduction

In clinical routine, the diagnosis of Cystic Fibrosis (CF) is confirmed in the presence of
both clinical manifestations of the disease and evidence of CFTR loss-of-function, according
to consensus, yet guidelines are still evolving [1,2]. As of today, CF diagnosis remains
challenging due to: (i) the high number of mutations and phenotypes [3–5], (ii) the struggle
with the differential diagnosis in a small fraction (1–2%) of equivocal cases (e.g., between
CF and CFTR-Related Metabolic Syndrome/CF Screen Positive, Inconclusive Diagnosis
(CRMS/CFSPID) cases), but also in regard to (iii) the worldwide implementation of cur-
rently available newborn screening strategies and diagnosis tests [6]. The Gibson and
Cooke sweat test [7] (the measurement of chloride concentration in sweat secreted follow-
ing cholinergic stimulation with pilocarpine) has been the cornerstone of CF diagnosis
for decades. Genetic analysis of CFTR and functional testing of CFTR (nasal potential
difference, intestinal current measurements, or forskolin-induced swelling in intestinal
organoids) complete the panel of currently available diagnostic tests. CF likeliness is high
for sweat chloride concentrations above 60 mM, in the presence of two CF-causing mu-
tations together with the demonstration of CFTR dysfunction. However, CF is unlikely
for sweat chloride concentrations below 30 mM, in the absence of CF-causing mutations
together with the demonstration of the functional integrity of CFTR. Cases featuring nor-
mal or equivocal sweat chloride concentrations, CFTR variants with unknown phenotypic
signification and equivocal CFTR function make room for the development of new CF
biomarkers. Moreover, in the context of personalized medicine, prognostic biomarkers and
companion diagnostic biomarkers are valuable for the earliest and most appropriate thera-
peutic intervention [8]. In addition, in the context of therapeutic development, biomarkers
of clinical response and phenotypic rescue (e.g., CFTR/F508del CFTR physical or functional
protein interactors) are critical to the emergence and advance of new therapies [9–11].

Sweat is a biological fluid of utmost interest in the search for CF biomarkers since
sweat collection and testing have already been integrated into CF diagnosis guidelines.
The collection of sweat is less invasive than that of other matrices such as blood and
bronchoalveolar fluid or nasal and intestinal biopsies. Moreover, the recent advances in
high-resolution, high-sensitivity analytical techniques allow working with sweat volumes
collected by means of standardized collection methods [12–15] on par with the Gibson and
Cooke sweat test volume ranges and standards, typically ranging from 20 to 100 µL for a
protein concentration ranging from 0.1 to 1 µg·µL−1.

Remarkably, despite a low protein concentration, the proteomic analysis of human
sweat already proved to be an informative source of pathophysiological biomarkers.
For instance, disease-specific profiles of sweat proteins were described in patients with
schizophrenia [12] or tuberculosis [13].

Here, with a view to discovering new protein biomarkers of CF for precision medicine
and therapeutic development, the proteomic profiles of sweat from patients with CF and
healthy control subjects were compared. Downstream sweat collection following the sweat
test gold standard, the nanoUHPLC-Q-Orbitrap-based analytical workflow characterized,
identified, and quantified 1057 proteins at an individual level, by means of a shotgun
label-free strategy. Distinct sweat proteome profiles were observed in CF, due to patho-
physiological inter-individual variations of the sweat proteome. Functional annotation of
the differentially expressed proteins was performed. Interestingly, cytoskeleton-related
biomarkers varied consistently in CF sweat, as reported here, and in other CF tissues,
as documented in previous works. With regards to the clinical relevance of sweat pro-
teins, candidate biomarkers of CF diagnosis and CF severity were deemed of interest for
further investigation.



Cells 2022, 11, 2358 3 of 25

2. Materials and Methods

The study was conducted according to the guidelines of the Declaration of Helsinki
and approved by the Ethics Committee of Cliniques Universitaires Saint-Luc–Université
Catholique de Louvain faculty hospital (ClinicalTrials.gov identifier: NCT03993600, date of
approval 4 December 2018). A material transfer agreement was signed with the University
of Liège for sample analysis. Informed consent was obtained from all subjects involved in
the study.

2.1. Sweat Collection

Sweat samples were collected from 30 healthy volunteers (15 females, 15 males) and
15 patients with CF (11 males, 4 females) under the most standardized and spectroscopically
pure conditions following the current recommendations for the Gibson and Cooke sweat
test [16]. In short, the volar region of the forearms was chosen based on its high density in
eccrine glands and low density in apocrine/apoeccrine glands together with its easy access.
Sweat samples were collected from each forearm successively, from fasting and well-hydrated
individuals. Before sampling, the tested region was washed with 70% ethanol, rinsed with
ultrapure water, and dried using ashless filter paper. Sweat secretion was stimulated by pilo-
carpine iontophoresis using pilocarpine gel-padded (Pilogel® discs, ELITechGroup, Brussels,
Belgium) electrodes. A 5 mA current (Webster Sweat Inducer, Model 3700, ELITechGroup,
Brussels, Belgium) was applied for 5 min. After stimulation, the electrodes were removed
and a Macroduct Sweat Collector (ELITechGroup, Brussels, Belgium) (blue dye removed
with 70% ethanol and ashless filter paper) was attached in the place of the cathode to collect
sweat for 30 min. At the end of the collection, the tubing was uncoiled, cut off, and connected
to a needle and syringe to transfer sweat to a 0.6 mL micro-tube.

2.2. Sample Preparation for Shotgun Proteomics

Pure, undiluted sweat samples were processed in three series of ten control samples
and two series of seven and eight CF samples. Five sample preparation rounds (1 per
series) were performed to avoid any technical bias that might come from a single sample
preparation experiment.

Sweat protein concentration was estimated using the Pierce Micro BCA™ Protein
Assay kit (#23235, ThermoFisher Scientific, Waltham, MA, USA) according to the man-
ufacturer’s instructions. Ten micrograms of proteins were precipitated by incubation
in 90% acetonitrile for 30 min at 4 ◦C followed by centrifugation for 10 min at 4 ◦C, at
10,000× g. The protein pellet was re-suspended in 50 mM ammonium bicarbonate and
then incubated in: (i) 10 mM DTT (dithiothreitol) for 40 min at 56 ◦C, under stirring at
600 rpm (Thermomixer comfort, Eppendorf, Hamburg, Germany), to reduce disulfide
bonds, (ii) 20 mM iodoacetamide protected from light for 30 min at room temperature to
alkylate/block cysteine residues, (iii) 11 mM DTT protected from light for 10 min at room
temperature to quench the residual iodoacetamide, (iv) mass-spectrometry grade trypsin
(Pierce™ Trypsin Protease, MS Grade, ThermoFisher Scientific, Waltham, MA, USA) at a
1:50 enzyme:protein ratio (protein concentration = 0.25 µg·µL−1) for 18 h at 37 ◦C, under
stirring at 600 rpm (Thermomixer comfort, Eppendorf, Hamburg, Germany), (v) MS-grade
trypsin in 80% acetonitrile, at a 1:100 enzyme:protein ratio for 3 h at 37 ◦C, under stirring at
600 rpm (Thermomixer comfort, Eppendorf, Hamburg, Germany). Digestion was stopped
by adding TFA (trifluoroacetic acid) to a final concentration of 0.5% (v/v). Samples were
dried in a vacuum concentrator and re-suspended at 3.75 µg/20 µL in 0.1% TFA. At this
step, aliquots from each control sample were collected and mixed in three 10-sample pools,
considering three series of 10 individual samples and an average pooled sample per series.
CF samples were only processed as individual samples. No CF pooled library was prepared.
Individual samples and pooled samples were desalted with C18 Zip Tips according to the
manufacturer’s recommendations, dried, and re-suspended at 3 µg/9 µL (injection volume)
in 0.1% TFA spiked with an equivalent of MassPREP Digestion Standard Mixture 1 (MPDS
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Mix 1, #186002865, Waters, Milford, MA, USA) corresponding to 50 fmol of ADH (alcohol
dehydrogenase 1 from Saccharomyces cerevisiae) content per injection volume.

2.3. Liquid Chromatography and Mass Spectrometry Data Acquisition

The control individual samples and pooled samples were randomly sorted into three
series of ten individual samples plus one pooled sample while the CF samples were
randomly sorted into two series of seven and eight individual samples. All samples
were analyzed using an ACQUITY UPLC M-Class liquid chromatography system (Waters,
Milford, MA, USA) coupled to a Q-Exactive Plus Hybrid Quadrupole-Orbitrap mass
spectrometer (ThermoFisher Scientific, Waltham, MA, USA). Five acquisition rounds (1 per
series) were performed to avoid any technical bias that might come from a single LC-MS
acquisition series.

The chromatographic separation consisted of a 3 min long trapping step performed on
a reversed-phase (RP) ACQUITY UPLC M-Class Trap Column (nanoEase MZ Symmetry
C18 Trap Column, 100 Å, 5 µm, 180 µm × 20 mm, Waters, Milford, MA, USA) followed by
a 177–minute elution step on an ACQUITY UPLC M-Class Analytical Column (nanoEase
MZ HSS T3 C18 Analytical Column, 100 Å, 1.8 µm, 75 µm × 250 mm, Waters, Milford,
MA, USA) using a gradient of mixed water and acetonitrile, both supplemented with 0.1%
formic acid as eluents.

The mass acquisition was operated in data-dependent positive ion mode. Source
parameters were set at: (i) 2.3 kV for spray voltage, (ii) 270 ◦C for capillary temperature,
(iii) S-lens RF level = 50.0.

For individual samples, MS spectra were obtained for scans between m/z 400 and m/z
1600 with a mass resolution of 70,000 at m/z 200, an Automated Gain Control (AGC) of
3 × 106, a maximum Injection Time (IT) of 200 ms, and an internal lock mass calibration
at m/z 445.12003. MS/MS spectra were obtained for the top 10 most intense ions of each
MS scan (TopN = 10) with a mass resolution of 17.500 at m/z 200, an isolation window of
1.6 m/z with an isolation offset of 0.5 m/z, an AGC of 1 × 105, a maximum IT of 200 ms,
and an (N)CE at 28. The exclusion of single-charged ions and a dynamic exclusion of 10 s
were enabled.

For each pooled sample, the MS acquisition consisted of a two-round strategy of
three injections each. During both rounds, MS spectra were obtained for scans between
m/z 400 and m/z 528.3, m/z 524.3 and m/z 662.8, or m/z 658.8 and m/z 1600, in three
independent analyses, respectively, with a mass resolution of 70,000 at m/z 200, an AGC
of 3 × 106, a maximum IT of 200 ms, and internal lock mass calibrations at m/z 445.12003,
m/z 536.16537, and m/z 684.20295, respectively. During the first acquisition round, MS/MS
spectra were obtained for the top 25 most intense ions of each MS scan (TopN = 25) with
a mass resolution of 17.500 at m/z 200, an isolation window of 1.6 m/z with an isolation
offset of 0.5 m/z, an AGC of 1 × 105, a maximum IT of 250 ms, and an (N)CE at 28. For the
second acquisition round, an exclusion list for all signals related to peptides identified in
the first round with more than 4 PSM (peptide–spectrum matches) was uploaded to the
methods. During the second acquisition round, MS/MS spectra were obtained for the top
10 most intense ions of each MS scan (TopN = 10) with a mass resolution of 17.500 at m/z
200, an isolation window of 1.6 m/z with an isolation offset of 0.5 m/z, an AGC of 1 × 105,
a maximum IT of 600 ms and an (N)CE at 28. The exclusion of single-charged ions and a
15 s dynamic exclusion were enabled for both rounds.

2.4. Bioinformatic Analysis

Raw MS data were submitted to protein identification and label-free quantification
by the MaxQuant software [17] (version 1.6.6.0) using default settings when not specified
otherwise. Identification consisted of a search against a custom-made reviewed Uniprot
Homo sapiens database (20443 Homo sapiens entries + 4 MPDS Mix 1 entries, release date
8 August 2019) with Carbamidomethyl (C) set as a fixed modification Oxidation (M),
Deamidation (NQ) set as variable modifications and a minimum of two peptides (including
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one unique peptide) required. LFQ was enabled and separated between control and CF
groups with a minimum LFQ ratio count of 1, no Fast LFQ, and no requirement of MSMS
for LFQ comparison. The ‘match between runs’ (MbR) option was enabled and tuned to
allow matches from the library (pooled samples considered as parameter group 1, ‘match
from’) and between individual samples (parameter groups 0 and 2, ‘match from and to’). A
match time window of 2.5 min was used.

MaxQuant output data (proteingroups.txt) were submitted to statistical analysis using
the Perseus software [18] (version 1.6.10.43). ‘Only identified by site’, ‘REVERSED’, and
Contaminant data were filtered out. LFQ intensities were log2-transformed and proteins
with less than 50% of valid values were filtered out. Principal Component Analysis (PCA)
was performed on Z-score-normalized LFQ intensities.

Computation of Pearson’s correlation coefficients (PCC) and average Euclidian dis-
tance hierarchical clustering were used to classify samples according to quantitative profiles
of pairwise correlation with other samples in the cohort, without a priori. Available clinical
parameters were tested for the significance of their effects on the proteome profile clustering
by PERMANOVA.

PERMANOVA (PERmutational Multivariate ANalysis Of VAriance) tests were per-
formed with the PAST software [19] (version 4.04) using the hierarchical clustering distance
matrix with a number of permutations set to 999.

Sparse Partial Least Squares (SPLS) regression was performed as an unsupervised
multivariate analysis to test the association between highly correlated covariates from
the proteomic data (matrix X of multivariate predictors) and the clinical data (matrix Y
of multivariate responses). Before SPLS processing, the predictors and responses were
centered. η, a sparsity tuning parameter, and k, the number of latent components were
determined among possible numbers for η − η ∈ (0.1,0.9) and k − 1 ≤ k ≤ 15. η = 0.69 and
k = 2 minimized the mean squared prediction error (MSPE, Supplementary Figure S1).

Control versus CF group comparison was achieved by a two-sample Student’s t-test
with a p-value-based threshold. Proteins with a p-value below 0.05 were considered signifi-
cantly differentially expressed between the control and CF groups. A second comparison
was performed by a two-sample Student’s t-test with a permutation-based FDR calculation
and a q-value-based threshold.

Differentially abundant proteins were characterized based on both the p-value (a less
stringent cut-off threshold (p < 0.05) for biological relevance) and q-value (a more stringent
permutation-based FDR threshold (q < 0.05) for clinical biomarker relevance) thresholds.
On top of the q-value cut-off, stringent data filtering based on sample occurrence, difference
significance, and difference value was applied to a shortlist of candidate clinical biomarkers.

Control versus CF Volcano plot visualization was achieved by a two-sample Student’s
t-test with a permutation-based FDR calculation (test = t-test; side = both; number of
randomizations = 250; no grouping in randomizations; FDR = 0.05; s0 = 0.1).

Functional annotations of identified proteins and over-representation/enrichment tests
were conducted using the online search engine powered by the PANTHER Classification
system. The PANTHER Overrepresentation test (release date: 28 July 2020 and 24 February
2021) parsed the PANTHER database (version 16.0, release date: 1 December 2020) using the
Homo sapiens reference list, the PANTHER-Gene Ontology-Slim, and the PANTHER Protein
Class annotation dataset. Only p < 0.05 items were retained and considered significantly
over-represented.

Visualization of proteome overlaps was performed by submitting SwissProt accession
IDs to the online Venn diagram generator Venny (version 2.1.0, https://bioinfogp.cnb.csic.
es/tools/venny, accessed on 8 October 2021).

Visualization of interaction networks was performed by submitting SwissProt acces-
sion IDs to STRING (version 11.0, https://string-db.org, accessed on 13 October 2021).

For concision, all protein names were abbreviated with the related gene names.

https://bioinfogp.cnb.csic.es/tools/venny
https://bioinfogp.cnb.csic.es/tools/venny
https://string-db.org
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2.5. Characterization of Sweat Actin

Sweat actin concentration was determined for each individual sample using the “Total
Protein Approach” to estimate absolute quantification [20]. A sweat aliquot equivalent to 5
ng of actin was diluted with ultrapure water (q.s. 10 µL, final concentration 0.5 ng·µL−1).
Phalloidin-TRITC stock solution was prepared by dissolving 0.1 mg of phalloidin-TRITC
(P1951, Phalloidin-TRITC peptide from Amanita phalloides, Sigma-Aldrich) in 1 mL of 50%
methanol (stock concentration 0.1 mg·mL−1). Buffer A consisted of a 20 mM potassium
acetate/20 mM Tris acetate, pH 7.5 solution. F-actin microfilaments were labeled with
phalloidin-TRITC by diluting sweat aliquots with buffer B (1:10 dilution of dye conjugate
stock solution in buffer A) to a final concentration of 0.25 ng·µL−1 (final volume: 20 µL) and
incubating for 45 min, at room temperature, under stirring at 600 rpm, protected from light.

To eliminate residual dye conjugates, labeled F-actin was precipitated with other sweat
proteins by incubation in 90% acetonitrile for 30 min at 4 ◦C followed by centrifugation for
10 min at 4 ◦C, at 10,000× g. The supernatant containing free dye conjugates in the solution
was discarded. The protein pellet containing phalloidin-TRITC-F-actin was re-suspended
in 20 µL of buffer A. Twenty µL of labeled F-actin solution were put on a microscope slide
covered with a cover slip sealed with nail polish.

Ten individual slides were prepared from ten individual sweat samples (5 controls,
5 CFs). F-actin microfilaments were observed with an Olympus IX81 inverted microscope
(Olympus Corporation, Tokyo, Japan) equipped with an X-Cite 120PC Q 120 W Hg lamp
(Excelitas Technologies, Waltham, MA, USA) for epifluorescence illumination, a red filter
(excitation wavelength range 560 +/− 55 nm; emission wavelength range 645 +/− 75 nm)
and a 100X oil-immersed objective (UPLSAPO100XO, Olympus Corporation, Tokyo, Japan).
The image was detected using an Olympus XC50 CCD color camera (Olympus Corporation,
Tokyo, Japan).

For each individual microscope slide, 20 snapshots were taken as followed: 10 snap-
shots at an operator-chosen position and 10 snapshots at a random position.

Images were automatically analyzed using ImageJ (version 1.53c). Image analysis
consisted of an in-house macro implementation: pixel-to-µm scaling, conversion to 8-bit
format, auto-thresholding using the MaxEntropy method [21], selection of thresholded
particles (size filter = 200 pixels, to filter noise particles out), and particle analysis (count,
area, perimeter, length, and width). Control versus CF comparison was achieved by an
unpaired t-test using GraphPad Prism (version 7.00).

2.6. Experimental Design and Statistical Rationale

All sweat samples were collected under steady state conditions from subjects with
no known acute or chronic illness in controls and no exacerbation in patients with CF, no
drug (controls) or additional drug (CF) use at the time of collection, no cosmetic use or skin
damage at the site of collection, no clinical sign of dehydration. Female subjects were neither
pregnant nor lactating. Patients with CF had a confirmed diagnosis and were clinically
stable, having a Forced Expiratory Volume in one second (FEV1) % predicted ≥ 30% and
an O2 saturation ≥ 92%. Patients with CF, tested under stable conditions, were not enrolled
in other clinical trials or under CFTR modulator therapies. All subjects were asked to be
fasting and kept well-hydrated for a minimum of 8 h before collection.

After sweat collection, sweat chloride (coulometry, ChloroChek chloridometer, ELITech-
Group, Brussels, Belgium), sodium and potassium concentrations (flame photometry, Flame
Photometer Model 420, Sherwood Scientific, Cambridge, UK) were measured.

Due to the small and variable sweat volumes collected, together with the relatively
low and variable protein concentrations of sweat, plus the need to store sweat samples
for further analyses, no technical replicate could be performed for each sample. For the
same reasons, no CF sample library was analyzed considering the high proteome similarity
between the control and CF proteomes as well as for the use of the inter-sample match
between the run option. To account for technical variability, sweat samples were processed
and analyzed in three series of ten control samples plus a pooled sample and two series
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of seven and eight CF samples. The inter-series technical variability for a given group
was negligible when compared to the biological variability [22]. Inter-sample technical
variability was reduced by separating LFQ normalization between the control and CF
groups: considering the equivalent amount of proteins processed and injected for all
samples, the computation of both non-normalized data and separated LFQ normalized
data drew the same general biological conclusions (both differential proteomic analysis and
differential quantification of the quality control standard digest spike-in were also similar).
However, global LFQ normalization led to a quantification bias (e.g., the 1:1:1:1 ratio of the
standard protein digest spike-in was lost). Protein abundances between the two groups
were not suitable for global normalization (Supplementary Figure S2).

3. Results
3.1. The Proteome of CF Sweat

Sweat samples from 30 controls and 15 patients with CF—see Supplementary
Tables S1 and S2 for complete clinical data summary—were analyzed by nanoLC-MS/MS
(Figure 1). Based on chromatogram discrepancy and poor correlation with the other sample
data, likely of technical origin, two female control samples and one male CF sample were
discarded (Supplementary Figure S3). Clinical data of the remaining control and patients
with CF are summarized in Tables 1 and 2. Considering a minimum of two peptides—
including one unique peptide—and an FDR below 0.01 for protein identification, a total of
1057 proteins were identified, accounting for data filtering (Supplementary Table S3) and
the standard protein mixture (MPDS Mix 1, Waters) for quality control. About 520 ± 18
(mean ± SEM, control: 542 ± 23, CF: 476 ± 26) proteins were peptide-spectrum matching
hits while 317 ± 7 proteins (control: 310± 9, CF: 330± 11) required matching between runs
for identification for an average total of 837 ± 14 proteins (control: 853 ± 18, CF: 805 ± 22)
identified in each sample (Figure 2A). A total of 314 proteins were consistently identified
across all samples.

The comparison of protein identifications between control and CF sweat proteomes
emphasized a near-complete overlap and a high degree of similarity: 98% of proteins were
common to the control and CF groups and only 18 out of 1057 identified proteins were
exclusive to control sweat (Figure 2B). Exclusive proteins were in the low abundance and
low occurrence tiers so one could not consider them biologically relevant. The classification
and over-representation analysis of identified proteins highlighted the predominance
of (i) proteins related to proteolytic activity, proteases, and peptidases as well as their
respective inhibitors, (ii) cytoskeletal proteins, i.e., protein components and regulators (actin
and Actin-Binding Proteins (ABP)) of the actin cytoskeleton organization and dynamics,
(iii) proteins of reactive oxygen species metabolism and oxidative stress, (iv) markers of UPR
and RE stress, (v) components and regulators of the proteasome, or (vi) proteins of all major
metabolic pathways, among the over-represented proteins mapped to annotation clusters
of the PANTHER Classification system and Gene Ontology Enrichment analysis, mapping
protein IDs against PANTHER GO Slim annotation datasets (Supplementary Tables S4–S7).

3.2. Analysis of Sweat Proteome Profiles

A total of 1057 identified proteins were suitable for protein label-free quantification.
For further statistical differential analysis between control and CF sample groups, only
proteins identified and quantified in at least 50% of a sample group were used, amounting
to 947 proteins.

First of all, the hierarchical clustering of control and CF samples together confirmed
CF-specific/control-specific proteome profiles of PCC since samples were sorted into eight
clusters, grouping samples from the same subject group (Figure 3A, upper panel), without
a priori. Only four samples (one control and three CF) were mismatched. According to PER-
MANOVA, the variations in proteome profiles between control and CF were significantly
correlated with Na+ and Cl− concentrations, protein concentration, Na+ amount, and CF
status (Figure 3A, lower panel). Then, the hierarchical clustering of CF samples into five
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clusters of CF proteome profiles highlighted the inter-individual biological variability of
CF sweat (Figure 3B, upper panel). According to PERMANOVA, the variations in CF sweat
proteome profiles were significantly correlated with sweat Na+ and K+ concentrations,
protein concentration, and K+ amount (Figure 3B, lower panel). Interestingly, no signifi-
cant correlation with CFTR genotype or clinical manifestations (pancreatic insufficiency,
diabetes, airway infection status, or lung function impairment) was observed.

Figure 1. General experimental workflow. (A) Standardized sweat collection method. (B) Single
sample preparation method for subsequent sweat proteomics and metabolomics studies. (C) Analyti-
cal and bioinformatic strategy using the “match between runs” option (MaxQuant). 1. Generation
of a sweat reference proteome database from pooled control samples. A two-round analysis of
three limited m/z range acquisitions was performed. A precursor exclusion list was applied for the
second-round experiment. 2. Individual sweat sample analyses. (D) Statistical data processing tools.



Cells 2022, 11, 2358 9 of 25

Table 1. Clinical data summary. Student’s t-test, significantly different parameters highlighted in green, p < 0.05 *, p < 0.01 **, p < 0.001 ***. Green (control) and red
(CF) shades of background color indicated the different analytical series.

Sample
IDs

Age
(Years) Sex BMI

(kg/m2)

Collected
Volume

(µL) (Right
Arm)

Collected
Volume

(µL) (Left
Arm)

[Na+]
(mM)

[Cl−]
(mM)

[K+]
(mM)

[Protein]
(µg/µL)

Na+

(µmol)
Cl−

(µmol)
K+

(µmol)
Protein

(µg)

19_2792 36 M 22.7 62.1 87.8 56 26 8 0.488 3.48 1.61 0.50 42.85
19_2796 29 M 31.6 48.1 42.4 23 4 10 0.557 1.11 0.19 0.48 23.62
19_2805 28 M 30.0 98.9 97.5 59 24 7 0.340 5.84 2.37 0.69 33.15
19_2812 40 M 25.5 89.6 96.5 39 18 8 0.432 3.49 1.61 0.72 41.69
19_2866 74 M 21.3 56.9 64.2 37 12 12 0.551 2.11 0.68 0.68 35.37
19_2823 31 F 19.8 71.8 89.8 32 10 10 0.262 2.30 0.72 0.72 23.53
19_2830 30 F 23.1 94.0 77.9 32 11 8 0.462 3.01 1.03 0.75 35.99
19_2843 24 F 18.2 63.5 64.1 65 36 10 0.472 4.13 2.29 0.64 30.26
19_2849 27 F 20.5 97.7 84.6 22 10 8 0.432 2.15 0.98 0.78 36.55
19_2856 29 F 18.7 79.7 70.4 28 6 8 0.422 2.23 0.48 0.64 29.71
19_3163 32 F 19.4 44.8 30.1 30 12 9 0.785 1.34 0.54 0.40 23.63
19_3166 26 F 18.9 57.2 64.0 44 22 10 0.494 2.52 1.26 0.57 31.62
20_1490 39 F 21.3 40.1 43.5 26 12 8 0.371 1.04 0.48 0.32 16.14
19_3177 28 M 23.1 35.9 27.0 51 30 8 0.475 1.83 1.08 0.29 12.83
19_3190 29 M 24.5 98.6 80.7 55 28 6 0.406 5.42 2.76 0.59 32.76
19_3194 41 M 24.1 34.4 42.7 36 8 9 0.736 1.24 0.28 0.31 31.43
19_3197 36 M 22.5 27.5 82.7 91 44 8 0.504 2.50 1.21 0.22 41.68
19_3207 28 M 23.8 84.9 93.2 45 22 7 0.364 3.82 1.87 0.59 33.92
20_1494 29 F 20.9 61.3 64.4 54 30 12 0.441 3.31 1.84 0.74 28.40
19_2869 28 F 17.7 57.1 45.9 67 10 24 0.646 3.83 0.57 1.37 29.65
19_2877 33 F 22.3 102.7 83.7 35 12 7 0.350 3.59 1.23 0.72 29.30
19_2882 24 F 20.6 57.2 53.6 29 10 6 0.377 1.66 0.57 0.34 20.21
19_3169 57 F 19.2 35.6 29.9 58 24 8 0.661 2.06 0.85 0.28 19.76
20_1479 25 M 24.5 56.4 72.6 69 38 7 0.336 3.89 2.14 0.39 24.39
20_1484 24 M 23.6 99.0 93.4 49 20 8 0.622 4.85 1.98 0.79 58.09
19_2817 26 M 20.8 47.4 40.4 73 44 9 0.314 3.46 2.09 0.43 12.69
19_3448 30 M 20.6 91.2 74.0 50 22 10 0.448 4.56 2.01 0.91 33.15
19_3456 31 M 22.6 101.5 99.5 69 40 5 0.198 7.00 4.06 0.51 19.70

Control
(n = 28)
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Table 1. Cont.

Sample
IDs

Age
(Years) Sex BMI

(kg/m2)

Collected
Volume

(µL) (Right
Arm)

Collected
Volume

(µL) (Left
Arm)

[Na+]
(mM)

[Cl−]
(mM)

[K+]
(mM)

[Protein]
(µg/µL)

Na+

(µmol)
Cl−

(µmol)
K+

(µmol)
Protein

(µg)

20_497 36 M 24.7 98.5 92.1 122 106 14 0.492 12.02 10.44 1.38 45.31
20_504 32 M 26.8 74.6 85.8 106 100 17 0.424 7.91 7.46 1.27 36.38
20_511 57 M 25.3 72.0 34.6 75 56 9 0.472 5.40 4.03 0.65 16.33

20_1257 43 M 25.4 55.3 71.4 130 102 9 0.208 7.19 5.64 0.50 14.85
20_1264 31 M 20.9 54.0 30.2 103 92 14 1.315 5.56 4.97 0.76 39.71
20_1269 55 M 20.5 59.9 53.1 151 114 8 0.237 9.04 6.83 0.48 12.58
20_1277 23 F 20.8 103.4 102.7 106 102 13 0.414 10.96 10.55 1.34 42.52
20_2375 46 F 21.6 14.1 43.2 67 61 13 1.060 0.94 0.86 0.18 45.79
20_2380 35 M 18.5 62.9 90.3 109 84 14 0.489 6.86 5.28 0.88 44.16
20_2387 47 F 27.9 64.8 71.3 72 68 10 0.512 4.67 4.41 0.65 36.51
20_2394 30 M 25.0 77.4 75.2 110 100 16 0.515 8.51 7.74 1.24 38.73
20_2400 63 F 19.7 52.2 55.3 98 82 15 0.404 5.12 4.28 0.78 22.34
20_2554 21 M 23.7 89.9 103.4 142 108 9 0.287 12.77 9.71 0.81 29.68
20_2559 54 M 19.8 18.6 47.6 123 94 15 0.504 2.29 1.75 0.28 23.99

CF
(n = 14)

Mean 33 22.2 67.7 67.7 47 21 9 0.462 3.13 1.39 0.58 29.72
Median 29 21.8 61.7 71.5 47 21 8 0.445 3.16 1.22 0.59 29.98

SD 11 3.2 24.2 22.7 18 12 3 0.137 1.49 0.89 0.24 9.87
SEM 2

13 F
15 M

0.6 4.6 4.3 3 2 1 0.026 0.28 0.17 0.05 1.87
Mean 41 22.9 64.1 68.3 108 91 13 0.524 7.09 6.00 0.80 32.06

Median 40 22.7 63.9 71.4 108 97 14 0.481 7.02 5.46 0.77 36.44
SD 13 3.0 25.8 24.6 25 18 3 0.303 3.44 2.98 0.39 11.93

SEM 4

4 F
10 M

0.8 6.9 6.6 7 5 1 0.081 0.92 0.80 0.10 3.19
t-test

p-value
0.034

* 0.503 0.662 0.941 <0.001
***

<0.001
***

0.001
** 0.368 <0.001

***
<0.001

***
0.033

* 0.502
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Table 2. Clinical data summary: genotype, clinical manifestations, and spirometry of patients with
CF. PA, Pseudomonas aeruginosa, MSSA, meticillin-sensitive Staphylococcus aureus, MRSA, meticillin-
resistant Staphylococcus aureus, AF, Aspergillus fumigatus, A. Sp., Achromobacter species, BCC, Burkholde-
ria cepacia complex. Red shades of background color indicate the different analytical series.

Sample IDs Genotype
Pancreatic

Insufficiency
Onset

Diabetes
Onset

Sputum
Microbiology FEV1 %Predicted

20_497 F508del/Y913S NO NO PA/MSSA 44.0
20_504 F508del/F508del YES NO mucoid PA 46.4
20_511 F508del/ND NO NO mucoid PA/AF 83.0
20_1257 F508del/F508del YES NO PA/A. sp. 39.0
20_1264 F508del/306insA YES NO PA/A. sp. 63.3
20_1269 F508del/F508del YES YES PA 60.0
20_1277 F508del/1717- 1G- > A YES NO - 101.0

20_2375 F508del/1002-113-
110delGAAT NO NO AF/MSSA 127.0

20_2380 F508del/F508del YES NO PA/AF/MSSA 70.0
20_2387 F508del/P574H NO NO PA 73.0
20_2394 F508del/2184insA YES NO BCC/MRSA 42.0
20_2400 1717-3T- > G/1717-3T- > G NO NO - 94.0
20_2554 F508del/F508del YES NO intermittent PA 103.0
20_2559 F508del/F508del YES YES A. sp./MRSA 59.0

Mean 71.8
Median 66.7

SD 26.7
SEM 7.1

Figure 2. High similarity of control and CF proteome in protein identification (A). Number of proteins
identified in each sample by MS/MS (in green) and by MbR (in purple), with the total number of
identified proteins (in orange). (B) Protein identification overlap between control and CF samples.
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Figure 3. Sweat protein profiles discriminated patients with CF from control subjects, without
correlation with CF severity and complications (A). Heat-map representation of control versus CF
sweat protein profiles. Control samples (blue color bar), CF samples (pink color bar). (B) Heat-
map representation of CF sweat protein profiles. Hierarchical clustering of Pearson’s correlation
coefficients using average Euclidian distance matrix. PERMANOVA test for significance of the
correlation between clustering and clinical data distribution (number of permutations = 999, p < 0.05 *,
p > 0.01 **, p > 0.001 ***), ion formulae into brackets indicate ion concentrations and ion formulae
without brackets indicate ion amounts.

SPLS regression selected 135 out of 1057 proteins as important variables with high
correlations with clinical data (Supplementary Table S8A). Especially, SPLS confirmed the
correlation between sweat ion composition and protein profiles (Supplementary Figure S4).

3.3. Characterization of Candidate CF Biomarkers

The clustering of sweat proteome profiles like the sample grouping by PCA (Fig-
ure 4A) resulted from the differential abundance of 402 out of 947 proteins (Supplementary
Table S8B), as tested by a supervised two-sample t-test. CF was associated with a decrease
in the expression of 351 out of 402 proteins in differential abundance, 51 out of 402 proteins
being over-expressed. The proteome dynamic correlated with a partial depletion in CF
sweat (as visualized in Figure 4B).



Cells 2022, 11, 2358 13 of 25

Figure 4. CF status and severity correlated with disease-specific abundances of sweat proteins.
(A) PCA, CF (plain red squares), control (plain green dots). (B) Volcano plot, CF-overexpressed (plain
red squares), CF-underexpressed (plain green squares), threshold curve (black bold line, FDR = 0.05,
s0 = 0.1). (C) Box-and-whiskers representation of sweat protein abundances for (a) CF, (b) F508del
homozygous, (c) PI, and (d) lung function candidate biomarkers.

Of note, 17 of the 20 most abundant proteins in sweat [22] were in significantly
differential abundance between the control and CF groups (Supplementary Table S8B,
highlighted in blue). In addition, kallikreins (KLK5, KLK11 (ESG-specific), KLK14) were
significantly decreased in CF sweat. (Supplementary Table S8B, highlighted in yellow).

One-hundred and eighty-nine proteins were differentially abundant between the
control and CF groups (11 up in CF, 178 down, Supplementary Table S8C) after a supervised
two-sample t-test with permutation-based FDR calculation. Data filtering based on sample
occurrence (protein found in all samples) significance (p < 0.001) and value (control-CF
log2 LFQ difference ≥ 2 or control-CF log2 LFQ difference ≤ −2) of the difference in
protein abundance highlighted nine candidate CF biomarkers of potential clinical relevance
(Figure 4). Decreases in the protein abundances of ARG1, CUTA, MAN1A1, AGA, EZR,
SIAE, LFNG, MIA3, and FNLA (Figure 4C, panel a) between the control and CF groups
were the most statistically significant. Only EZR and FLNA were closely functionally
related, being involved in the integrity and stability of the cortical actin network.



Cells 2022, 11, 2358 14 of 25

According to the PANTHER-Gene Ontology functional annotation and over-represen-
tation test (Supplementary Tables S9–S12), proteins involved in: (i) the hydrolase activity
(both protease/peptidase and glycosidase activity) of the lysosome, (ii) the structure and
function of the proteasome, (iii) protein processing and mechanisms of ER stress and UPR,
(iv) the structure of desmosomal anchoring junctions, and (v) the structure, organization,
and dynamics of the actin cytoskeleton were over-represented in the set of differentially
abundant proteins (Figure 5).

Figure 5. Interaction network mapping of sweat core CF biomarkers (182 proteins in 42/42 samples).
The 182 query proteins resulted in 180 mapped proteins. Network settings included: Homo sapiens
database, high confidence minimum required interaction score, hidden disconnected nodes, and
confidence-based networking.

Of note, the differential phenotypes of CFTR/F508del CFTR physical and functional
interactions could be described in sweat since subsets of sweat CF biomarkers cross-checked
the CFTR interactome (n = 82, Figure 6A) and F508del CFTR interactome (n = 23, Figure 6B)
as established by Pankow et al. [23].

CF Biomarker Profiles Partially Reflect CF Severity Related to CFTR Genotype

To determine if CF biomarker profiles correlate with genotype, pancreatic status,
airway infection status, or spirometry, computation of Pearson’s correlation coefficients,
average Euclidian distance hierarchical clustering of samples, and PERMANOVA testing
of available clinical parameters were applied to CF biomarkers only (n = 402).

Firstly, the hierarchical clustering of all samples using only the protein abundance
profiles of CF biomarkers generated CF and control groups sub-divided into five clusters
of protein abundance profiles (Supplementary Figure S5A, upper panel), without a priori.
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According to PERMANOVA, the variations in CF biomarker profiles between control and
CF were significantly correlated with sweat Na+, Cl−, and K+ concentrations, protein
concentration, Na+, Cl−, and K+ amounts, and CF status (Supplementary Figure S5A,
lower panel). Secondly, the hierarchical clustering of CF samples (n = 14) using only the
protein abundance profiles of CF biomarker sorted samples into six clusters (Supplementary
Figure S5B, upper panel), without a priori. According to PERMANOVA, the variations in
CF sweat proteome profiles were significantly correlated with CFTR genotype (F508del
homozygous status) (Supplementary Figure S5B, lower panel). No significant correlation
with clinical manifestations (pancreatic insufficiency, diabetes, airway infection status, or
lung function impairment) was observed.

Figure 6. Interaction network mapping of the CFTR interactome and F508del CFTR interactome of
sweat CF biomarkers. (A) Sweat CFTR interactors in CF-specific abundance (82/82 mapped proteins).
(B) Sweat F508del CFTR interactors in CF-specific abundance (22/23 mapped proteins). Network
settings included: Homo sapiens database, lowest confidence minimum required interaction score,
hidden disconnected nodes, and confidence-based networking. CFTR was added to the list of sweat
proteins of interest before analysis (red circle).
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3.4. Characterization of CF Severity Biomarkers

The correlation between sweat CF biomarker profiles and CFTR genotype, as it was
observed by PERMANOVA of hierarchical clustering, resulted from the differential abun-
dance of 68 proteins between F508del homozygous patients and patients with other geno-
types (Supplementary Table S13), as tested by a supervised two-sample t-test. Dermcidin
(DCD), the most abundant protein in sweat, was significantly less abundant in F508del
homozygous sweat (Supplementary Table S13, highlighted in blue).

Concurrently, applying the same supervised statistics to patients with or without
pancreatic insufficiency, 71 proteins were found differentially abundant (Supplementary
Table S14).

According to the PANTHER-Gene Ontology functional annotation and over-represen-
tation test, proteins involved in: (i) the hydrolase activity (both protease/peptidase and gly-
cosidase activity) of the lysosome and (ii) the structure and function of the ribosome
were over-represented in both F508del homozygous and PI patients (Supplementary
Tables S15–S34).

Meanwhile, 54 proteins were differentially abundant in correlation with lung function,
between patients with normal or mildly impaired lung function (≥70% FEV1%) and pa-
tients with moderate to severe lung function impairment (<70% FEV1%) (Supplementary
Table S35). According to the PANTHER-Gene Ontology functional annotation and over-
representation test, hydrolases and desmosomal linkers to intermediate filaments were
over-represented in this subset (Supplementary Tables S36–S43).

Data filtering based on sample occurrence (protein found in all samples) significance
(p < 0.001) and value (control-CF log2 LFQ difference ≥ 2 or control-CF log2 LFQ difference
≤ −2) of the difference in protein abundance highlighted seven candidate biomarkers of CF
severity with potential clinical relevance (Figure 4). Differential abundances of: (i) ARG1,
GPT, MDH2, and EML4 between F508del homozygous and F508del heterozygous patients,
(Figure 4C, panel b), (ii) MGAT1 between pancreatic insufficient and pancreatic sufficient
patients (Figure 4C, panel c), and (iii) IGJ and TOLLIP between patients with normal lung
function/mild lung function impairment and moderate/severe lung function impairment
(Figure 4C, panel d) were the most statistically significant.

Nevertheless, the latter results were generated from a small number of patients and
would gain clinical relevance with a larger cohort and subsequent dataset.

3.5. Actin Dynamics in CF Sweat

In light of the functional annotation of the sweat proteome, 35 out of all identified
proteins are involved in the organization and dynamics of the actin cytoskeleton (Sup-
plementary Tables S4–S7). Supervised differential proteomics reported 13 ABPs with
significant changes in protein abundance between the control and CF groups while actin
abundance remained steady between healthy subjects and patients with CF.

ABPs cofilin-1 (CFL), insulin receptor substrate 53 kDa/brain-specific angiogenesis
inhibitor 1-associated protein 2 (IRSp53/BAIAP2), and dihydropyrimidinase-related pro-
tein 3 (DPSYL3) plus actin-bundling protein lysozyme C (LYZ) were more abundant in
CF sweat.

ABPs tropomyosins 1 and 3, plastins 2 and 3 (LCP1 and PLS3), plus small RhoGTPase
Ras-related C3 botulinum toxin substrate 1 (RAC1), and myotrophin (MTPN) were less
abundant in CF sweat.

At the same time, subunits of the Arp2/3 complex were differentially abundant from
one another: Arp2/3 complex subunit 1A (ARPC1A) was less abundant in CF sweat while
actin-related protein 2 (ACTR 2), Arp2/3 complex subunit 3 (ARPC3), and Arp2/3 complex
subunit 4 (ARPC4) were more abundant. Actin-related protein 3 (ACTR3) and Arp2/3
complex subunit 2 (ARPC2) abundances were not significantly different between the control
and CF groups.

In regard to the differential abundance of ABPs and functionally associated proteins,
the observation of sweat F-actin (Figure 7A) featured significant differences in microfil-
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ament organization between control and CF sweat. In detail, particles assimilated to
microfilaments in CF sweat were significantly more abundant (Figure 7B, panel a, fold
change (FC) = 1.81, p < 0.001 ***), longer and larger with significantly greater mean micro-
filament area (Figure 7B, panel b, FC = 2;68, p < 0.001 ***), perimeter (Figure 7B, panel c,
FC = 1.92, p < 0.001 ***), length (Figure 7B, panel d, FC = 1.79, p < 0.001 ***), and width
(Figure 7B, panel e, FC = 1.69, p < 0.001 ***) and significantly lower circularity (Figure 7B,
panel f, FC = 0.80, p < 0.001 ***, circularity = 1 describes a perfectly round object).

Figure 7. CF-specific abundance of sweat ABP equated to differences in the organization of F-
actin microfilaments between control and CF sweat. (A) Specimen epifluorescence micrographs of
free-in-solution Phalloidin-TRITC-labeled F-actin microfilaments in control (a) and CF (b) sweat.
Arrowheads: control (empty) and CF (plain) microfilament specimens, scale bar = 10 µm. (B) Mean
count (a), area and perimeter (b,c), length (d), width (e), and circularity (f) of thresholded particles
assimilated to F-Actin microfilaments, between control and CF sweat. Mean ± S.E.M. Student’s t-test
for statistical significance analysis: *** p < 0.001, (n = 5, 5 controls compared to 5 patients with CF;
nmicrographs = 20 per individual).
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4. Discussion

The current study was designed to achieve the first thorough and in-depth characteri-
zation of the sweat proteome of patients with CF versus healthy subjects, at an individual
level. A standardized and optimized workflow from the sample collection and preparation
to the LC-MS analysis and bio-informatic data processing was developed. With a particular
emphasis on sweat sampling in a non-invasive and reproducible way, the methodology
followed the Gibson and Cooke sweat test gold standard guidelines. Accounting for all
analyzed samples, 1057 proteins were identified and quantified by their inter-individual rel-
ative abundance. Comparing 14 patients with CF to 28 healthy subjects as a control cohort,
relative protein abundances between control and CF sweat samples were computed to:
(i) evaluate whether sweat protein profiles would help discriminate patients with CF from
healthy subjects, (ii) test the correlation between CF severity and sweat protein profiles,
and (iii) characterize biomarkers of CF disease and severity in sweat.

First and foremost, the statistical analysis of sweat proteome profiles without a priori
partially reflected the clinical diagnosis and conclusions of the sweat test since CF status
alongside Na+ and Cl− concentrations correlated with the control versus CF sample clus-
tering. However, the clinical relevance of sweat proteome profiles was hindered by the
respective inter-individual variabilities of control sweat—inter-subject variability correlated
with Na+ amount [22]—and CF sweat—inter-patient variability correlated with K+ concen-
tration and K+ amount alongside Na+ concentration and sweat protein concentration. On a
side note, these correlations underlined the susceptibility of protein content to the shifts in
the mechanisms of eccrine ion secretion between control subjects and patients with CF. The
fact remains that the combined physiological and pathophysiological inter-individual vari-
ability of sweat allowed control versus CF sample correlation and clustering mismatches,
with no evidence to rationalize or exclude mismatched samples as outliers. Therefore, the
statistical analysis of whole sweat proteome profiles without a priori could not discriminate
patients with CF from the healthy population. Neither could it discriminate against patients
based on their genotype or the clinical manifestations, failing to report CF severity.

However, CF samples were distributed together without a priori among clusters
in correlation with CF status, even if a priori control and CF sample groups were not
retained afterward. So, CF pathophysiology partly influenced the protein composition
of sweat. Applying a supervised statistical analysis for differential proteomics between
the CF and control groups, a third of all characterized sweat proteins (351 out of 947)
were significantly less abundant in CF sweat. Functionally wise, the over-representation
of differentially abundant proteins involved in protein processing, ER stress, and UPR
pathways was consistent with this apparent depletion. This observation had to be correlated
with phenotypes of impaired CFTR processing due to CFTR mutations and generalized
to the global protein machinery of eccrine gland cells. Thirteen out of fourteen patients
with CF carried the F508del mutation whose phenotype is the absence of functional CFTR
at the membrane due to CFTR production and trafficking impairment and degradation
of misfolded proteins. The over-representation of proteins in disease-specific abundance
related to proteasome- and lysosome-mediated proteolysis alongside markers of UPR was
in total agreement with the prevalence of the F508del mutation in the patient cohort.

To sum up, the protein composition of CF sweat compared to control sweat high-
lighted that CF pathophysiology of the eccrine gland, e.g., defects in the mechanisms of
protein processing resulting in ER stress, the onset of the UPR, and proteolysis can be
indirectly monitored by sweat proteomics. From a pathophysiological standpoint, the
F508del mutation globally affected the protein machinery of the eccrine gland beyond the
sole processing of CFTR, hence the disease-driven depletion of the CF sweat proteome.

When considering the 402 differentially abundant proteins, the proteome profiles of
CF sweat correlated with CFTR F508del mutation, i.e., sweat was a matrix of candidate
biomarkers of both CF diagnosis and discrimination between F508del homozygous and
F508del heterozygous status. The pathophysiology of F508del homozygous patients is
frequently associated with the onset of pancreatic insufficiency [24]. Interestingly, the
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most differentially abundant proteins were both F508del homozygous and PI biomarkers.
Yet, the recruitment of F508del heterozygous patients with PI helped characterize F508del
homozygous- and PI-specific biomarkers. The over-representation of proteins in genotype-
or PI- related abundance involved in the protease activity of the cytoplasm and the structure
and function of the ribosome echoed the correlation between CFTR mutation classes,
phenotypes of protein processing defects, and CF severity.

In brief, the protein composition of CF sweat highlighted that factors of CF severity
(CFTR genotype) can be monitored by sweat proteomics. From a pathophysiological
perspective, ribosomal stalk proteins were described as modifiers of CF severity when
the silencing of corresponding genes elicited the partial phenotype rescue of F508del
CFTR processing defects [25]. Here, ribosomal stalk proteins uL11, P0 (uL10), and P2 plus
ribosomal proteins uL4 and eL6 were sweat markers of CF disease and severity, respectively.

As for the pathophysiological relevance of sweat proteins in differential abundance,
17 proteins from the core proteome (systematically found in all samples) and the top
20 most abundant proteins of sweat [22] were in CF-specific abundance. To a greater
extent, proteins in the high abundance and high occurrence tiers were all affected by CF.
Dermcidin, the most abundant protein in sweat was characterized as a biomarker of F508del
homozygous and PI. Moreover, a number of previous results about CF-specific abundance
of proteins were confirmed: (i) the decreased levels of kallikreins were already described in
sweat [26] and correlated with a decreased enzymatic activity in CF plasma [27], (ii) the
decreased arginase-1 abundance in CF sweat would correlate with the decreased abundance
and reduced enzymatic activity in CF plasma [28], (iii) the under-expression of filamins
A and B in CF sweat could be correlated with the decreased cell levels of filamins [29].
Interestingly, in the current work, arginase-1 and filamin A were characterized as promising
candidate biomarkers for CF diagnosis and estimation of CF severity from CF sweat. More
importantly, some biomarkers found in CF sweat were already described in previous studies
on the secretome and proteome of bronchial epithelial cell lines [30–32], the proteome of
nasal epithelial cells [33], the proteome of CF serum [34], and the proteome of CF urine
exosomes [35] (Supplementary Table S44). Inconsistencies in the protein abundances
of these biomarkers were observed between studies and could be partially explained
by the nature of the models (e.g., in vitro cell lines versus patient tissue samples). Still,
proteins related to CFTR proteostasis and membrane stability plus cytoskeleton crosstalk
(e.g., FLNA, EZR, VCL, SET, COL6A1, and HSPA5) were among the ones in good agreement
throughout. In total, 82 sweat proteins in CF-specific abundance (Supplementary Table S45)
were listed in the CFTR interactome [23]. In addition, in CF sweat, the decreased levels of
CFTR interactors, e.g., ERM proteins (EZR, MSN) or filamins, plus the under-expression
of all the protein constituents of the desmosome highlighted: (i) the defects in CFTR
homeostasis and membrane stability as well as cell-cell adherence and membrane integrity
of the eccrine gland cells, (ii) the potential of sweat analysis to remotely monitor some
aspects of CF pathophysiology in other epithelia. In addition, from a clinical standpoint,
sweat CFTR interactors and F508del CFTR interactors (Supplementary Table S46) in CF-
specific abundance are of utmost interest in the search for biomarkers of phenotypic rescue
to benefit new therapeutic developments.

Concurrently, the functional annotation of proteins in disease-specific abundance
pointed out new insights into the pathophysiology of CF sweat, i.e., the significant over-
representation of proteins related to sweat actin organization and dynamics.

Precisely, protein abundances of lysozyme C (LYZ) and Actin-Binding Protein (ABP)
cofilin-1 (CFL) were significantly increased in CF sweat while actin levels remained steady.
Both LYZ and CFL are known to alter actin dynamics in relation to variations in ionic
strength and concentration ratio to actin, as discussed below and summarized in Figure 8.
Changes in LYZ and CFL abundance correlated with CF-specific changes in sweat actin
organization, i.e., larger, more abundant microfilaments resulting from disease-induced
F-actin polymerization and bundling.
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Figure 8. Hypothetical mechanism of F-actin microfilament reorganization in CF sweat.

Initially described as an Actin-Depolymerizing Factor (ADF) [36], CFL regulates
actin dynamics as a whole from F-actin/G-actin balance and treadmilling to the spatial
organization of the actin cytoskeleton [37,38]. CFL concentration ratio to actin (CFL: ACT
ratio), pH, oxidative stress, or CFL phosphorylation are well-described modulators of CFL
actin-related biological function and activity [39].

At a higher CFL: ACT ratio, F-actin microfilaments are severed and prone to the
nucleation and polymerization of new branches. Conversely, F-actin microfilaments are
severed and completely depolymerized into G-actin at a lower CFL: ACT ratio [40,41]. In
CF sweat, the higher CFL abundance in relation to steady actin levels increased CFL:ACT
ratio. So, CF sweat G-actin was more likely to nucleate and be polymerized into F-actin
while microfilaments were more likely to elongate.

This phenomenon would be accentuated by CFL sensitivity to pH [42]. At a slightly
acidic pH (6.5), CFL is less likely to divert actin dynamics from nucleation and polymer-
ization [40]. Since sweat pH is neutral to slightly acidic varying between pH 5 (at the
lowest sweat rate) and pH 7 [43], with no significant change correlated with CF [44], F-actin
microfilaments would be more likely to stabilize and elongate further.

In the meantime, tropomyosins, known competitors of CFL for access to actin mi-
crofilaments [45,46], and MTPN, an inhibitor of actin polymerization via interaction with
actin-capping proteins [47], were decreased in CF sweat.

Although (de)phosphorylation of its Ser3 residue is an important modulator of in-
tracellular CFL activity, it is noteworthy that no protein involved in CFL regulation by
(de)phosphorylation (slingshot phosphatases and LIM kinases) was identified in control or
CF sweat. Interestingly enough, an upstream regulator of LIM kinases, small RhoGTPase
Rac1, was under-expressed in CF sweat. On that note, Rac1 is involved in the regulation of
both actin polymerization by CFL and actin bundling by IRSp53/BAIAP2. IRSp53 bundles
F-actin microfilaments by means of its SH3 domain (recruitment of other ABPs and actin
regulators) and its IMD domain (direct actin binding) [48,49]. The respective CF-related
abundances of Rac1 (down) and IRSp53 (up) suggested a promotion of IMD-mediated actin
bundling by IRSp53 without regulation.
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In addition to other actin-bundling proteins, DPYSL3 [50], LCP1, and PLS3 in particu-
lar exhibited CF-associated abundance, suggesting that increased actin bundling resulted
from IRSp53, DPYSL3, and LYZ-bound microfilaments.

Indeed, polycationic proteins and peptides such as LYZ and cathelicidin-derived LL-37
were described as promoters of F-actin nucleation, polymerization, and bundling [51,52].
F-actin microfilaments are bound together through electrostatic (hydrophobic) interactions,
mediated by intercalated polycations, with sensitivity to changes in ionic strength, poly-
cation concentration, and actin concentration [53]. Polycation-induced F-actin bundling
is promoted by an increase in polycation concentration while prevented by an increase in
ionic strength or actin concentration. Sweat ionic strength is mainly influenced by NaCl
concentration. In physiological conditions, sweat is hypotonic due to ion reabsorption along
the duct of the eccrine gland. In CF, sweat is hypertonic (up to plasma concentration) as the
absence of a functional CFTR prevents Cl reabsorption. The presence of polycation-bound
F-actin bundles has already been described in the pathologically viscous sputum [54]—a
bio-fluid with similar neutral to slightly acidic pH [55,56] and increased ionic strength [57]
as CF sweat-secreted and accumulated in the pulmonary airways of patients with CF. In the
same way, reports of the higher viscosity of CF sweat [44] could be explained by extensive
LYZ-mediated F-actin bundling of polymerizing, unbranched microfilaments.

Besides their interaction with actin, polycationic proteins and peptides are also known
for their antimicrobial properties [58], essential to skin host defenses and the innate immune
system. While trapped in F-actin bundles, polycationic proteins and peptides reversibly
lose their antimicrobial activity [59] and potentiate the risk of pulmonary infection linked to
higher mucus viscosity in patients with CF. Nonetheless, the prevalence of skin infections
in patients with CF does not corroborate defects in innate immune defenses to take place
as in CF sputum and airways. The predominance of dermcidin (DCD)—a polyanionic
precursor of antimicrobial peptides and the most abundant protein in sweat—in skin
defenses together with the absence of CF changes in DCD abundance could explain these
observations [60–62].

Interestingly, in the event of a deep correlation, yet to be established, between sweat
and mucus F-actin bundling states and subsequent viscosities, the monitoring of sweat
F-actin dynamics could prove useful in the early evaluation of CF severity.

To sum up, CF was correlated with disease-specific proteome profiles, contributing to
non-physiological inter-individual variations of the sweat proteome. The characterization
of differentially expressed proteins (control vs. CF, F508del heterozygous vs. F508del
homozygous, PS vs. PI, normal/mild vs. moderate/severe lung function impairment)
showcased nine CF diagnosis biomarkers (CUTA, ARG1, EZR, AGA, FLNA, MAN1A1,
MIA3, LFNG, SIAE) and seven CF severity biomarkers (ARG1, GPT, MDH2, EML4 (F508del
homozygous), MGAT1 (pancreatic insufficiency), TOLLIP, IGJ (lung function impairment))
candidates as well as potential markers of CFTR phenotypic rescue to be further inves-
tigated for clinical relevance. On that note, particular attention to the pathophysiology
of ABPs in sweat compared to other CF tissue would also deserve further investigations.
In conclusion, sweat proved to be an informative bio-fluid to help and improve the un-
derstanding of CF pathophysiology by providing candidate biomarkers of interest for
precision medicine and therapeutic development.
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