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Abstract: Cigarette smoke is a rich source of carcinogens and reactive oxygen species (ROS) that can
damage macromolecules including DNA. Repair systems can restore DNA integrity. Depending on
the duration or intensity of stress signals, cells may utilize various survival and adaptive mechanisms.
ROS levels are kept in check through redundant detoxification processes controlled largely by
antioxidant systems. This review covers and expands on the mechanisms available to cigarette smoke-
exposed cancer cells for restoring the redox balance. These include multiple layers of transcriptional
control, each of which is posited to be activated upon reaching a particular stress threshold, among
them the NRF2 pathway, the AP-1 and NF-kB pathways, and, finally, TP53, which triggers apoptosis
if extreme toxicity is reached. The review also discusses long noncoding RNAs, which have been
implicated recently in regulating oxidative stress—with roles in ROS detoxification, the inflammatory
response, oxidative stress-induced apoptosis, and mitochondrial oxidative phosphorylation. Lastly,
the emerging roles of tunneling nanotubes in providing additional mechanisms for metabolic rescue
and the regulation of redox imbalance are considered, further highlighting the expanded redox reset
arsenal available to cells.

Keywords: redox; oxidative stress; ROS; antioxidant systems; long non-coding RNAs; tunneling
nanotubes

1. Introduction

Reactive oxygen species (ROS) are free radicals generated by cells as a consequence
of normal metabolism. They play a role in intracellular signaling but have the poten-
tial to cause damage to cells and macromolecules if produced and made available in
excess [1,2]. ROS levels are kept in check through redundant detoxification processes con-
trolled largely by antioxidant systems. There are several potential endogenous sources of
ROS including—but not limited to—mitochondrial oxidative phosphorylation, cytochrome
p450 metabolism, peroxisomes, and activation of inflammatory cells such as macrophages
and neutrophils [3]. Exogenous sources include cigarette smoke, inhaled pollutants, ultra-
violet radiation, microbial infections, and even allergens, among others [4–9].

Many free radicals and oxidants exist in a steady state in the gas phase of cigarette
smoke, while superoxide anion (O2

•−), H2O2, and the reactive hydroxyl radical (HO•)
can be produced from some of the water-soluble components of the cigarette. These
substances are known to cause oxidative damage to cellular lipids, proteins, and, in partic-
ular, DNA [10,11]. Well-known mediators of DNA damage, these ROS are able to induce
double-strand breaks (DSBs) and the oxidation of nucleoside bases (e.g., 8-oxo guanine
formation), the latter of which can cause C-A or G-T substitutions as well as the generation
of DSBs if base excision repair fails [12–14]. Moreover, these oxidized bases also physically
hinder replication forks [15], causing DSBs and under-replicated or over-replicated DNA,
increasing the likelihood of mutagenesis as well as genomic instability [16].

ROS play an enabling role in tumorigenesis. Their production is elevated in can-
cer cells as a consequence of mutations in oncogenes and tumor suppressors, and the
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resulting dysregulated signaling pathways, increased metabolic rate, and hypoxic condi-
tions. Cancer cells then have to adjust their redox balance with the help of antioxidant
systems in order to support the pro-proliferative program while avoiding cell death. Cancer
cells, however, have to endure oxidative stress throughout their journey from initiation
to metastatic spread—upon detachment from the extracellular matrix (ECM); as they in-
travasate, pass through circulation, and extravasate to new sites; or even during disease
recurrence [2,17,18].

As cancer progresses, the interaction between tumor cells and their microenvironment
further adds to the oxidative stress. Cooperation among tumor cells, cancer-associated
fibroblasts (CAFs), and tumor-associated macrophages (TAMs) has been shown to result
in ROS-stimulated migration and anchorage-independent growth, as well as immunosup-
pression [17,18]. Cancer cells therefore have to invoke adaptive mechanisms to ensure ROS
levels are kept within an acceptable range [2].

During metastasis, cancer cells employ other strategies to ensure their survival, includ-
ing movement through the blood in clusters, either among themselves or with neutrophils.
Clustering has been shown to aid in their ability to successfully metastasize compared to
single circulating cancer cells, and minimizes their exposure to oxygen, thereby reducing
the production of mitochondrial ROS. [19–22]. E-cadherin has also been shown to aid
in the survival of metastasizing breast cancer cells by limiting oxidative stress, although
the mechanism is not entirely known. While E-cadherin is known to promote cell–cell
interaction, its deletion did not affect the movement of cancer cells in clusters [23]. Whether
the above evasion mechanisms are universally employed by other cancer cell types merits
further investigation.

This review article covers and expands on the mechanisms available to cigarette
smoke-exposed cancer cells for restoring the redox balance that helps prevent them from
triggering apoptosis. In particular, the role of long noncoding RNAs (lncRNAs) in helping
regulate ROS levels and in promoting or averting the oncogenic program is discussed.
These non-coding RNAs >200 bp in length are pervasively transcribed in most cells and
tissues and have been shown to play roles in transcriptional regulation, translational
regulation, and histone and DNA methylation, and as miRNA sponges or precursors
to miRNAs and siRNAs [24]. This review also explores the emerging roles of tunnel-
ing nanotubes (TNTs)—filamentous actin-based structures implicated in direct cell-cell
communication—and TNT-based supercellularity in the following: maintaining homeosta-
sis amidst oxidative stress; sustaining oncogenic phenotypes and metastatic spread through
long-distance intercellular transfer of cargoes; the development of chemoresistance; and the
rescue of cells from toxicity and cell death through the redistribution of stress factors [25].
To provide a more comprehensive coverage of the research topic, the role of antioxidant
systems and graded cell adaptive responses are also discussed. This review does not
intend to cover the field in its entirety but aims to add to the growing list of ROS rescue
mechanisms available to cells by way of an analysis of representative studies.

2. Cigarette Smoke and Oxidative Stress
2.1. Genetic and Epigenetic Effects

Cigarette smoke is a rich source of known and suspected carcinogens, ROS, and re-
active nitrogen species (RNS) that can damage macromolecules including nucleic acids,
proteins, and lipids. Its carcinogenic components include, among others, polycyclic aro-
matic hydrocarbons, aromatic amines, tobacco-specific nitrosamines, and phenolic com-
pounds [26]. The gas phase of cigarette smoke produces ROS during combustion of the
tobacco and is inhaled during smoking [27,28]. Particulates in cigarette smoke can also
accumulate in the lungs as a layer of tar, and, in aqueous solution, can produce oxidative
agents via redox cycling reactions. The role of smoking-induced oxidative stress in in-
flammation is now widely acknowledged, with inflammatory reactions themselves further
generating ROS. Although some other components of cigarette smoke, such as metals, also
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contribute to oxidative stress [29,30], many of its carcinogenic components do not, but are
still able to cause damage via different mechanisms.

Chronic smoking is an established risk factor for the development of lung cancer and
other malignancies, which can be attributed to the damage it causes to both the genome
and epigenome. Oxidative damage secondary to cigarette smoke exposure can lead to
the direct oxidation of a base in the DNA, and/or to the misincorporation of the oxidized
deoxynucleoside triphosphates into the growing chain by the DNA polymerases [31–33]. If
DNA repair is faulty, erroneous replication ensues and the mutation is propagated [31,34].
If the DNA damage happens in regions of the genome harboring protooncogenes or tumor
suppressors, their activation or inactivation, respectively, may signal oncogenesis [35]. The
role of functioning DNA repair systems in restoring DNA integrity—after exposure to toxic
insults such as carcinogens, ROS, and RNS from cigarette smoke—is therefore paramount.
More recently, DNA damage secondary to chronic cigarette smoke exposure has been
shown to activate PARP-1, the key mediator of the parthanatos pathway—a programmed
cell death pathway characterized by regulated necrosis with a consequent rupture of cells
and organelles leading to inflammation [36].

Components of cigarette smoke may also exert damaging effects on the epigenome via
different mechanisms: (1) Its toxic components may directly damage DNA and may thus
affect the binding of DNA methyltransferases (DNMTs) [37]; (2) Faulty DNA repair path-
ways can have similar effects and lead to hypomethylation [35,38]; (3) The deoxyguanosine
derivative 8-oxo-2’-deoxyguanosine (8-oxo-dG), a product of oxidative damage—if formed
at guanine residues in CpG dinucleotides—can inhibit the methylation of cytosine [39];
(4) Unrepaired 8-oxodG can also lead to erroneous replication by inducing G to T transver-
sions and thus contribute to net CpG dinucleotide loss [40]; Lastly, other components of
cigarette smoke act as direct inhibitors of DNMTs [41–43]. Thus, the exposure of various
cells to cigarette smoke or its components is often associated with a global decrease in
5-methylcytosine and a corresponding increase in 5-hydroxymethyl cytosine levels [44–46].

2.2. Adaptive Responses to Acute and Chronic Oxidative Stress

While cigarette smoke exposure can instigate a program of carcinogenesis via different
mechanisms, the consequences may not be immediately disastrous to cells, which can, in
fact, adapt to the toxic insults caused by carcinogens and oxidative stress. The journey of
cancer cells from a primary site to a new metastatic niche is hostile and constantly accom-
panied by redox imbalance and adjustments. Cells have to invoke short-term adaptive
responses and the activation of genetic programs in response to acute and chronic oxidative
stress, respectively [2]. By controlling ROS levels or developing a resistant phenotype,
cancer cells ensure their survival, and are able to proliferate and metastasize.

Metabolic rerouting is a short-term adaptive response to oxidative stress. For in-
stance, at non-toxic threshold levels of H2O2, cells activate glucose-6-phosphate dehydro-
genase (G6PD) and reroute glucose metabolism from glycolysis through the oxidative
arm of the pentose phosphate pathway (PPP) toward nucleotide synthesis. This allows
for the increased reduction of nicotinamide adenine dinucleotide phosphate (NADP+) to
NADPH (reduced NADP) [47], an important metabolite in the reductive biosynthesis of
macromolecules—making it an indispensable component of the cell’s antioxidant arse-
nal [2]. Increased NADPH then allows glutathione reductase 1 (GSR1) and thioredoxin
reductase 1/2 (TXNRD1/2) to bring down ROS to homeostatic levels via the augmentation
of glutathione- and thioredoxin-based antioxidant systems [2]. Acute exposure to oxida-
tive stress may also activate the PI3K/Akt pathway by inhibiting its negative regulator
PTEN through Cys-124. As a consequence, antioxidant genes are upregulated and cells
survive [48,49].

Chronic oxidative stress requires cells to develop a more resistant phenotype via
the activation of genetic programs. In this regard, incessant exposure to cigarette smoke
provides a good model system for demonstrating the functional sequelae of redox imbal-
ance. Cigarette smoke contains thousands of different components, including nicotine,
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N-nitrosonornicotine (NNN), and nicotine-derived nitrosamine ketone (NNK), that can
damage cellular components and upregulate various transcription factors, oncogenes, and
receptors [50,51].

2.2.1. Graded Adaptive Responses: Multi-Level Transcriptional Control

Different layers of transcriptional control are accessed by cells to reset their redox
status, depending on how overwhelmed the antioxidant mechanisms have become. A
widely held hypothesis posits that cells respond to oxidative stress in a graded fashion.
The transcription factor NRF2 (nuclear factor erythroid 2-related factor 2), which regulates
a panoply of antioxidant and detoxification genes, is considered the first-line inducible
defense against modest increases in ROS/RNS [52,53]. AP-1 and NF-κB, among other
transcription factors that are activated by higher ROS/RNS levels, are considered to be a
second-line defense. Lastly, activated in response to excessive ROS levels, TP53 constitutes
the final line of defense and can induce apoptosis if toxic levels are achieved [54].

As main regulator of intracellular redox homeostasis, NRF2 (with the help of the
musculoaponeurotic fibrosarcoma or MAF proteins) transactivates a long list of antiox-
idant genes upon exposure to ROS or soft electrophiles [52,55] by binding to the an-
tioxidant response elements (ARE) of target genes such as heme oxidase 1 (HMOX1),
NAD(P)H quinone dehydrogenase 1 (NQO1), and glutathione-S-transferases (GST), as well
as long non-coding RNAs (lncRNAs), such as the smoke- and cancer-associated lncRNA
1 (SCAL1) [56,57]. In the above model, an ROS threshold, whereby the antioxidant sys-
tems are overwhelmed, must be breached before other antioxidant transcription factors
are activated. NRF2 may induce and invoke the help of Krupple-like factor 9 (KLF9)
to downregulate the antioxidants thioredoxin reductase 2 (TXNRD2) and peroxiredoxin
6 (PRDX6) [58,59]. Under normal conditions, KEAP1 (Kelch ECH associating protein 1)
represses NRF2 by binding to it and promoting its proteasomal degradation [60].

Components of cigarette smoke, as well as endogenous chemicals generated upon
cigarette smoke exposure, activate the NRF2–KEAP1 pathway by modifying their critical
cysteine residues, or by inducing endoplasmic reticulum (ER) stress, thereby activating
the unfolded protein response (UPR) [61]. Chemical inducers of ARE genes can cause
structural alterations of the NRF2/KEAP1/CUL3 complex by modifying the cysteine thiols
of NRF2 and KEAP1, a consequence of which is the inhibition of NRF2 ubiquitination. The
role of NRF2 in cancer is context dependent. On the one hand, it is able to mediate the
protective effects of chemopreventive drugs [62]; on the other, it can also promote tumor
growth and resistance to oxidants and anticancer agents [63].

The NRF2 transcript is expressed ubiquitously although at varying levels depending
on the cell type. Further, it is expressed independently of inducers, and may suggest post-
transcriptional regulation to promote its activation. Several studies suggest the involvement
of microRNAs in the posttranscriptional regulation not only of NRF2, but also of the KEAP1
and MAF genes. Mature microRNAs (miRNAs) are short (18–24 base pairs), genomically
encoded noncoding RNAs that normally act on 3′ untranslated regions (3′ UTR) of target
mRNAs causing either transcript degradation or translational repression [64,65]. In silico
analyses by Papp et al. [66] indicate that dozens of microRNAs are predicted to bind the
NRF2 3′UTR, with 63 of them serving as potential feedback loops. A consequence of NRF2
downregulation by miRNAs is altered ARE-mediated redox signaling [67]. KEAP1 is itself
a target of miRNA regulation. MiR-200a has been shown to target KEAP1 mRNA in the
human breast cancer cell lines MDA-MB-231 and Hs578T. This leads to enhanced activation
of NRF2 and upregulated ARE-mediated antioxidant gene expression. The knockdown
of the miR-200a function, on the other hand, correlated with KEAP1 derepression and
diminished NRF2 levels [68]. Because of their role in finetuning redox regulation, this
subset of miRNAs have been referred to as redoximiRs [69].

The NFKB family of transcription factors is regulated by oxidant-sensitive molecular
targets [70,71]. NF-κb is said to be a complex hub and master regulator of many crucial
signaling cascades, especially those involved in inflammation and immunity but also in cell
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growth, differentiation, development, and apoptosis [72]. In most cases, NFKB promotes
the expression of genes involved in cellular survival [73]. In the context of ROS, the NFKB
pathway is expected to counteract ROS by targeting apoptosis-associated signaling cascades
in order to keep the cell alive [74]. One of the main ROS- and apoptosis-related signaling
pathways that intersects with NFKB is the JNK pathway, which promotes programmed cell
death. NFKB inhibition results in an accumulation of ROS and sustained activation of the
JNK pathway leading to apoptosis or necrosis [75–77].

The JNK cascade also interacts with the Activating Protein-1 (AP-1) transcription
factor, which is a heterodimeric leucine zipper complex consisting of the Fos and Jun proto-
oncogene proteins [78]. Upon AP-1 induction by pro-inflammatory cytokines and genotoxic
stress, AP-1 proteins bind to the TPA (12-O-tetradecanoylphorbol 13-acetate)-response
element (TRE) to facilitate transcriptional activation of many genes [79], particularly those
that belong to the JNK and p38 MAPK pathways [80]. The redox regulation of Fos and Jun
is mediated through their DNA binding domains. Specifically, they contain a conserved
cysteine residue that can be oxidized/chemically modified, resulting in the inhibition of
AP-1 DNA binding. It has an opposite effect on AP-1 when this cysteine residue is reduced
either chemically or by Ref-1, a nuclear redox factor [81]. Zhong et al. showed that tobacco
smoke activates AP-1 through all four distinct MAPK pathways including ERK1/2, JNK,
p38, and ERK5. The authors then showed that smoking upregulates the expression of AP-1
dependent cell cycle (i.e., Cyclin D1, PCNA) and cell differentiation proteins (i.e., Keratin 5,
Keratin 14), highlighting the importance of the MAPK/AP-1 signal pathway in smoke-
induced tumorigenesis [82]. Notably, AP-1 is also activated by an increase in H2O2 levels,
which also affect the expression of hypoxia-inducible factor 1 alpha (HIF1A), thought to be
a key factor in hypoxia [83,84].

Hypoxia is a key consideration in the pathology of cancer and other human diseases,
since low oxygen levels create a unique microenvironment that affects the activity of many
signaling pathways. This state of low oxygen levels affects the activity of the cytochrome
chain responsible for mitochondrial oxidative phosphorylation, simultaneously resulting
in a decrease in ATP synthesis and increased ROS as well as a decrease in the activity
of the cellular antioxidant system, thus potentially leading to oxidative stress [85–89].
Despite being clearly upregulated in hypoxic conditions, HIF1A was also shown to be
upregulated under normoxia in response to various growth factors that also stimulate
the generation of ROS [90–94]. In their work, Daijo et al. showed that, in human lung
epithelial-like cells under non-hypoxic conditions, a cigarette smoke extract induced a time-
and concentration-dependent accumulation of HIF1A protein, consequently upregulating
two factors: vascular endothelial growth factor (VEGF) and regulated in development and
DNA damage response 1 (REDD1) [95]. The latter is a stress response protein, which, like
VEGF, is involved in smoking-induced emphysematous changes [96].

TP53 can switch gears depending on the level of oxidative stress. Under mild condi-
tions, TP53 contributes to cellular adaptation by inducing antioxidant gene expression. It
transactivates genes coding for ROS scavengers, supports glutathione synthesis, increases
the production of NADPH, and downregulates the expression of nitric oxide synthase
(NOS2) and cyclooxygenase 2 (COX2)—two key pro-oxidant enzymes [97,98]. Under more
stringent conditions, TP53 is able to orchestrate apoptosis by stimulating the production of
ROS. Under pro-apoptotic conditions, TP53 is also able to downregulate SOD2 (superox-
ide dismutase 2) [99]—a key antioxidant enzyme—and NRF2-targeted genes [100]. ROS
employ redundant mechanisms to induce apoptosis. They can activate the intrinsic mito-
chondrial pathway, the extrinsic death receptor pathway, and the endoplasmic reticulum
(ER) stress pathway [101]. Further, ROS can trigger ferroptosis, an iron-dependent form of
cell death [102].

2.2.2. Oxidative Stress-Upregulated Oncogenes

An important cigarette smoke extract (CSE)-induced oncogene is β-catenin, a key
regulator of cell cycle, adhesion, development, and tumor formation [103–105]. β-catenin
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is an integral component of the Wnt signaling pathway and regulates the expression of a
multitude of genes by entering the nucleus and binding T cell factor/lymphoid enhancer
factor (TCF/LEF) transcription factors [106]. It has also been shown to interact with the
forkhead box, class O (FOXO) family of transcriptional regulators at low levels of oxidative
stress [107]. FOXO family members are important regulators of the cellular stress response
and promote cellular antioxidant defense [108]. FOXO is able to compete with TCF for
interaction with β-catenin, which leads to enhanced FOXO transcriptional activity. This
equates to a protective response that inhibits cell cycle progression, thereby allowing cells
to manage oxidative damage effectively [107]. Increased levels of ROS, however, lead to a
different readout. They promote cellular proliferation and transformation [109] that are
partly mediated via the nucleoredoxin (NRX)-dependent inhibition of WNT/β-catenin
signaling [110]. This classifies β-catenin as a key regulator that senses whether cells should
proliferate or arrest to repair oxidative damage [111]. The ROS H2O2 can promote β-catenin
stabilization [110]. However, the role of ROS in promoting or inhibiting WNT signaling is
generally believed to be cell- and tissue-specific [112].

Another CSE-regulated oncogene is MYC [113], a transcription factor often found to
be overexpressed in human malignancies resulting in uncontrolled proliferation [114–117].
In the study by Lu et al., CSE increased the levels of MYC in human bronchial epithelial
cells, resulting in a greater invasion and migration of transformed cells [113]. Through
ChIP assays, they further demonstrated that, as a consequence of the upregulation of MYC,
CCAT1 expression also went up, since MYC binds to the CCAT1 promoter [113]. CCAT1 is
an lncRNA first found to be upregulated in colon cancer but now known to be involved in
other cancers as well [118–122]. Lastly, let-7c—a tumor suppressor miRNA— was shown to
negatively regulate c-Myc, while CCAT1 is able to derepress c-Myc expression by sponging
let-7c, thus creating a positive feedback loop to promote CSE-induced CCAT1 and MYC
expression [113].

Oxidative stress-induced growth inhibitor 1 (OSGIN1) is also a CSE-associated factor
that is markedly upregulated in the airway epithelia of smokers compared to nonsmok-
ers [123]. The short OSGIN1-52 kDa isoform is regulated by p53 and is induced by DNA
damage. It regulates apoptosis by inducing cytochrome c release from mitochondria [124].
The OSGIN1-61 kDa isoform, on the other hand, was shown to be an NRF2 transcriptional
target in human astrocytes [125]. This is consistent with its reported role in reducing
oxidative stress [126]. Whether it has a similar role in lung tissues remains to be established.

2.2.3. Upregulated Receptors in Oxidative Stress Response

Several receptors are also key components in the response of cells to changes in the cel-
lular redox status, such as in cigarette smoking. Nicotinic acetylcholine receptors (nAChRs)
are hetero- or homopentamers that can be classified into neuronal or muscle nAChRs, with
each having a different combination of subunits. As their name suggests, nAChRs are
bound and regulated by nicotine, as well as its derivatives NNK and NNN, both of which
may bind to the receptors with higher affinity [127]. These induced nAChRs, specifically
the homomeric NACHRA7, can activate several downstream transcriptional programs
involved in cell proliferation, metastasis, angiogenesis, and resistance to apoptosis in
cancer [128–131].

The functional significance of nAChR upregulation includes the idea that nicotine
exposure leads to both higher nicotine sensitivity and greater nAChR function, which
may be explained by increased cell surface trafficking of nAChRs and enhanced receptor
assembly and/or maturation [132]. Smokers generally have greater expression levels of
NACHRA7 than non-smokers, and different nAChR subunits are found to be expressed in
the NSCLC cells of smokers and non-smokers [133]. An elevated expression of NACHRA7
was observed to be induced by nicotine in squamous cell carcinoma of the lung (SCC-L)
cell lines [134]. These findings provide evidence for the role of NACHRA7 upregulation in
nicotine-induced tumorigenesis.
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Previous studies have shown that polymorphisms in the chromosome region con-
taining three nAChR genes (CHRNA3, CHRNA4, and CHRNA5) are associated with an
increased cancer risk [135]. Additionally, CHRNA7 gene duplication is associated with
poor prognoses in lung cancer and chronic obstructive pulmonary disease (COPD) [136]. In
fact, by binding to these increased numbers of receptors, nicotine can activate pathways that
could contribute to carcinogenesis, possibly by the NACHRA7-mediated modulation of the
inflammatory response [137,138]. Moreover, in melanoma, nicotine has been demonstrated
to mediate Programmed Cell Death Ligand 1 (PD-L1) expression via CHRNA9, promoting
cell migration and proliferation [139]. PD-L1 suppression has been shown to promote
an effective immune response against cancer cells [140]. A recent study has identified
NACHRA7 as the receptor through which CSE could increase PD-L1 levels. In particular,
to regulate PD-L1, NACHRA7 was shown to regulate both the STAT3 and NRF2 pathways,
showing that NACHRA7 may also have a role in the cellular response to oxidative stress.
Nicotine has been shown to increase ROS levels [141]. By inducing ROS generation and
activating NFKB via nAChRs, nicotine was shown to cause apoptosis in renal proximal
tubular epithelial cells [142,143].

Interestingly, in PC12 cells, ethanol-induced intracellular oxidative stress was reduced
after selectively activating NACHRA7 with 3-(2,4)-dimethoxybenzylidine anabaseine, a
receptor agonist. This suggests that NACHRA7 may prevent ROS accumulation [144].
Additionally, in the same cell line, another study demonstrated that nAChR activation via
nicotine, albeit only at low concentrations, inhibited lipid peroxidation and rescued lower
rates of cell viability upon H2O2 and Abeta treatment [145]. Several studies performed
in a neuronal context also support the potential antioxidant and cytoprotective role of
NACHRA7. In an in vitro mouse model of neuroinflammation, treatment with GTS21, a
partial NACHRA7 agonist, significantly reduced the LPS-mediated secretion of inflam-
matory cytokines, inhibited LPS-mediated NFKB nuclear translocation, and upregulated
canonical NRF2 antioxidant genes [146]. On the other hand, in SH-SY5Y cells, the siRNA-
mediated knockdown of NACHRA7 increased lipid peroxidation and stimulated toxicity
induced by Abeta, which is key factor in Alzheimer’s disease pathogenesis [147].

3. ROS Scavengers: Enzymatic, Non-Enzymatic and Indirect Antioxidant Systems

The previous section described examples of the dysregulation of integral signaling
pathways and/or genes due to the oxidative stress induced by cigarette smoke or CSE. To
combat the harmful effects of excess ROS, cellular antioxidant systems exist in aerobic or-
ganisms and humans [148]. These systems are divided into two categories: enzymatic and
non-enzymatic. Enzymatic systems are able to repair damaged DNA and proteins, fight ox-
idized lipids, stop the chain propagation of peroxyl lipid radicals, and repair damaged cell
membranes and molecules [149]. On the other hand, non-enzymatic antioxidants mainly
involve small molecules that are able to rapidly inactivate radicals and oxidants [150]. A
few other antioxidants exert their function indirectly.

3.1. Enzymatic Antioxidant Systems

Superoxide dismutases (SODs) comprise one of the most essential enzymatic antiox-
idant systems in the lungs. Superoxide anions are considered the primary cellular ROS,
given that they initiate a chain of reactions to create “secondary” ROS [151,152]. SODs,
discovered over 50 years ago, are thought to be the first line of defense against oxygen
free radicals and have three forms that are widely expressed in the human lung: cytosolic
copper/zinc superoxide dismutase (CuZn-SOD, or SOD1), mitochondrial manganese Mn-
SOD (SOD2), and extracellular EC-SOD (SOD3) [153–155]. The first two SOD classes serve
as bulk scavengers of superoxide radicals while EC-SOD is believed to protect the lung
matrix [156]. The function of SODs is to convert superoxide into hydrogen peroxide [157],
which easily diffuses across the plasma membrane and can be processed by another major
enzymatic antioxidant: catalase [153]. Both SOD1 and SOD2 exhibit a tumor suppressor
activity but they may also be upregulated during tumorigenesis [2,158].
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The first antioxidant enzyme to ever be studied, catalase (CAT), is a ubiquitous heme-
containing tetramer that catalyzes the dismutation of two H2O2 molecules produced
by SODs or other oxidases into oxygen and water [159]. The degradation of H2O2 is
accomplished via the conversion between 2 conformations of catalase-ferricatalase (iron
coordinated to water) and compound I (iron complexed with an oxygen atom). Under
high energy demand there is a quick accumulation of H2O2, so this degradation occurs
in an energy-efficient manner. In general, CAT activity can be intensified or diminished
depending on various parameters of environmental stress, including its duration, intensity,
and type. It is believed that stimuli that lower protein turnover also reduce CAT activity.

Other enzymes that scavenge H2O2 include periredoxins (PRDXs) and glutathione
peroxidases (GPXs), which reduce H2O2 to H2O as well as lipid hydroperoxides resulting
from membrane lipid peroxidation [160,161]. As well as regulating ROS levels, PRDXs
and GPXs can also counter the activity of RNS by helping eliminate nitric oxide, as well
as contributing to the reduction of peroxynitrite anion, and protein denitrosylation [162].
Reduced glutathione (GSH) itself is considered a non-enzymatic antioxidant. GSH donates
its electron to H2O2 to reduce it into H2O and O2. Oxidized glutathione (GSSG) is reduced
into GSH by GSH reductase, which uses NAD(P)H as the electron donor [163]. GPXs are
also important for the protection of cell membranes from lipid peroxidation [164].

3.2. Non-Enzymatic Antioxidants

Non-enzymatic antioxidants rely on lower molecular mass substances and strategic lo-
calization for defense against ROS [150]. Aside from the aforementioned GSH, these include
metal-binding proteins (MBPs), vitamin E, vitamin C, uric acid, and selenium [150,165].

Albumin (ALB), ceruloplasmin, myoglobin (MB), ferritin, and transferrin are some key
members of the first example of non-enzymatic antioxidants, the metal-binding proteins
(MBPs) [166–169]. Being the main contributors to the plasma antioxidant capacity, MBPs
naturally bind potentially pro-oxidant transition metal ions such as Cu2+ and Fe2+, which
can react with H2O2 to produce more ROS via the Fenton reaction. Some of these proteins
can additionally act as true scavengers of reactive species: e.g., free sulfhydryl groups of
cysteine in ALB and metallothioneins (MTs) are able to scavenge hydroxyl radicals. Such
MBPs as transferrin (TF), ferritin (FER), and lactoferrin (LTF) are chelators of redox-active
iron (Fe2+), which can be effective free radical inhibitors in the Fenton reaction [166–169].
In contrast, ceruloplasmin acts as a reactive species inhibitor by binding free copper (Cu2+)
and iron ions (Fe2+), or as a chain-breaking antioxidant [170–172]. In turn, ALB is a
multifunctional antioxidative protein, which binds redox metals (Fe II and Cu II) and can
also act as a true scavenger by reacting with hydroxyl radicals [173–176]. Myoglobin is
another MBP, which is mainly an effective NO scavenger [177].

A pair of exogenous vitamins, Vitamin C and Vitamin E, also contribute to free radical
regulation. Vitamin E, also referred to as α-tocopherol, which is its prevalent species,
oxidizes lipid peroxyl radicals, which are made during lipid peroxidation [178]. Being
lipid-soluble, Vitamin E is found in the hydrophobic region of the plasma membrane
and functions to protect the lipid bilayer from oxidants [179]. Moreover, vitamin E also
promotes cancer cell programmed cell death [180]. In comparison, Vitamin C, commonly
known as ascorbic acid, is water-soluble and scavenges oxygen free radicals intra- and
extracellularly [181]. In fact, it is able to restore Vitamin E free radicals to vitamin E [182].

In addition, uric acid (UA) is a key aqueous antioxidant in humans [183,184]. Gener-
ated through purine metabolism, UA selectively scavenges peroxynitrite in conjunction
with Vitamin C and thiols but notably cannot scavenge superoxide [185].

Finally, selenium, an essential trace element, was found to be a key component of
several antioxidant enzymes such as GPx, TXNRD, and iodothyronine deiodinases [186].
Humans are estimated to have about 25 Se-containing proteins (selenoproteins) [187].

Other non-enzymatic antioxidants include melatonin, bilirubin, and polyamines [188–190].
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3.3. Indirect Antioxidants

Per se, sestrins (SESN1, 2, and 3) lack an intrinsic catalytic antioxidant activity. Their
antioxidant action, however, is executed in one of two ways: (1) They promote the au-
tophagic degradation of KEAP1 and thus upregulate NRF2 signaling and antioxidant gene
expression; (2) They block mTORC1 activation, effectively attenuating reactive oxygen
species accumulation [191].

Drug-metabolizing enzymes can also be considered as indirect-acting antioxidants.
Glutathione transferases [192], aldo-ketoreductases [193], carbonyl reductases [194], alde-
hyde dehydrogenases [195], and UDP-glucuronosyltransferases [196] belong to this group.
They help prevent quinones and hydroquinones from redox cycling, and help prevent
electrophiles and lipid peroxidation products from depleting reduced glutathione [2].

Sirtuin 3 (SIRT3) is also an indirect antioxidant. It can increase the scavenging of
superoxides in mitochondria by catalyzing the deacetylation of SOD2. Further, it can
increase the generation of NADPH in mitochondria by catalyzing the deacetylation of
IDH2 [197]. NADPH plays an important role in antioxidant defenses and is a key metabolite
in the reductive biosynthesis of macromolecules [2].

The major survival and adaptive responses invoked by cells in response to varying
levels of oxidative stress are summarized in Figure 1 below.
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Figure 1. Schematic view of the cellular effects and responses of cells to sources of oxidative stress
(including cigarette smoke exposure). Cigarette smoke exposure causes several genetic and epigenetic
alterations. Depending on the length and/or intensity of stress exposure, cells utilize various
survival and adaptive mechanisms. Under acute stress, cells undergo metabolic rerouting, resulting
in increased NADPH, which is useful for downstream ROS detoxification. Cancer cells employ
clustering, a mechanism to minimize oxygen exposure and thus the production of mitochondrial ROS.
On the other hand, chronic oxidative stress requires the activation of various antioxidant systems and
genetic programs. Furthermore, non-coding RNAs such as miRNAs (e.g., miR-200A) and lncRNAs
(e.g., CEROX1, SCAL1, ODRUL, and MALAT1) are increasingly thought to be involved in the cellular
redox response and/or in ROS detoxification.

4. Long Non-Coding RNAs and Oxidative Stress

MiRNAs are not the only species of non-coding RNAs that are involved in the cellular
response to environmental stressors. Similar to redoximiRs, various lncRNAs have been
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associated with the dysregulation of the NRF2–KEAP1 pathway. LncRNAs are non-coding
RNAs >200 base pairs in length and are pervasively transcribed from the human genome,
with roles in chromatin remodeling as well as the transcriptional and post-transcriptional
regulation of genes [198,199]. Our recent work on the lncRNA SCAL1, which is directly
regulated by NRF2 and was discovered by Thai et al. [56], suggests a protective role
for SCAL1 in the context of cigarette smoke exposure—with the caveat that cells with
damaged DNA are also allowed to survive and multiply [57]. Our data show that SCAL1
mediates ROS detoxification in A549 cells, aside from promoting cell migration, extensive
cytoskeletal remodeling, and resistance to apoptosis [57].

Another redox regulator lncRNA is the hydrogen peroxide-induced Metastasis Associ-
ated Lung Adenocarcinoma Transcript 1 (MALAT1). MALAT1 carries out its protective
function by downregulating KEAP1, resulting in the stabilization of NRF2 [200]. It also
downregulates the expression of several miRNAs by acting as a sponge, thereby influenc-
ing the inflammatory response and consequently the redox status of cells, which, when
perturbed, also affects MALAT1 expression especially in hypoxia or ischemia [201,202].

Several other lncRNAs interact with NRF2, albeit with dissimilar readouts [79,203–205].
One such ncRNA is osteosarcoma doxorubicin resistance-related up-regulated lncRNA
(ODRUL) [206]. In their experiments, Gao et al. used silver nanoparticles (AgNP) to incur
cytotoxicity to erythroid cells by generating ROS/oxidative stress coming from Ag particles
or ions. The authors discovered that ODRUL promoted this AgNP-induced toxicity [206].
Specifically, under stress caused by the metal particles, NRF2 promotes the expression of
ODRUL, which then inhibits the pro-survival pathway PI4KA-AKT-BCL2 and enhances
JNK inhibition of BCL2 via the PI4KA-AKT-JNK cascade [206].

Similarly, Li et al. showed that, in both in vitro and in vivo models of hypoxic pul-
monary hypertension (HPH), the lncRNA myocardial infarction-associated transcript
(MIAT) is upregulated when compared with normoxic conditions [207]. MIAT was shown
to contribute to the proliferative and migratory abilities of human pulmonary artery en-
dothelial cells (HPAECs) via its targeted downregulation of miR-29a-5p and thus the
inhibition of the NRF2 pathway [207]. A similar story is seen with the lncRNA forkhead
box D3 antisense RNA 1 (FOXD3-AS1), which was discovered in hyperoxia-induced lung
injury in mice and was demonstrated to mediate apoptosis induced by oxidative stress [208].
In human lung epithelial cells, this lncRNA was shown to sequester the cytoprotective
miR-150, contributing to programmed cell death in the context of hyperoxic stress.

Wang et al. also found that H19 and HULC are differentially expressed lncRNAs in
bile duct cancer cell lines that were subject to treatment with H2O2, glucose oxidase, and
other hypoxic or inflammatory factors [209]. Through the inflammation pathway, these
lncRNAs were shown to promote migration and invasion. Mechanistically, H19 and HULC
both acted as competitive endogenous RNAs (ceRNAs) by sponging let-7a/let-7b and
miR-372/miR-373, respectively. These miRNAs are known to regulate crucial inflammatory
factors, particularly the chemokine receptor CXCR4 and the cytokine IL-6 [209]. The authors
suggest the presence of a positive lncRNA-activated feedback loop between inflammation
and oxidative stress that might promote oncogenesis.

Remarkably, the unusually abundant mouse cytoplasmic lncRNA Cerox1 was the first
lncRNA demonstrated to regulate mitochondrial oxidative phosphorylation, which, when
coupled with the mitochondrial electron transport chain, is able to generate the majority
of the ATP required by the cell. Cerox1 functions by precisely controlling the levels of at
least 12 transcripts coding for subunits of the mammalian mitochondrial complex I, the
production of which is suppressed by miR-488-3p [210]. Being the first enzyme of the
electron transport chain, complex I mediates the electron transfer from NADH to coenzyme
q10, creates a proton gradient across the inner mitochondrial membrane, and produces
ROS [211]. The authors of this work demonstrated that the expression of Cerox1, which is
conserved across placental mammals, is correlated with an increase in complex I subunit
abundance and enzymatic activity (also in the human ortholog CEROX1), a decrease in
the production of ROS, and greater protection against the complex I inhibitor rotenone.
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Given the shared miRNA recognition elements (MRE) in both complex I subunit genes and
Cerox1, the effects of miR-488-3p are blocked through the binding of the said miRNA to
Cerox1 [210].

All in all, both the significant role of lncRNAs in redox regulation and the contribution
of redox in the pathogenesis of disease are becoming more apparent. In fact, in the context
of lung adenocarcinoma (LUAD), a novel redox-related lncRNA prognostic signature
(redox-LPS) was identified for a more accurate LUAD prognosis. Ren et al. achieved this
by including over 700 LUAD samples in their analysis, and a final redox-LPS with four
lncRNAs (CRNDE, LINC01137, CASC15 and CYP1B1-AS1) was developed and validated.
The authors assessed that the signature they had developed was superior to three other
established models in predicting LUAD patient survival [212].

5. Oxidative Stress-Induced Formation of Tunneling Nanotubes
5.1. Tunneling Nanotubes: Biogenesis and Their Role in Malignancies

Tunneling nanotubes are filamentous actin structures surrounded by a lipid bilayer
and serve as intercellular bridges for direct cell-to-cell communication and the transport of
various cargoes. They are structurally characterized by their enrichment in F-actin and non-
attachment to the extracellular substrate [213]. They have been shown to transfer proteins,
RNAs, organelles, and even pathogens between non-adjacent cells [213–220] as well as
transduce electrical signals [221]. Organelles demonstrated to be substrates of TNT-based
transport include the endoplasmic reticulum, Golgi, endosome, and mitochondria [222].

There are two mechanisms that have been proposed for the biogenesis of TNTs. One
posits that cytoplasmic protrusions extend from one cell to a spatially distant cell. The
other involves two previously connected cells moving away from one another with the
TNTs remaining as intercellular conduits [213,222–224].

In cancer, increased communication and interconnectivity are correlated with more
aggressive cancer phenotypes. Gliomas, considered the most aggressive brain cancer,
have been observed to form a TNT-based network that seems to contribute to increased
malignancy and chemoresistance [225]. This correlation has also been observed in other
cancer types, such as breast and ovarian cancers.

TNT-mediated communication can be a driver of tumor heterogeneity, which can be
observed on different levels. The first concerns inter- or intra-tumoral genetic heterogeneity
given the variation in the mutational landscape across either a tumor or different tumors.
The second is cellular heterogeneity referring to the mixing/combination of different non-
tumor and tumor cells that interact within a cancer. Finally, heterogeneity can also be
observed in the tumor microenvironment, which refers to the aggregate of the cells, stroma,
blood vessels, and matrix that provides certain niches for specific cell types [226,227]. TNTs
can also mediate the horizontal transfer of oncogenes such as mutant KRAS, an oft-mutated
gene in cancer that regulates proliferation, survival, and, relevantly, the formation of cellular
protrusions. In addition, TNTs allow for the reprogramming of healthy neighboring cells by
tumor cells, increasing the likelihood of creating a tumor niche. Their cargo could be used
to affect various cancer hallmarks in adjacent cells. Non-coding RNAs such as miRNAs can
also be transferred through TNTs and are able to induce more aggressive behavior in the
recipient cells [228,229].

Another cancer hallmark affected by TNTs is the tumor microenvironment, which
includes stromal cells such as fibroblasts, perivascular cells, endothelial cells and several
immune cells such as macrophages, mast cells, and their secreted cytokines and chemokines.
The cancer cells’ interaction with the ECM and neighboring cells is key in carcinogenesis,
since these also modulate cancer cell survival, angiogenesis, ECM remodeling, invasion,
and metastasis. For instance, leukemia cells of an acute lymphoblastoma were shown
to communicate with bone marrow stromal cells (BMSCs) via TNTs, inducing the secre-
tion of survival-promoting cytokines [218]. Activated stromal cells were also shown to
transfer mitochondria to acute lymphoblastic leukemia cells to rescue them from oxidative
stress [230].
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TNTs also play a role in chemoresistance. In MCF-7 breast cancer cells, cytotoxic doses
of 5-fluorouracil significantly induced TNT formation thus aiding in their survival [231]. In
pancreatic cancer cells, treatment with doxorubicin stimulated an increased formation of
TNTs, which facilitated the intercellular redistribution of the drug between the connected
cells. This was supported by visual evidence in vivo obtained via multiphoton fluorescence
microscopic imaging of TNTs in tumor specimens resected from three human patients with
pancreatic adenocarcinoma, and one with neuroendocrine carcinoma [232].

5.2. TNTs and Oxidative Stress

In addition to their roles in cell-to-cell communication and metastasis, TNTs play a role
in maintaining homeostasis amidst oxidative stress, and this is supported by the observation
that ROS promote TNT formation [233–236]. Due to the actin-filled nature of TNTs [237],
ROS are able to propagate their effects on TNT biogenesis mainly by altering actin dynamics.
Among the actin-related parameters that are sensitive to ROS levels/oxidative stress are
filament assembly, polymerization, branching, and cytoskeletal reorganization [238,239].
Due to the efficacy of the numerous antioxidant systems discussed above, few studies
discuss the direct oxidation of actin by ROS.

Greater focus has been directed at ROS-initiated signaling and how these cascades
govern the kinetics of actin protrusion. For instance, H2O2 was found to stimulate TNT
formation via the colocalization of myosin Va and F-actin both within the same cell type and
between different cells when co-cultured, likely through the H2O2-induced phosphorylation
of ERK1/2 and P38 MAPK [240]. An interesting observation was made by Abounit et al.,
who noticed that the transport of alpha-synuclein through TNTs came with an increase
in ROS, suggesting that this is due to the higher number of TNTs caused by greater ROS
levels [241]. In our recent work on the CSE-upregulated lncRNA SCAL1, we observed that
TNTs were more prominent and more readily formed in CSE-treated A549 lung cancer
cells, particularly at higher concentrations, hinting at a potential mechanism to adapt to
the oxidative stress caused by smoking [57]. Even UV light, serum depletion, and hypoxia
have been demonstrated to stimulate TNT formation [235,242,243].

It is likely that TNT formation is heavily regulated by the Rho family of GTPases. Its
members, Rac1, Cdc42, and RhoA, have been shown to have a role in TNT biogenesis.
Cdc42 and Rac1, as well as their downstream targets, WAVE2 and WASP, respectively,
were found to modulate actin polymerization through the Arp2/3 complex, thus affecting
TNT biogenesis [244]. To be precise, Cdc42 is involved in the initiation of TNT formation
while Rac1 was observed to be found throughout the TNT structures. Moreover, upon the
pharmacological inhibition of Rac1 or Cdc42, a decrease in TNT number and lifetime was
observed [244].

Aside from controlling actin cytoskeleton and plasma membrane structure formation,
these Rho GTPases are also involved in regulating apoptosis. Rac1-regulated oxidase has
been found to modulate the production of ROS, inflammation, and programmed cell death
in hepatic ischemia [245]. In neurons, which heavily rely on tight control of apoptosis, Rac1
is able to inhibit apoptosis by interfering with downstream signaling of NFκB, PAK, and
ERK via ROS-related pathways [244]. The upregulation of the anti-apoptotic BCL2 family
of proteins in cancer cells has been shown to be induced by Rac1-mediated MAPK/ERK
and Akt signaling [243]. Thus, these Rho GTPase-related signals, through the creation of
tunneling nanotubes, are able to suppress apoptosis. Given that most ROS are generated
in cells by the mitochondrial respiratory chain [246], it is not surprising that one of the
main mechanisms through which TNTs are able to ameliorate oxidative stress and inhibit
programmed cell death is through the transfer of functional mitochondria between different
cell types.

A greater emphasis, however, has been placed on the role of TNT-mediated mitochon-
drial transfer under pathological conditions. As shown by Marlein et al., mitochondrial
transfer was found to increase ATP production and proliferation rate in vitro and in vivo,
at least in the context of BMSCs and multiple myeloma cells [247]. Mitochondrial export
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from BMSCs to cancer cells also led to improved mitochondrial function, resulting in an
enhanced proliferative capacity and invasiveness [247].

More relevantly, the shuttling of mitochondria rescues cells from extreme oxidative
stress. Human-induced pluripotent stem cell-derived (iPSC) mesenchymal stem cells
(MSCs) were demonstrated to alleviate cigarette smoke-induced lung damage and smoke-
induced ATP depletion via mitochondrial shuffling through TNTs. Specifically, MSCs were
shown to transfer healthy mitochondria to BEAS-2B bronchial epithelial cells to combat
cigarette smoke-induced oxidative stress [248].

The acquisition of chemoresistance after mitochondrial transfer in the context of
cancer has also been reported, and this is expected given that most chemotherapeutics
either elevate ROS levels within cells or alter the cellular redox status [4,249]. Pasquier
et al. first showed this in 2013, as they found that mitochondrial transfer from epithelial
cells to MCF-7 breast cancer cells granted the latter chemoresistance to doxorubicin, one
of the few anthracyclines that are said to generate the highest levels of cellular ROS [250].
Meanwhile, cytarabine, methotrexate, and daunorubicin were rendered less effective due
to the shuttling of mitochondria between acute lymphoblastic leukemia (ALL) cells and
MSCs in a couple of studies [230,251].

It seems, however, that ROS can also directly promote mitochondrial transfer itself.
BMSCs within the protective microenvironment of acute myeloid leukemia (AML) were
demonstrated to transfer their mitochondria to AML blasts via AML-derived TNTs [247].
Interestingly, NOX2-derived superoxide coming from the AML increases oxidative stress on
the BMSCs, forcing these BMSCs to transport their mitochondria to the AML. When NOX2
was knocked down, superoxide production was lowered, and AML cells were shown to
have reduced cellular uptake of mitochondria [247]. Aside from NOX2, a Rho-GTPase
known as Miro-1, which has a unique second GTP-binding domain in lieu of the membrane-
binding C-terminal domain CAAX motif, has been shown to increase the mitochondrial
transfer capacity upon Miro-1 overexpression, resulting in the concomitant reduction in
apoptosis and ROS levels [215].

As reviewed by Rustom et al., these findings, when viewed together, depict a strong
association between ROS levels, TNT-based supercellularity, and the intercellular shuttling
of materials in health and disease. Based on current knowledge about nanotube formation,
intercellular transfer and communication phenomena, and the associated molecular path-
ways, a three-stage framework was proposed, describing ROS-dependent TNT formation
that results in redox/metabolic rescue followed by the isolation and removal of degenerate
cells [25].

The first step of TNT response to above average levels of ROS is highly dependent on
AGE–RAGE signaling. Functioning as “distress signals”, advanced glycation end products
(AGEs) are secreted by cells experiencing local stress due to the generated ROS [252]. A
prime example of an AGE is S100A4, which is found both extracellularly and intracellularly
in both the cytoplasm and nucleus [253,254]. In astrocytes, high concentrations of S100A4
induce TNT outgrowth, but S100A4 has also been found to contribute to enhanced metasta-
sis [252,255]. On the other hand, receptors for advanced glycation end-products (RAGEs)
are S100A4 cell surface receptors. As part of the immunoglobulin super family of receptors,
RAGEs are known to also participate in inflammatory processes [256].

Upon experiencing oxidative stress, such as through cigarette smoke, S100A4 is re-
ported to be secreted by the stressed cells [257]. The released S100A4 then binds to RAGE,
causing an uptick in cytoplasmic ROS production, which then thought to regulate the nec-
essary genes and pathways [258]. This AGE–RAGE interaction is also reported to initiate a
self-amplifying loop between sender and receiver that helps identify optimal locations for
TNT formation [252]. However, actin-based TNT (AC-TNT) biogenesis, to be distinguished
from the formation of microtubule-containing TNTs (MT-TNTs), is believed to only proceed
once a defined ROS level is attained [25].

In the cells that initiate TNT formation, it is believed that p53 activates caspase-3,
which then reduces the S100A4 intracellular concentration via S100A4 cleavage, establish-
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ing a gradient (i.e., a higher extracellular concentration of S100A4) that establishes the
directionality of TNT formation, thereby helping ensure that TNTs are not directed towards
pathological/stressed cells [252]. The conditions of the surrounding stroma, specifically the
extracellular matrix, are considered to be a factor in TNT formation. This is based on data
showing the induction of filopodia-like protrusions upon the overexpression of hyaluronan
synthase 3 [25].

During TNT formation, the mammalian Ste-20-like protein kinase 1 (Mst 1) is thought
to be involved; upon stimulation by cROS, it links AGE–RAGE signaling and redox home-
ostasis with the modulation of cytoskeletal dynamics and, potentially, apoptosis [25]. MST1
is posited to interact with p53 and Akt, with Akt delaying progression into irreversible pro-
grammed cell death until necessary [27,259,260]. Several other actin cytoskeleton-related
genes mentioned earlier, such as CDC42, ARP2/3, and others, are said to contribute to
this stage of the TNT-based response [261]. At this stage, the nascent actin-based TNTs are
said to facilitate the distribution of materials among cells to oppose the initial oxidative
stress [25]. Passive diffusion along these TNTs allows nutrients, plasma membrane com-
ponents, RNAs, signaling molecules, ions, and even smaller organelles to cross cellular
boundaries. Energy is actively consumed, however, in the myosin motor-mediated bidirec-
tional transport of bigger substrates such as organelles and protein complexes. Notably,
mitochondria were not found inside AC-TNTs between cultured PC12 cells, possibly due
to the tight wrapping of their actin backbone by the plasma membrane [262]. However,
this finding must be scrutinized due to the difficulty of the in vivo examination of these
TNTs; these AC-TNTs are believed to be temporary, only lasting for several minutes up to
a few hours. As well, the scale of their variability between cell types and developmental
stages is still unclear [25].

While upregulated AC-TNT formation can initially counterbalance rising ROS levels,
MT-TNTs become more prevalent at states of higher oxidative stress, suggesting that MT-
TNTs are involved in a more severe response [25,262]. These MT-TNTs are differentiated
from the canonical AC-TNTs through at least three features, aside from an additional
detyrosinated microtubule core: a bigger diameter, decreased membrane fluidity due to the
oxidation of unsaturated phospholipids, and, lastly, a longer lifetime [262].

While the pathways and mechanisms behind MT-TNT formation have not been fully
elucidated, it has been hypothesized that AC-TNTs are modified when excessive ROS levels
are reached [25]. A pathway potentially governing this modification may involve Mst1,
which activates fork head box O3 (FOXO3) and Bcl-2-like pro\tein 11 (Bim), generating
mitochondrial ROS (mROS). The accumulation of mROS depolarizes the mitochondrial
membrane, triggering the release of cytochrome c, which activates caspase-3, a known
effector of apoptosis [263]. However, caspase-3 negatively regulates Bim initially, resulting
in the transient inhibition of apoptosis until necessary [264]. The microtubule backbone of
MT-TNTs contributes to their greater stability, lifetime, and efficiency in the intercellular
transport of material. More importantly, via microtubule-specific motor proteins and/or
the intrinsic capacity of microtubules, larger organelles can now be moved, especially
mitochondria [25].

At this stage, AGE–RAGE signaling does not seem to play an integral part. This
is suggested by the formation of TNTs under oxidative stress in RAGE(−/−) knockout
mice and in Chinese hamster ovary (CHO) cells, possibly due to the breaching of the ROS
level threshold [236,252]. As well, it was observed in CHO cells that TNT outgrowth is
undirected and independent of S100A4, suggesting that these TNTs might have formed due
to dysregulation [252]. If neither AC-TNT nor MT-TNT rescue responses can adequately
deal with the rising oxidative stress, the intrinsic apoptotic pathway is activated. Here, in
this final stage of the framework, the unhealthy cells are isolated and removed from the
collective [25]. TNT connections break down so that the healthy cells may be spared from
receiving apoptotic signals from the dying cells. In fact, in T lymphocytes, the pro-apoptotic
Fas ligand can be transmitted via TNTs to induce death, suggesting a potential mechanism
through which unhealthy cells could be disconnected from the network [217,259].
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The mechanisms surrounding the uncoupling of TNTs, as well as the determina-
tion of how long they will last, is not yet clear, although one main hypothesis has been
raised [25]. This involves a ‘passive’ scenario, in which membrane rupture occurs as a
consequence of membrane ruffling, the remodeling of cytoskeletal components, or cellular
movements. However, the importance of this process rather implies the involvement of
precise regulation. In this context, cholesterol plays the essential role of modulating the
interrelated properties of the plasma membrane such as lipid organization, phase behavior,
membrane fluidity, and mechanical strength [260]. This is highlighted in the finding that
increasing concentrations of oxidized cholesterol derivatives, known as oxysterols, affect
not only plasma membrane fluidity and strength, but also the activity of membrane re-
ceptors and enzymes [265]. Additionally, a higher concentration of cholesterol-rich lipid
rafts was observed in TNT-forming mesothelioma [228]. Likewise, depletion of choles-
terol has been demonstrated to affect both TNT numbers and apoptosis, the latter via Akt
inactivation [266,267].

The functions of TNTs in cancer and during oxidative stress, as well as their biogenesis,
are depicted in Figure 2.
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Figure 2. Overview of the role of tunneling nanotubes (TNT) in cancer as well as during oxidative
stress. Both contexts involve two proposed mechanisms of TNT formation. In cancer, TNTs are
able to transport different cargoes and form connections between cells or cell types to promote and
spread cancer phenotypes. During oxidative stress, such as when cells are exposed to cigarette smoke,
TNT formation is induced. In particular, the shuttling of mitochondria from healthy cells to cells
experiencing a redox imbalance is able to rescue the struggling cells.
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6. Conclusions

ROS are by-products of cell metabolism and play an important role in signaling
pathways. Excessive amounts, however, can inflict damage to cells. One exogenous source
of ROS that is also tightly linked to cancer is cigarette smoke. As a rich source of known
and suspected carcinogens, cigarette smoke can damage both DNA and the epigenome via
multiple mechanisms. Although DNA repair systems can restore DNA integrity, incessant
toxic insults allow mutations to be propagated. Oxidative stress secondary to cigarette
smoke exposure compounds its deleterious effects and may also lead to both mutations
and the altered function of DNMTs [41–43].

An often-underappreciated consequence of the cooperative damage inflicted by
cigarette smoke and ROS is the ability of cells to restore ROS homeostasis to evade cell
death, even if the damage to oncogenes and tumor suppressor genes may already be be-
yond repair. In this review, the established role of antioxidant systems in resetting the redox
status was revisited. In particular, this review discussed the graded adaptive responses
of cells made possible by multi-level transcriptional control [52–54] and highlighted the
different mechanisms accessed by cells depending on how overwhelmed the antioxidant
systems have become.

More importantly, the review included the emerging contribution of lncRNAs and
TNTs in regulating oxidative stress. Several lncRNAs are known to regulate the NRF2–
KEAP1 pathway itself [58,59,201] while others are known to regulate the inflammatory
process [209] or mitochondrial oxidative phosphorylation [210]. With the widely doc-
umented roles of lncRNAs in oncogenesis, their regulatory role in antioxidant systems
further highlight oxidative stress as an emerging cancer hallmark.

The involvement of TNTs in regulating redox homeostasis constitutes one of the most
significant findings in oxidative stress research. ROS themselves promote TNT formation.
TNTs are then able to mediate the intercellular redistribution of ROS species including
those induced by chemotherapeutics [232]. The shuttling of mitochondria via TNTs has
also been shown to rescue cells from extreme oxidative stress [248]. An apparently graded
TNT response also exists. Rising ROS levels are initially counterbalanced by actin-based
TNTs, while microtubule-containing TNTs seem to be involved in the more severe oxidative
stress response [25,262].

The mechanisms to reset the redox state of cells continue to be unraveled and the
repercussions are vast. The adaptive, graded, and transient nature of oxidative stress
responses makes redox state manipulation a challenging and difficult therapeutic target.
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