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Abstract: Infectious diseases have always been a major threat to the survival of humanity. Addition-
ally, they bring an enormous economic burden to society. The conventional methods for bacteria
identification are expensive, time-consuming and laborious. Therefore, it is of great importance to au-
tomatically rapidly identify pathogenic bacteria in a short time. Here, we constructed an AI-assisted
system for automating rapid bacteria genus identification, combining the hyperspectral microscopic
technology and a deep-learning-based algorithm Buffer Net. After being trained and validated in the
self-built dataset, which consists of 11 genera with over 130,000 hyperspectral images, the accuracy of
the algorithm could achieve 94.9%, which outperformed 1D-CNN, 2D-CNN and 3D-ResNet. The
AI-assisted system we developed has great potential in assisting clinicians in identifying pathogenic
bacteria at the single-cell level with high accuracy in a cheap, rapid and automatic way. Since the AI-
assisted system can identify the pathogenic genus rapidly (about 30 s per hyperspectral microscopic
image) at the single-cell level, it can shorten the time or even eliminate the demand for cultivating.
Additionally, the system is user-friendly for novices.

Keywords: infectious pathogens; hyperspectral microscopy; bacteria identification; artificial intelligence;
imaging; genus; spectral characteristics

1. Introduction

Infectious diseases are a significant threat to public health and remain the leading
cause of death in developing countries, despite remarkable medical progress. Therefore,
how to prevent and treat them efficiently is of great significance [1–4].

Currently, there are several conventional methods for bacteria detection, such as
conventional morphological examination [5], polymerase chain reaction (PCR) [6], the
matrix assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) [7], biochemical
identification [8], serological tests [9], etc. However, a morphological examination is time-
consuming, since pathogens must be cultivated to be colonies. PCR, which needs skillful
operations, is only adopted for emergencies due to the high expense. Especially, MALDI-
TOF is regarded as the “gold standard”. However, it is scarcely used in clinics because of
the complicated operation and expensive cost. Additionally, the reproducibility of results
is poor due to the destruction to the specimen. As for patients, broad-spectrum antibiotics
are first-line-adopted when the cause of infection is unclear. Unfortunately, the treatment
seldom brings a satisfactory efficacy. Moreover, it might also bring a heavy financial and
psychological burden to the patient and potential risk of worsening the condition [10,11].
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Due to the relative scarcity of laboratory physicians, there is an urgent need to rapidly
automate pathogenic bacteria identification at a low price.

By utilizing spectral profiles of bacterial suspensions, Dimitris et al. identified five
bacterial species [12] and demonstrated that spectral technique could be a rapid, cheap
and noninvasive tool for bacterial identification. However, their method has only spectral
information and limited recognition capability. To adapt to more complex recognition
scenarios, hyperspectral technology (finer spectral resolution than a spectral technique) and
imaging technology are combined into hyperspectral imaging (HSI) technology, which was
used to identify bacteria with colony hyperspectral images [13–16]. Since hyperspectral
images have three dimensions, similar to a cube, they are also called datacubes.

However, these methods are colony-based and require the culturing of bacteria to a
considerable amount, which is very time-consuming. For faster identification of pathogens,
HSI and microscopic techniques were combined to develop microscopic hyperspectral
imaging (HMI). HMI was exploited to detect food-borne pathogens at the cell level [17–20].
However, the narrow range of wavelengths (450–800 nm) and coast spectral resolution
(4 nm) are insufficient for classifying infectious pathogens. In addition, a microscopic
datacube was decomposed or averaged, which destroyed the strong correlations between
the spectral and spatial information of the datacube. Although convolutional neural
networks (CNNs) were utilized, the small-scale dataset was inadequate for an excellent
CNN-based algorithm and clinical practice.

In this study, a new HMI system with a wider wavelength range (440–1023 nm)
and finer spectral resolution (2.1 nm) was developed. Over 130,000 HMIs (hyperspectral
microscopic images) for bacteria of 11 genera were collected with this equipment. Moreover,
a 3D-CNN-based network was proposed, called the Buffer Net, to maintain the data
integrity in HMIs. For noninvasive, fast and accurate bacteria detection, the HMI system
and trained Buffer Net were integrated to be an AI-assisted system.

In Section 2, we detail the collection and processing of the data, system design and
integration. The results re shown in Section 3, and the significance of our work is discussed
in Section 4. In Section 5, we concisely conclude the paper.

2. Materials and Methods

The workflow diagram of the AI-assisted system is shown in Figure 1. Additionally,
visualization of the cropping individual bacteria and the main functions of the system
are included.

2.1. Bacteria Strains

Most strains in this study were from The Second Affiliated Hospital of Air Force
Military Medical University. In addition, in order to increase the diversity of our data,
bacteria from the American Type Culture Collection (ATCC) were also adopted in the study.
The genera used in this study are summarized in Table 1. The extracted infectious bacteria
were purified (if necessary) and incubated on blood plates at a constant temperature of
35–37 ◦C for 24–48 h. Afterwards, some of the individual colonies were dissolved in
turbidity tubes under high pressure with saline (that is, to sterilize). A slide was taken
out to have the bacterial suspension in the inoculation loop coated on it evenly. Then,
the microscopic slide was dried naturally in the biosafety cabinet. Finally, a 75% alcohol
solution was applied to the dried slide, and then, absorbent paper was used to dry the slide.
After implementing the above process, the slide was well-prepared for observation and
imaging under the HMI system.
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Figure 1. Workflow diagram of the AI-assisted system. The field of view of the bacteria made into 
slides is acquired under a microscope with 100× magnification and then imaged. The bacteria in the 
datacube obtained by imaging are cropped out and fed into the Buffer Net. The identification results 
are recorded and exported to help physicians make a diagnosis. 
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Figure 1. Workflow diagram of the AI-assisted system. The field of view of the bacteria made into
slides is acquired under a microscope with 100× magnification and then imaged. The bacteria in the
datacube obtained by imaging are cropped out and fed into the Buffer Net. The identification results
are recorded and exported to help physicians make a diagnosis.

Table 1. The number of bacteria.

Genera Numbers for
Training Numbers for Testing Total

Stenotrophomonas 9070 3888 12,958
Escherichia 7135 3058 10,193
Morganella 7384 3165 10,549

Burkholderia 6337 2717 9054
Serratia 8126 3483 11,609

Pseudomonas 8954 3838 12,792
Acinetobacter 7185 3080 10,265

Klebsiella 11,255 4825 16,080
Proteus 11,435 4902 16,337

Staphylococcus 8182 3508 11,690
Enterococcus 8887 3810 12,697

total 93,950 40,274 134,224

2.2. Hyperspectral Microscopic Imaging (HMI) System

A built-in push-broom HMI system (Figure 2a) was developed, which included a
microscope and hyperspectral imaging system. An Olympus Biomedical BX43 upright
microscope (Olympus, Tokyo, Japan) was used in the system. A 30-W halogen lamp was
utilized as the light source. The objective parameters for bright field imaging: 100×/0.90.
The model number of the sensor was acA2000-165 umNIR (Basler, Ahrensburg, Germany).
The spatial resolution of our hyperspectral camera was about 0.67 µm, the average spectral
interval was 2.1 nm, and the field of view (FOV) was 64 × 64 µm2. Then, a datacube was
obtained containing 277 bands (440–1023 nm).
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erage. This process is called flat-field correction [21].  
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from the background in HMIs, and a binary image was obtained. The background was 

Figure 2. The components of the integrated AI-assisted system. (a) The HMI system. It is com-
posed of a microscope and hyperspectral camara and is responsible for detecting and imaging the
view containing bacteria. (b) The host, where data storage processing, bacteria identification and
interaction are deployed. (c) A template for the PDF files, i.e., the diagnostic report, output by the
AI-assisted system.

2.3. Data Collection and Preprocessing

Due to the low signal-to-noise ratios of the front and rear bands, the first 50 and the last
27 channels of the 277 bands were discarded. To even out the brightness of the entire image,
each scanning column was averaged, and then, the means were divided by each pixel in
the scanning column. To avoid the influence of extreme values, the 300 maximum and
300 minimum pixels in the scanning column were excluded when calculating the average.
This process is called flat-field correction [21].

Then, a clustering algorithm, K-means [22], was adopted to separate the bacterium
from the background in HMIs, and a binary image was obtained. The background was
calculated by pixel-wise multiplication on the binary image and the whole datacube. Then,
the average background brightness was then calculated.

The image where pixel values were like transmittance was obtained by dividing the
average background brightness band-wise. The standardization is in order to eliminate
the effects of different lighting. The bacterium was accurately identified by its location and
size in the image by finding the connected area in the binary image. Then, the bacteria
were selected and cropped from the 200 × 1000 × 1000 datacube (Figure 1). The connected
areas at the boundary were discarded due to not being intact. The spectral dimensions
of the images obtained for individual bacterium was 200, and there was no fixed value
for the length and width of the images due to the different pathogen sizes. Finally, more
than 130,000 HMIs of 11 infectious genera were collected and randomly assigned to the
training set and test set at 70% and 30%, respectively. The number of samples is presented
in Table 1.
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2.4. Model Design
2.4.1. Deep Learning

Deep learning aims to design a deep network f and determine its parameters θ and to
fit the relationship between the input data x and output ypre as accurately as possible. Deep
networks generally consist of three parts: input layer, hidden layers and output layer, all of
which are composed of neurons. The input layer is only responsible for the input of data,
and the data is propagated in the hidden layer with linear and nonlinear transformations.
This is also the process of extracting data features. Finally, the data x is mapped as ypre

and output from the output layer. This whole process is the forward propagation of the
network. ypre and x correspond to the ground truth yt to calculate the loss. The loss is
input into f from the output layer through the hidden layer. This process is the backward
propagation of the neural network. During training, after iterating forward and backward
propagation, the prediction ypre for x would get closer and closer to the true value yt. When
the condition is satisfied, the training is stopped, and the parameter θ is fixed. The trained
neural network f can be used to predict the ytest value corresponding to the input data xtest.

2.4.2. Buffer Net

As mentioned above, HMIs have three dimensions: spectrum, height and width. The
spatial information included in the height and width dimensions is strongly related to the
spatial information in the spectral dimension. Extracting the features of HMIs without
losing their correlation is extremely important.

Since the 1D-CNN filter is only able to extract the features of one-dimensional spectral
profiles and 2D-CNN extracts the spatial features of two-dimensional images, it is not
possible for them to extract spectral–spatial features in HMIs [23–25]. Therefore, 3D-CNN
uses three-dimensional (3D) filters that are suitable to extract the features of datacubes [26].
For a datacube, D ∈ RS×H×W , 3D-CNN uses a 3D filter F ∈ RK×I×J to execute the
convolution operation. A 3D feature map M ∈ RU×V×Z is obtained. Assuming the stride
is t, M[s, h, w] can be computed as Equation (1) when it is a value located at (s, h, w) in M.
Traverse the image with F, and finally, output M. Since D is not decomposed or averaged,
the correlation between the spectral and spatial information is retained.

M[s, h, w] = (D ∗ F)[s× t, h× t, w× t]

=
K
∑

k=1

I
∑

i=1

J
∑

j=1
D[s× t− k, h× t− i, w× t− j]× F[k, i, j] (1)

Bacteria in datacubes are small objects with resolutions less than 32× 32 pixels (defined
in [27]), and the resolution of their feature maps will be less than 1 pixel in the feature
map after several down samplings. Therefore, two kinds of convolutional layers were
designed: a down sampling layer and buffering layer. For expanding the receptive field of
the neurons, the stride of the down sampling was set as 2 to down sample the datacube.
The stride of the buffering layers is fixed to be 1 for enhancing the representative abilities
without reducing the resolution of the feature maps. The convolutional kernels of both
layers were 3 × 3 × 3 for extracting detailed information of the datacubes.

A block was composed of a down sampling layer and three buffering layers. In the
Buffer Net (Figure 3), a total of four blocks were included. Moreover, the spectral dimension
was compressed when the HMI images came into the network by setting the first filter to
down sample images on the spectral dimension with a stride of (2, 1, 1) and a convolutional
kernel (5, 1, 1).

The dimensions of the feature maps output by the final block were 7 × 2 × 2. The
feature maps were flattened into a vector and input to the SoftMax function through
1536 full connections after a 3D average pooling, which would transfer the 11-way output
into eleven probabilities for each bacterial genus, and the final output was the genus with
the highest probability. Our network consisted of 17 3D convolutional layers (1 + 4 down
sampling layers, 4 × 3 buffering layers), 1 fully connected layer and 1 SoftMax layer.
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Figure 3. The architecture of the Buffer Net and the data flow. The input was HMI images at a size of
200 × 25 × 25. Firstly, it was down sampled with the output as 64 feature maps, whose sizes were
98 × 25 × 25. Then, they were input to the four blocks to down sample and buffer. The size of the
output feature maps for the four blocks were 49 × 13 × 13, 25 × 7 × 7, 13 × 4 × 4 and 7 × 2 × 2,
respectively, and the number of output feature maps for the four blocks were 64,128, 256 and 512,
respectively. The feature map output by the fourth block was flattened into a vector after a 3D average
pooling, which was then input to the fully connected layer. The final output was the probability for
each bacterial genus by SoftMax. For accelerating the training process, every 3D convolutional layer
was followed by a 3D Batch Normalization layer.

2.5. Development Language and Training Details

In this study, Python was adopted to develop the Buffer Net for identifying bacterial
genera. In addition, C# was adopted to develop the interactive software for the AI-assisted
system. The Buffer Net was integrated into this software to accomplish the specimen
digitization, image analysis and bacteria identification.

The batch size was set to 128. All images were resized to 25 × 25 for accelerating the
algorithm training before inputting the model. For training, we set the learning rate to
0.0001, the momentum to 0.9 and the epoch to 30. The optimizer used in the paper is the
stochastic gradient descent (SGD). At each epoch, the training samples were reshuffled.

2.6. System Integration

The whole bacterial identified system was established by integrating the HMI system,
the interactive software with a 3D-CNN-based algorithm (Buffer Net) component, data
preprocessing and genus identification. The advantage of the whole system is that it could
perform all of these steps in a minute, with 30 s for imaging and another 30 s for data
preprocessing and genus identification.
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To achieve rapid data storage, a USB 3.0 interface was adopted to connect with the
computer, which coincided with the data digitization. Once it was completed, the pseudo
color image was automatically produced and shown on the screen. The identification was
achieved by clicking on the identification buffer of the user. All information about the cases
could be exported by the system in the form of a PDF (Figure 2c). The appearance and
components of this system are shown in Figure 2.

Furthermore, to facilitate the subsequent model upgrades, an interface in the software
was set up to quickly invoke the model. The relevant model developed by Python, the
weight file obtained from training and packaging as a file in the form of .exe were all packed
for easy use. The subsequent upgrades would be achieved by replacing the .exe file without
much modification to the code.

2.7. Evaluation Metrics

In this study, the confusion matrix and overall accuracy were applied to evaluate the
performance of the system for differentiating these 11 genera. In the confusion matrix, the
ordinate represents the true genus of each category, and the abscissa represents the genus
predicted by algorithms. Diagonal elements represent the prediction accuracy of each
genus, and nondiagonal elements represent the percentage that the genus on the ordinate
was misjudged as the category on the abscissa. The overall accuracy represents the total
precision of the system for differentiating all these 11 genera.

The calculation method for the elements in the (I, J) coordinates in the confusion matrix
is as follows:

Precisionij =
Pij

∑11
k=1 Pik

× 100%, (1 ≤ i ≤ 11, 1 ≤ j ≤ 11).

Precisionij represents the percentage where i genera were misidentified as j genera. Pij
represents the number of genera i identified as j genera, and Pik represents the number of
genera i identified as k genera.

In order to evaluate the overall accuracy of the system, we also introduced the overall
accuracy, whose calculation formula is as follows:

Accuracy =
∑11

i=1 Pii

∑11
j=1 ∑11

k=1 Pjk
× 100% =

∑11
i=1 Pii

∑11
j=1 nj

× 100% =
∑11

i=1 Pii

N
× 100%

Pii represents the number of genera i bacteria correctly classified, and Pij represents the
number of j genera predicted as genera k. Notably, j could be equal to k. nj represents
the total number of bacteria diagnosed as j genera, and N represents the total number of
bacteria of all the genera.

3. Results
3.1. Hyperspectral Microscopic Images

Over 130,000 hyperspectral images of 11 common infectious pathogens were collected
with cautiousness (Stenotrophomonas, Escherichia, Morganella, Burkholderia, Serratia,
Pseudomonas, Acinetobacter, Klebsiella, Proteus, Staphylococcus and Enterococcus) for
individual bacteria through hyperspectral microscopic imaging technology.

The datacube of a bacterium (Pseudomonas) is presented in Figure 4. For ease of
observation, several wavelength images of the datacube are presented separately. Moreover,
the mean spectrum of a single bacterium is also visualized.
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3.2. Classification Performance of the AI-Assisted System

As shown in Table 2, the overall accuracy of the Buffer Net for identifying a bacterial
genus was 94.9%, which was the best and higher than 3D-ResNet (92.3%) [28]. The 1D-CNN
was the worst, with an accuracy of only 82.6%. Meanwhile, the accuracy for 2D-CNN
was moderate, whose accuracy was 91.3%. Without buffering layers, Buffer Net got a
low accuracy, 88.4%. All of these results were acquired on the test dataset with over
40,000 hyperspectral images.

Table 2. The comparison of the differentiation accuracy for all samples.

Algorithm 1D-CNN 2D-CNN 3D-ResNet Buffer Net
(Without)

Buffer Net
(With)

Accuracy 82.6 91.3 92.3 88.4 94.9
Red represents the highest performance. With/without means Buffer Net with/without buffering layers.

3.3. The Differentiation Speed of Our AI-Assisted HMI System

As for the speed, it took only 30 s for our HMI system to differentiate genera on
microscopic hyperspectral images at the cellular level.

4. Discussion

An AI-assisted pathogen detection system, with designed HMI and Buffer Net, was
developed for rapid, accurate and low-price automatic identification in this paper. Before
us, Seo et al. and Rui et al. used HMI to classify food-borne bacteria [17–20]. Nevertheless,
our method was better than the previous studies in terms of data or algorithm.

In terms of data, the wavelength range of our hyperspectral data is 440–1023 nm, and
the spectral resolution is 2.1 nm, with a total of 277 bands. In contrast, the wavelength range
in these researches is 450–800 nm, with a spectral resolution of 4 nm and a total of 89 bands.
In addition, the maximum number of images in those studies was no more than 5000, far
less than the number (>130,000) we collected. Concerning algorithms, machine learning,
1D-CNN, 2D-CNN and LSTM were utilized to extract features that would disconnect the
strong spatial–spectral correlation in datacubes. Here, we proposed a new method based
on 3D-CNN, called Buffer Net, to train the model directly from datacubes.

As for the accuracies of differentiating bacterial genera for 1D-CNN, 2D-CNN, 3D-
ResNet and Buffer Net, it was no surprise that 1D-CNN has the lowest accuracy (detailed
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in Figure 5). In contrast, Buffer Net had the highest, because only spectral information
was adopted for the 1D-CNN with spatial features discarded. Likewise, it was explainable
that the accuracy of 2D-CNN was higher than that of 1D-CNN and lower than that of 3D-
ResNet, because the images were considered conventional images with numerous channels,
which enabled the simple usage of the spectral profiles with spatial features adopted, while
3D-ResNet could extract the features from the spatial and spectral dimensions precisely.
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Figure 5. The confusion matrix of differentiating genera of Buffer Net, 1D-CNN, 2D-CNN and
3D-ResNet. The x-axis represents the genera predicted by our system, while the y-axis represents
the underlying facts. Entries (i, j) indicate the percentage of samples that actually belong to class i
that are judged to be of class j; entries along the diagonal indicate the discrimination accuracy of the
model we developed for each genus, and off-diagonal entries indicate the misclassification accuracy.
The algorithm name was presented in the top right corner of each subplot. The highest accuracy for
identifying each bacterial genus was marked by bold white among these four algorithms. Accuracies
with less than 1% were not presented in the confusion matrix. All classification probabilities shown
in red. The probability on the diagonal represents the correct rate. In particular, white represents
the highest accuracy of the four algorithms for each genus. The remaining probability that is not
diagonally represents the error rate.
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Noticeably, our proposed algorithm, Buffer Net, achieved the highest accuracy of
94.9%, because it was designed to learn higher-level features. It is noticeable that the
differentiation precisions of Buffer Net for all genera were over 92%, with the highest
precision of 98% for Pseudomonas and Escherichia. Therefore, the requirement for clinical
practice was met. Buffer Net held the highest precision for identifying 11 genera compared
with the others.

ResNet is a classical deep architecture that achieves a good performance in many
tasks [28]. However, in our experiments, the overall accuracy of 3D-ResNet (92.3%) is 2.6%
lower than Buffer Net (94.9%). Since both ResNet and Buffer Net in this paper use 3D-CNN
as filters, the difference in performance can only be caused by the difference of architecture.
To further demonstrate the effectiveness of the Buffer Net architecture, we practiced an
ablation experiment by removing all buffering layers from Buffer Net and obtained an
accuracy of 88.4% (Table 2). The accuracy of Buffer Net without the buffering layers is even
less accurate than 2D-CNN (91.3%), indicating that the frequent down sampling limits the
feature representation capability, which is enhanced by the buffering layers.

Compared with conventional methods in routine practice, our AI-assisted system
allows for automatic and rapid bacterial identification. Since it identifies the genus of in
dividual bacteria, it does not require any culture of the pathogen, as long as the individual
bacteria can be isolated. In scenarios where bacterial isolation techniques are unavailable,
the system can significantly reduce the cultivating time of the bacteria. Compared to
expensive PCR and MALDI TOF, our method can obtain high precision while keeping the
costs under control, even lower than the morphological examination. In addition, since
the operation is simple and the system automates the identification, there is no expertise
required for the operators. Therefore, this can reduce the cost of the clinical diagnosis for
training physicians and their redundant workloads.

Recently, time-lapse coherent imaging [29], three-dimensional quantitative phase
imaging [30] and holographic microscopy [31] have been used for bacterium identifica-
tion. Nevertheless, time-lapse coherent imaging based on colonies is time-consuming.
Three-dimensional quantitative phase imaging or the holographic mi-croscopy identifies
pathogens with a refractive index (RI). HMI uses spectral and morpho-logical information
to classify pathogen genera.

This study also had some limitations. Firstly, the precision of those algorithms men-
tioned above for identifying these four genera (Serratia, Klebsiella, Acinetobacter and
Stenotrophomonas) was relatively low, and this may be due to the similarities between the
four genera. Further improvements will be implemented to optimize the precisions. In
addition, we focused on bacterial genera identification at the cellular level in this study,
which could be further subdivided into species and subspecies. Species or subspecies
identification based on datacubes of pathogens will be explored in subsequent studies, and
these are what we are doing. Lastly, although over 130,000 images with 11 genera were
adopted to develop the algorithm Buffer Net, far more than 11 genera need to be identified
in routine clinical practice. Therefore, the number and diversity of the training and test
data need to be augmented further.

5. Conclusions

In this study, we developed an AI-assisted system to automatically identify bacterial
genera by combining the designed HMI system and Buffer Net. Utilizing the HMI system,
a large-scale dataset where bacteria datacubes had a wider wavelength range and a finer
spectral resolution was built to train Buffer Net for identifying 11 genera. The 3D-CNN and
the architecture with buffering layers and down sampling layers contributed to the highest
accuracy (94.9%) of Buffer Net compared with the other algorithms. The AI-assisted system
has great potential in rapidly identifying bacteria, because it can shorten or even eliminate
the cultivation time. After obtaining the microscopic datacube of an individual bacterium,
it only takes 30 s to classify a pathogen.



Cells 2022, 11, 2237 11 of 12

Author Contributions: Conceptualization, C.T., Y.T., B.H. and Z.Z.; Data curation, B.H. and Z.Z.;
Formal analysis, C.T. and J.D.; Funding acquisition, B.H., Z.Z. and K.D.; Investigation, C.T., Y.T.,
J.W., Z.Z. and M.Y.; Methodology, C.T., J.D. and Z.Z.; Project administration, B.H., Z.Z. and K.D.;
Resources, B.H., K.D. and M.Y.; Software, C.T., J.D. and J.W.; Supervision, J.D., B.H., Z.Z. and K.D.;
Validation, C.T.; Visualization, C.T. and J.W.; Writing—original draft, C.T., J.D. and Y.T. and Writing—
review and editing, C.T., J.D. and Y.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was granted by the project of “Research on automatic hyperspectral pathology
diagnosis technology” (Project No. Y855W11213) supported by the Key Laboratory Foundation of
Chinese Academy of Sciences and the project of “Research on microscopic hyperspectral imaging
technology” (Project No. Y839S11) supported by the Key Laboratory of Biomedical Spectroscopy
of Xi’an.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data will be made available by the corresponding author upon
reasonable request. The code is at https://github.com/chengltao/Buffer-Net; The trained weights
is at https://drive.google.com/file/d/123AYGNOAIKJTWLv6ugSbEZ4RwSK8nN3f/view?usp=
sharing.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gan, Y.; Li, C.; Peng, X.; Wu, S.; Li, Y.; Tan, J.P.; Yang, Y.Y.; Yuan, P.; Ding, X. Fight bacteria with bacteria: Bacterial membrane

vesicles as vaccines and delivery nanocarriers against bacterial infections. Nanomed. Nanotechnol. Biol. Med. 2021, 35, 102398.
[CrossRef] [PubMed]

2. Rangel-Vega, A.; Bernstein, L.R.; Mandujano Tinoco, E.-A.; García-Contreras, S.-J.; García-Contreras, R. Drug repurposing as an
alternative for the treatment of recalcitrant bacterial infections. Front. Microbiol. 2015, 6, 282. [CrossRef] [PubMed]

3. Sadarangani, M. Protection against invasive infections in children caused by encapsulated bacteria. Front. Immunol. 2018, 9, 2674.
[CrossRef] [PubMed]

4. van Elsland, D.; Neefjes, J. Bacterial infections and cancer. EMBO Rep. 2018, 19, e46632. [CrossRef]
5. Versalovic, J. Manual of Clinical Microbiology; American Society for Microbiology Press: Washington, DC, USA, 2011; Volume 1.
6. Engelmann, I.; Alidjinou, E.K.; Ogiez, J.; Pagneux, Q.; Miloudi, S.; Benhalima, I.; Ouafi, M.; Sane, F.; Hober, D.; Roussel, A.

Preanalytical issues and cycle threshold values in SARS-CoV-2 real-time RT-PCR testing: Should test results include these? ACS
Omega 2021, 6, 6528–6536. [CrossRef]

7. Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; Ewald, J.C.; Fraser, P.D.; Giavalisco, P.; Hall, R.D.
Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices. Nat. Methods 2021,
18, 747–756. [CrossRef]

8. Rave, A.; Kuss, A.; Peil, G.; Ladeira, S.; Villarreal, J.; Nascente, P. Biochemical identification techniques and antibiotic susceptibility
profile of lipolytic ambiental bacteria from effluents. Braz. J. Biol. 2018, 79, 555–565. [CrossRef]

9. Park, H.-T.; Ha, S.; Park, H.-E.; Shim, S.; Hur, T.Y.; Yoo, H.S. Comparative analysis of serological tests and fecal detection in the
diagnosis of Mycobacterium avium subspecies paratuberculosis infection. Korean J. Vet. Res. 2020, 60, 117–122. [CrossRef]

10. Roux-Dalvai, F.; Gotti, C.; Leclercq, M.; Hélie, M.-C.; Boissinot, M.; Arrey, T.N.; Dauly, C.; Fournier, F.; Kelly, I.; Marcoux, J. Fast
and Accurate Bacterial Species Identification in Urine Specimens Using LC-MS/MS Mass Spectrometry and Machine Learning.
Mol. Cell. Proteom. 2019, 18, 2492–2505. [CrossRef]

11. Leekha, S.; Terrell, C.L.; Edson, R.S. General principles of antimicrobial therapy. In Mayo Clinic Proceedings; Elsevier: Amsterdam,
The Netherlands, 2011; pp. 156–167.

12. Alexandrakis, D.; Downey, G.; Scannell, A.G. Detection and identification of bacteria in an isolated system with near-infrared
spectroscopy and multivariate analysis. J. Agric. Food Chem. 2008, 56, 3431–3437. [CrossRef]

13. Yoon, S.-C.; Lawrence, K.; Siragusa, G.; Line, J.; Park, B.; Feldner, P. Hyperspectral reflectance imaging for detecting a foodborne
pathogen: Campylobacter. Trans. ASABE 2009, 52, 651–662. [CrossRef]

14. Windham, W.R.; Yoon, S.-C.; Ladely, S.R.; Heitschmidt, J.W.; Lawrence, K.C.; Park, B.; Narrang, N.; Cray, W.C. The effect of
regions of interest and spectral pre-processing on the detection of non-0157 Shiga-toxin producing Escherichia coli serogroups on
agar media by hyperspectral imaging. J. Near Infrared Spectrosc. 2012, 20, 547–558. [CrossRef]

15. Yoon, S.-C.; Windham, W.R.; Ladely, S.R.; Heitschmidt, J.W.; Lawrence, K.C.; Park, B.; Narang, N.; Cray, W.C. Hyperspectral
imaging for differentiating colonies of non-0157 Shiga-toxin producing Escherichia coli (STEC) serogroups on spread plates of
pure cultures. J. Near Infrared Spectrosc. 2013, 21, 81–95. [CrossRef]

https://github.com/chengltao/Buffer-Net
https://drive.google.com/file/d/123AYGNOAIKJTWLv6ugSbEZ4RwSK8nN3f/view?usp=sharing
https://drive.google.com/file/d/123AYGNOAIKJTWLv6ugSbEZ4RwSK8nN3f/view?usp=sharing
http://doi.org/10.1016/j.nano.2021.102398
http://www.ncbi.nlm.nih.gov/pubmed/33901646
http://doi.org/10.3389/fmicb.2015.00282
http://www.ncbi.nlm.nih.gov/pubmed/25914685
http://doi.org/10.3389/fimmu.2018.02674
http://www.ncbi.nlm.nih.gov/pubmed/30515161
http://doi.org/10.15252/embr.201846632
http://doi.org/10.1021/acsomega.1c00166
http://doi.org/10.1038/s41592-021-01197-1
http://doi.org/10.1590/1519-6984.05616
http://doi.org/10.14405/kjvr.2020.60.3.117
http://doi.org/10.1074/mcp.TIR119.001559
http://doi.org/10.1021/jf073407x
http://doi.org/10.13031/2013.26814
http://doi.org/10.1255/jnirs.1004
http://doi.org/10.1255/jnirs.1043


Cells 2022, 11, 2237 12 of 12

16. Kammies, T.-L.; Manley, M.; Gouws, P.A.; Williams, P.J. Differentiation of foodborne bacteria using NIR hyperspectral imaging
and multivariate data analysis. Appl. Microbiol. Biotechnol. 2016, 100, 9305–9320. [CrossRef] [PubMed]

17. Seo, Y.; Park, B.; Hinton, A.; Yoon, S.-C.; Lawrence, K.C. Identification of Staphylococcus species with hyperspectral microscope
imaging and classification algorithms. J. Food Meas. Charact. 2016, 10, 253–263. [CrossRef]

18. Kang, R.; Park, B.; Eady, M.; Ouyang, Q.; Chen, K. Single-cell classification of foodborne pathogens using hyperspectral
microscope imaging coupled with deep learning frameworks. Sens. Actuators B Chem. 2020, 309, 127789. [CrossRef]

19. Kang, R.; Park, B.; Eady, M.; Ouyang, Q.; Chen, K. Classification of foodborne bacteria using hyperspectral microscope imaging
technology coupled with convolutional neural networks. Appl. Microbiol. Biotechnol. 2020, 104, 3157–3166. [CrossRef]

20. Kang, R.; Park, B.; Ouyang, Q.; Ren, N. Rapid identification of foodborne bacteria with hyperspectral microscopic imaging and
artificial intelligence classification algorithms. Food Control 2021, 130, 108379. [CrossRef]

21. Seibert, J.A.; Boone, J.M.; Lindfors, K.K. Flat-field correction technique for digital detectors. In Medical Imaging 1998: Physics of
Medical Imaging; SPIE: Bellingham, WA, USA, 1998; pp. 348–354.

22. Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [CrossRef]
23. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Processing Syst. 2012, 25, 1097–1105. [CrossRef]
24. Tian, S.; Wang, S.; Xu, H. Early detection of freezing damage in oranges by online Vis/NIR transmission coupled with diameter

correction method and deep 1D-CNN. Comput. Electron. Agric. 2022, 193, 106638. [CrossRef]
25. Hsieh, T.-H.; Kiang, J.-F. Comparison of CNN algorithms on hyperspectral image classification in agricultural lands. Sensors 2020,

20, 1734. [CrossRef] [PubMed]
26. Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach.

Intell. 2012, 35, 221–231. [CrossRef] [PubMed]
27. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in

context. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755.
28. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
29. Wang, H.; Ceylan Koydemir, H.; Qiu, Y.; Bai, B.; Zhang, Y.; Jin, Y.; Tok, S.; Yilmaz, E.C.; Gumustekin, E.; Rivenson, Y. Early

detection and classification of live bacteria using time-lapse coherent imaging and deep learning. Light Sci. Appl. 2020, 9, 118.
[CrossRef]

30. Kim, G.; Ahn, D.; Kang, M.; Jo, Y.; Ryu, D.; Kim, H.; Song, J.; Ryu, J.S.; Choi, G.; Chung, H.J. Rapid and label-free identification
of individual bacterial pathogens exploiting three-dimensional quantitative phase imaging and deep learning. BioRxiv 2019.
[CrossRef]

31. Jo, Y.; Park, S.; Jung, J.; Yoon, J.; Joo, H.; Kim, M.-H.; Kang, S.-J.; Choi, M.C.; Lee, S.Y.; Park, Y. Holographic deep learning for
rapid optical screening of anthrax spores. Sci. Adv. 2017, 3, e1700606. [CrossRef] [PubMed]

http://doi.org/10.1007/s00253-016-7801-4
http://www.ncbi.nlm.nih.gov/pubmed/27624097
http://doi.org/10.1007/s11694-015-9301-0
http://doi.org/10.1016/j.snb.2020.127789
http://doi.org/10.1007/s00253-020-10387-4
http://doi.org/10.1016/j.foodcont.2021.108379
http://doi.org/10.1016/S0031-3203(02)00060-2
http://doi.org/10.1145/3065386
http://doi.org/10.1016/j.compag.2021.106638
http://doi.org/10.3390/s20061734
http://www.ncbi.nlm.nih.gov/pubmed/32244929
http://doi.org/10.1109/TPAMI.2012.59
http://www.ncbi.nlm.nih.gov/pubmed/22392705
http://doi.org/10.1038/s41377-020-00358-9
http://doi.org/10.1101/596486
http://doi.org/10.1126/sciadv.1700606
http://www.ncbi.nlm.nih.gov/pubmed/28798957

	Introduction 
	Materials and Methods 
	Bacteria Strains 
	Hyperspectral Microscopic Imaging (HMI) System 
	Data Collection and Preprocessing 
	Model Design 
	Deep Learning 
	Buffer Net 

	Development Language and Training Details 
	System Integration 
	Evaluation Metrics 

	Results 
	Hyperspectral Microscopic Images 
	Classification Performance of the AI-Assisted System 
	The Differentiation Speed of Our AI-Assisted HMI System 

	Discussion 
	Conclusions 
	References

