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Abstract: Studying functionality and antigen-specificity of resident kidney T cells derived from a
kidney biopsy is hampered by the lack of sufficient numbers of T cells obtained by the standard
method of enzymatic tissue dissociation. Enzymatic dissociation of kidney tissue was compared to
a novel method of whole kidney tissue culture allowing T cells to migrate into the medium in the
presence of exogenous IL-2 and IL-15. T cell numbers were quantified and phenotype of resident
T cells (CD69+CD103+/−), TCR Vβ repertoire and functional characteristics were analyzed with
multi-parameter flow cytometry. Renal tissue culture for four weeks in the presence of exogenous IL-2
and IL-15 yielded significantly higher numbers of T cells (1.3 × 104/mm3) when compared to cultures
without exogenous cytokines (71/mm3) or direct isolation by enzymatic dissociation (662/mm3 T
cells, p < 0.05). The proportion of T cells with a resident phenotype did not change in the tissue
culture; percentages amounted to 87.2% and 85.1%, respectively. In addition, frequencies of CD4+,
CD8+, CD4−CD8−, T cells and MAIT T cells remained similar. For both CD4+ and CD8+, T cells had
a more differentiated memory phenotype after tissue culture, but the distribution of TCR Vβ families
did not change. In addition, the predominant Th1 cytokine secretion profile and poly-functionality
of resident kidney T cell remained intact. T cell proliferation potential was not affected, excluding
exhaustion and enrichment of BKV- and CMV-reactive resident T cells was observed. In conclusion,
the kidney tissue culture method yields significantly increased numbers of resident T cells without
major effects on composition and functionality.

Keywords: resident T cells; kidney; biopsy; cell proliferation; interleukin-2; interleukin-15

1. Introduction

The number of lymphocytes within kidney tissue increases in many pathological
conditions causing a local inflammatory response. Several types of kidney lymphocytes
have been recognized and associated with acute kidney injury (e.g., double-negative CD3+
T cells) and interstitial fibrosis (natural killer cells or mucosal-associated invariant T (MAIT)
cells) [1–6]. Recent developments have shown that, similar to other tissues, kidney lympho-
cytes show expression of CD69 and/or CD103, thereby classifying these cells as resident
cells which can be distinguished from migratory, passenger lymphocytes. In kidney trans-
plants, formation of aggregates of lymphocytes develops over time in a substantial number
of cases which may progress to formation of structures with characteristics of tertiary
lymphoid tissue [7]. These structures can support the local production of antibodies to
donor-specific antigens or auto-antibodies and cytotoxic T cells [8–11]. In kidney trans-
plantation, chronic-active antibody-mediated rejection is the major cause of long-term graft
failure, and auto-antibodies facilitate progressive interstitial fibrosis both in native and
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transplanted kidneys [12–14]. The presence of resident T lymphocytes is likely instrumental
in this process as these cells support the B cell development into antibody-secreting cells,
but their true significance is not known. In addition, areas of interstitial fibrosis frequently
contain lymphocytes, but their role, innocent bystander or not, is a matter of debate [15].
To investigate the pathogenic role of kidney T cells in these issues, a larger number of T
cells than is usually obtained from a kidney biopsy (<1000 T cells) is needed, in order to
perform functional characterization.

The standard method of T cell isolation from kidney tissue is by enzymatic dissociation
of kidney tissue cut into small pieces with subsequent isolation of a single cell population.
This yields in most cases sufficient numbers of T cells from a relatively large piece of
kidney tissue derived from a nephrectomy sample. However, the yield of lymphocytes
from a kidney biopsy is usually just enough for limited phenotypical characterization by
multi-parameter flow-cytometry [4].

Resident T lymphocytes, e.g., from the skin, may show spontaneous migration into
the culture medium during whole tissue culture [16,17]. Clark et al. optimized this protocol
by adding IL-2 and IL-15 to the culture medium, which increased the yield of resident
T cell numbers without affecting their resident phenotype or T cell receptor (TCR) Vβ-
repertoire diversity [18]. This approach has some obvious advantages as the tissue is not
tormented by cutting and enzymatic digestion while increased numbers of lymphocytes
are harvested untouched.

Analogous to T cell isolation from the skin, a technique of whole kidney tissue culture
was developed to maximize the number of isolated kidney T cells which was compared
with the results of the standard isolation technique. Detailed phenotypic and functional
characterization shows that significant increased numbers of poly-functional, kidney res-
ident T lymphocytes with a polyclonal TCR Vβ repertoire can be obtained by using the
novel kidney tissue culture method.

2. Materials and Methods
2.1. Study Population

Kidney tissue was obtained from non-tumor tissue of donors immediately after
nephrectomy for renal cell carcinoma and after transplantectomy of kidney allografts
which were removed due to ongoing rejection or loss of function. The volume of the kidney
tissue was measured prior to processing. The study was approved by the review board
(MEC no: 2020-0704) for nephrectomy and transplantectomy kidney tissue and MEC no:
2019-0213, for kidney allograft biopsies. Table 1 summarizes study population character-
istics. All individuals gave written informed consent, and the study was conducted in
accordance with the Declaration of Helsinki and Declaration of Istanbul and in compliance
with International Conference on Harmonization/Good Clinical Practice regulations.

Table 1. Clinical characteristics study population.

Healthy
Kidney Kidney Transplant

n = 10 n = 8

Gender (male/female) 5/5 1/7
Age (years), median (IQ range) 68 (57–74) 46 (27–68)

Underlying kidney disease N.A.
hypertensive nephropathy 1

diabetic nephropathy 2
polycystic kidney disease 1

SLE-mediated glomerulonephritis 1
granulomatous polyangiitis 1

Nephronophthisis
(type 1 homozygous mutation NPHP) 1
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Table 1. Cont.

Healthy
Kidney Kidney Transplant

n = 10 n = 8

Unknown 1
Cause of transplant failure N.A.

Rejection 5
chronic damage 3

Months since transplantation, median (IQ range) N.A. 32 (21–52)
Number of immunosuppressive agents at time of sample

collection, median (IQ range) N.A. 2 (1–2)

Donor type (living/deceased) N.A. 1/7

2.2. Isolation of Peripheral Blood Mononuclear Cells

Peripheral blood mononuclear cells (PBMCs) were isolated as described previously [19]
and stored at 5 or 10 million/vial at −150 ◦C until further use.

2.3. Enzymatic Dissociation of Kidney Tissue

Kidney tissue was dissociated into single cells using the protocol described by Kildey
et al. [4] using mechanic and enzymatic dissociation of kidney tissue with some minor
adjustments. Briefly, kidney tissue was cut into small pieces and digestion solution I was
added, thereby scaling up the volume accordingly to ensure the pieces of tissue to be
digested properly. Digestion solution I contains Hank’s balanced salt solution (HBSS) with
calcium and magnesium; ThermoFisher Scientific, Gibco™, Landsmeer, The Netherlands)
and Collagenase P (stock 2 mg/mL; Roche Molecular Systems, Woerden, The Netherlands)
at a 1:1 ratio. This was incubated for 15 min at 37 ◦C and halfway as well as at the end,
the sample is pipetted up and down several times using a Samco pipette (ThermoFisher
Scientific, Gibco™) to mechanically dissociate the cells. Upon a centrifugation step at
low speed (600× g) at 4 ◦C for 5 min, the supernatant was harvested and stored. Next,
digestion solution II was added, again scaling up the volume used for a kidney biopsy
(0.5 mL) and incubated at 37 ◦C for 10 min. Digestion solution II contains Trypsin-EDTA
(stock concentration 0.05%, ThermoFisher Scientific, Gibco™) and HBSS without calcium
and magnesium (ThermoFisher Scientific, Gibco™). The solution was pipetted up and
down several times at the beginning at end of incubation step using a Samco pipette
to mechanically dissociate the cells. After this incubation, an equal amount of culture
medium (containing calcium) was added to neutralize trypsin. The kidney tissue should
be completely digested with minimal cell clumps present. Sometimes, a white fibrous cord
may remain which does not contain cells. This can be easily removed using a Samco pipette.
The cell suspension was subsequently centrifuged at 600× g at 4 ◦C for 5 min, and the
single cell suspensions were frozen and stored for further analyses.

2.4. Explant Cultures of Kidney Tissue

The obtained kidney tissue was split into two parts, one for enzymatic dissociation and
the other part for explant culture. We adapted the protocol described by Clark et al. for skin
explant cultures [18]. Briefly, the kidney tissue was cut into pieces of 2 mm × 2 mm × 2 mm
and 2 pieces were transferred to a well of a 24-well plate (Costar) supplemented with 1 mL
of culture medium with or without recombinant human IL-2 (100 U/mL; Alloga BV, Wi-
jchen, The Netherlands) and IL-15 (20 ng/mL; Peprotech, London, UK). Irradiated (40 Gy)
autologous PBMCs were added to support lymphocyte survival in the initial experiments
but proved to be dispensable. The medium of the explant cultures was refreshed every
2–3 days, and a sample was taken from every well, pooled and evaluated with respect to
cell numbers by flow-cytometry once a week (described below). Following a 4-week culture,
cells were harvested, frozen and stored for further analyses. In a number of procedures,
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pieces of kidney tissue before and after culture were processed for immunohistochemistry
to evaluate CD3+ T cells within the tissue.

2.5. Immunohistochemistry

Six pieces of kidney tissue, 3 derived from nephrectomies and 3 from transplantec-
tomies were histologically evaluated using HE staining and staining for CD3 prior to and
following 4 weeks of culture as described before [20,21].

2.6. Characterization of T Cell Subsets Obtained from Kidney Tissue

Single cells suspensions were stained for 30 min at room temperature in the dark using
antibodies directed to CD3, CD4, CD8 and CD56 following a 15 min staining to exclude
dead cells (Supplementary Table S1). Kidney tissue resident T cells were defined by their
expression of CD69 with or without CD103 [22]. The absolute number of T cells/mm3

kidney tissue obtained was determined by flow count beads (Beckman Coulter, Woerden,
The Netherlands). Briefly, following staining of cells and upon a wash, the pellet was
resuspended in 270 µL FacsFlow (BD, Erembodegem, Belgium). Just before measuring the
samples on the flow cytometer, 30 µL FlowCount beads (Beckman Coulter) were added.
Absolute cell numbers were calculated as follows:

number o f CD3 + events (cells)
number o f beads measured × bead concentration

(
beads

microliter

)
(lot speci f ic) ×

dilution f actor
( 30

300
)
× sample volume (300 microliter)

(1)

To normalize for differences in kidney volume, the absolute number of T cells were
divided by the volume of kidney tissue, expressed in mm3.

For T cell phenotype analysis, cells were stained with antibodies directed to CD3,
CD4, CD8, CD161 (a marker of MAIT cells) and CD69 and CD103 to identify the different
T cells (Supplementary Table S1). Antibodies directed against CD45RA, CCR7, CD28,
and CD27 were included to determine T cell subsets (Supplementary Table S1). Naïve
T cells were defined as CD45RA+CCR7+, central-memory T cells as CD45RA−CCR7+,
effector memory T cells as CD45RA−CCR7− and the highly differentiated Temra cells as
CD45RA+CCR7−. An alternative characterization of T cell differentiation status is by CD28
and CD27 expression as both co-stimulatory molecules are expressed by naïve T cells but
gradually lost with progressive differentiation to a final highly differentiated T cell status of
CD28−CD27− cells [23–26]. Following extracellular staining, the cells were washed, and
intracellular staining was performed using antibodies directed to FOXP3, T-bet and RORγ
using the FOXP3/Transcription Factor Staining Buffer according to manufacturer’s instruc-
tions (eBioscience, Thermo Fisher Scientific, Bleijswijk, The Netherlands) (Supplementary
Table S1).

Samples were measured on the BD FACSCanto II or BD Symphony A3 light (BD,
Erembodegem, Belgium). Data were analyzed using Kaluza version 2.1 (Beckman Coulter,
Woerden, The Netherlands).

2.7. Characterization of TCR Vβ-Repertoire of T Cells Obtained from Kidney Tissue

To examine whether clonal expansions of particular TCR Vβ families were induced by
explant culture in the presence of IL-2/IL-15, TCR Vβ repertoire analysis was performed
on T cells as previously described [27]. Supplementary Table S1 shows the description of
the antibodies directed to the different TCR Vβ-families.

2.8. Functional Characterization of T Cells Obtained from Kidney Tissue

Functionality of kidney T cells was assessed by measuring proportions of activation-
induced cytokine producing cells and cells expressing the degranulation marker CD107a,
the latter a measure of potential cell cytotoxicity of T cells [28]. Cells were thawed and
stimulated with a combination of phorbol 12-myristate 13-acetate (PMA; 50 ng/mL; Sigma
Aldrich, St Louis, MO, USA) and ionomycin (1 µg/mL; Sigma Aldrich). Stimulation was
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performed for 15 h in the presence of 5 µL of CD107-a (FITC) (clone H4A3, Biolegend) and
the Protein Transport Inhibitor Cocktail (2 µL/mL) (eBioscience, Thermo Fisher Scientific,
Bleijswijk, The Netherlands) was included. After stimulation, cells were washed and incu-
bated for 15 min at room temperature with ethylenediaminetetraacetic acid (EDTA) (20 mM;
pH 7.2–7.4). Thereafter, the cell surface was stained with antibodies to identify the different
T cell subsets (CD3, CD4, CD8, CD161, CD103 and CD69) and after permeabilization, intra-
cellular staining was performed using antibodies directed to interleukin (IL)-2, interferon
(IFN)-γ, tumor necrosis factor (TNF)-α, IL-6, IL-17A, and IL-21 (Supplementary Table S1).
The antibody directed against CD4 was additionally added to the intracellular staining
for the PMA/Ionomycin condition, to ensure labeling of internalized CD4 due to stimula-
tion. Resident T cells were identified by CD103 expression in these experiments, as CD69
expression is induced on passenger T cells following PMA/ionomycin stimulation [29,30].

2.9. BKV- and CMV-Reactive T Cells and Proliferation Potential of T Cells Obtained from
Kidney Tissue

T cells harvested from a 4-week culture of kidney tissue with exogenous IL-2/IL-15
and T cells from PBMCs (both at a concentration of 1–2 × 106/mL) were stimulated with a
pool of overlapping peptides (final concentration 1 µg/mL, Miltenyi Biotec B.V., Bergisch
Gladbach, Germany) of the immunodominant antigens of CMV (pp65 and IE-1) and BKV
(BKV VP1/2, LT and ST) for 18–24 h. Carboxyfluorescein succinimidyl ester (CFSE)-labeled
autologous PBMCs at a ratio 1:1 were used as antigen-presenting cells. Antigen-reactive T
cells were identified within CFSE-negative cells (responder cells) by CD137-expression [31]
and were further characterized using co-expression of CD3, CD4, CD8 and CD69. In
addition, antigen-reactive T cells were also evaluated following a 6-day stimulation in
the presence of CMV- or BKV peptides and irradiated autologous PBMC, using CFSE-
dilution as a measure for proliferation [32]. As a control, cells were left unstimulated or
polyclonal stimulated using the T cell mitogen phytohaemagglutinin (PHA, 5 µg/mL,
Sigma). Proliferated antigen-reactive T cells were identified as CFSE-negative cells.

2.10. Statistical Analyses

Data are depicted as median and interquartile range unless indicated otherwise.
Statistical analyses were performed in GraphPad version 9.0 (GraphPad Software Inc.,
San Diego, CA, USA). A non-parametric Mann-Whitney U test was used for unpaired
comparisons, Wilcoxon test for paired comparisons. Correction for multiple testing was
done using the Holm-Ŝidák method. p < 0.05 was considered statistically significant.

3. Results
3.1. Lymphocytes Migrate from Kidney Tissue Cultures and Remain a Polyclonal Cell Population

Table 1 summarizes study population characteristics.
After enzymatic digestion, kidney lymphocytes were obtained in variable numbers

depending on the source of renal tissue (Table 2).

Table 2. Lymphocyte populations following direct enzymatic dissociation of kidney tissue.

Median and IQ Range
n = 8 Kidney Tissues Lymphocyte Population Resident

(CD69+CD103+/−) (%)
Passenger

(CD69−CD103−/+) (%)

T cells (cells/mm3) median 317 (56–1269) 87.24 (76.28–94.30) 12.77 (5.71–23.71)

CD4+T cells (% of CD3+ T cells) 47.71 (26.68–59.16) 89.64 (76.64–94.64) 10.37 (5.37–23.36)

CD8+T cells (% of CD3+ T cells) 45.55 (31.40–65.00) 88.45 (81.38–95.55) 11.56 (4.44–18.63)

CD4−CD8−T cells (% of CD3+ T cells) 4.98 (3.06–7.02) 81.29 (73.76–89.4) 18.72 (10.61–26.25)

CD161+T cells (% of CD3+ T cells) 14.55 (10.35–17.25) 95.13 (91.73–98.7) 4.88 (1.30–8.27)

NK cells (cells/mm3) 12 (8–81) 76.84 (64.01–90.53) 23.17 (9.47–35.99)
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Transplantectomy yielded on average more T lymphocytes as compared to normal
renal tissue obtained after nephrectomy (Supplementary Table S2, p = 0.02). Translated to a
volume of a kidney biopsy, this resulted in 104 − 5 × 104 T cells after standard isolation.

The kinetics of numbers of T cells harvested at different time points after the start of
the tissue culture were similar for kidney tissue from a nephrectomy or transplantectomy
and followed a log-linear curve (Figure 1A). Standard enzymatic dissociation of kidney
tissue resulted in 317 (56–1269) T cells/mm3 compared to a median of 1.3 (0.2–4.8) × 104 T
cells/mm3 after 4 weeks of tissue culture. This corresponded to a median 41-fold (19–384)
increase in yield of T cells, although a large variability was observed (Figure 1B). It is
noteworthy that low T cell numbers (median 71 T cells/mm3) were obtained at 4 weeks of
tissue culture without exogenous IL-2 and IL-15.

Figure 1. Increased T cell numbers following explant culture of different sources of kidney tissue
with exogenous IL-2 and IL-15. T cell numbers (y-axis) were determined on a weekly basis during
four weeks of explant culture in the presence of exogenous IL-2 and IL-15 for the different sources of
kidney tissue (n = 10 nephrectomies and n = 6 transplantectomies), using flow cytometry thereby
normalizing for the different volumes of kidney tissue obtained (A). data depicted representing
the median of the different samples per week. In (B), the final number of T cells is depicted on
the y-axis, again normalizing for the amount of kidney tissue obtained. In (C), the percentage of
CD69+CD103+/− T cells is depicted. The horizontal line represents the median of the different
samples. The squares represent data obtained for nephrectomies and the triangles’ display data
obtained for transplantectomies. In (D), the distribution of CD69 and CD103 for CD3+ T cells is
depicted (average ± SEM).

In some experiments, a tissue sample was obtained from the surgically removed
kidney using a 14G biopsy needle. This biopsy-derived kidney tissue was processed in
parallel with the remaining kidney tissue, which resulted in similar numbers of T cells per
mm3 (data not shown). The TCR Vβ repertoire analysis showed that the T cell population
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remained polyclonal without evidence of preferred outgrowth of particular Vβ clones
(Figure 2), p > 0.05).

Figure 2. TCR Vβ repertoire T cells. The TCR Vβ repertoire was determined using the flow cytometry-
based IOTest® Beta Mark TCR Vbeta repertoire kit for T cells obtained following direct enzymatic
dissociation of kidney tissue (closed bars) and compared to that of T cells harvested following four
weeks of explant culture in the presence of exogenous IL-2 and IL-15 (open bars). Kidney tissue
used was obtained from three nephrectomies and one transplantectomy. In (A), the repertoire for
total kidney CD3+T cells is depicted, in (B), that of CD69+CD103+/− resident kidney CD3+ T
cells, whereas (C) depicts the CD69− CD103+/− passenger kidney CD3+ T cells. Bars represent
median (IQ range) values for the 24 different TCR Vβ families expressed as a percentage of total
TCR Vβ+ cells.

The kidney tissue before and after 4-week culture were stained for CD3+ T cells. As
expected, relatively few T cells were found in the interstitium before culture. After 4 weeks
culture, the tubulointerstitial compartment in nephrectomy samples had become largely
necrotic while glomerular structures were still recognizable. Remarkably, T cells were now
readably detected in the interstitial compartment, indicating that some kidney T cells were
retained in the kidney and had proliferated (Supplementary Figure S1). This is in contrast
to the substantial decrease in skin-resident T cells described after a similar time of tissue
culture [18].

Thus, using the tissue culture protocol, it was possible to harvest sufficient T cells even
from small kidney tissue samples like biopsy material for subsequent detailed phenotypical
and functional analysis.

3.2. Phenotype of Kidney T Cells after Tissue Culture Remains Largely Unchanged

Kidney T cells were considered resident T cells when expressing CD69 and/or CD103
on their cell surface, markers which are rarely expressed on freshly isolated circulating T
cells [29]. Median proportions of resident T cells amounted to 83.8 (74.4–95.2)% of total cells
(Table 2). The dominant phenotype of kidney T cells, both CD4+ as well as CD8+, was of
the memory phenotype, in particular of the effector-memory subset as judged by CD45RA
and CCR7 expression as well as CD28/CD27 expression profile (Table 3). Although the
majority of cells was either CD4 or CD8 positive, there was a variable but a substantial % of
CD4/CD8 double negative T cells. In line with a recent publication [33], the composition of
kidney T cells derived from transplantectomy or nephrectomy tissue was relatively similar
with no major statistical significant differences in T cell subpopulations (Supplementary
Tables S2 and S3).
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Table 3. CD4+ and CD8+ T cell phenotype characteristics following direct enzymatic dissociation of
kidney tissue.

Resident
(CD69+CD103+/−) (%)

Passenger
(CD69−CD103−/+) (%) p **

CD4+T cell subsets

Naive (CD45RA+CCR7+) * 1.54 (0.23–3.46) 3.72 (0.33–6.71) 0.02

CM (CD45RA−CCR7+) * 9.06 (6.70–36.43) 8.76 (6.07–40.52) 0.84

EM (CD45RA−CCR7−) * 89.14 (55.99–90.07) 85.04 (47.16–89.27) <0.01

EMRA (CD45RA+CCR7−) * 1.99 (1.13–3.41) 4.14 (2.56–6.93) <0.01

CD27+CD28+ * 30.18 (9.35–33.23) 14.30 (4.47–26.07) <0.01

CD27−CD28+ * 58.11 (50.12–82.09) 63.32 (34.30–85.07) 1.00

CD27+CD28− * 0.78 (0.15–1.39) 0.67 (0.15–1.63) 0.84

CD27−CD28− * 7.42 (5.09–15.67) 12.05 (7.08–40.22) 0.02

Tregs (CD45RA+/−FOXP3+) * 2.06 (0.91–2.42) 1.39 (0.72–2.66) 0.83

Tbet+ 72.86 (57.93–88.21) 63.76 (35.21–83.44) 0.08

RORgamma+ 2.21 (1.89–3.72) 5.22 (2.91–9.14) 0.02

FOXP3+ 5.34 (2.91–9.14) 3.87 (1.89–5.81) 0.04

CD8+T cell subsets

Naive (CD45RA+CCR7+) * 1.65 (0.81–3.54) 3.78 (0.83–6.32) 0.11

CM (CD45RA−CCR7+) * 4.31 (3.56–6.82) 5.32 (2.70–17.12) 0.38

EM (CD45RA−CCR7−) * 78.70 (60.88–83.88) 45.92 (37.16–69.45) <0.01

EMRA (CD45RA+CCR7−) * 14.54 (7.44–31.61) 24.93 (15.98–50.04) 0.05

CD27+CD28+ * 18.69 (5.10–38.65) 3.54 (0.83–13.51) <0.01

CD27−CD28+ * 14.85 (5.92–42.66) 17.12 (5.81–30.68) 0.84

CD27+CD28− * 21.59 (4.43–43.67) 7.84 (0.38–17.17) 0.08

CD27−CD28− * 30.62 (13.19–48.10) 58.15 (31.55–75.33) 0.04

Tbet+ 83.75 (77.12–91.85) 88.61 (73.32–96.86) 0.90

RORγ+ 1.57 (0.70–3.51) 3.83 (2.34–9.45) <0.01

FOXP3+ 0.97 (0.33–1.41) 1.95 (1.46–6.93) <0.01

Median and IQ range depicted for eight kidney tissue samples; * proportions within CD69+CD103+/− (resident)
and CD69−CD103− (passenger) T cells, respectively; ** CD69+ versus CD69− populations were compared using
a Wilcoxon matched pairs signed rank test.

After four weeks of tissue culture, the composition of T cells with regard to CD4/CD8
ratio (1.07 before and 1.12 after culture) and the % of CD69+ T cells, with or without
co-expression with CD103, was not significantly changed (87.2% and 85.1%, respectively,
Figure 1C,D). In the CD69+ and CD69− CD4+ T cells, a relative shift to more differentiation
was noted as the average percentage of CCR7−CD45RA+ T cells increased (p < 0.01,
Figure 3B; from 2.3% to 40.6% and from 4.6% to 40.3%, respectively), which was not evident
by CD27/CD28 expression (Figure 3C). For CD8+ T cells, in particular, the fraction of
CD28−CD27− CD69+ T cells increased (p < 0.01), which is indicative of relatively more
differentiated cells, but in contrast to the CD4+ T cells, the differentiation status based on
CCR7/CD45RA expression remained relatively similar. It is worth mentioning that the
relative small percentage of T cells with a naïve phenotype remained unchanged after four
weeks culture.
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Figure 3. Explant culture in the presence of exogenous IL-2 and IL-15 resulted in more differentiated
memory T cell subsets compared to T cells obtained following direct enzymatic processing of kidney
tissue. In (A,D) a typical example of the flow cytometric gating strategy for phenotype of CD4+
(A) and CD8+ (D) T cells is depicted for those obtained following direct enzymatic processing of
kidney tissue (first row) and those upon four weeks of explant culture in the presence of exogenous
IL-2 and IL-15 (second row). T cells were characterized by flow cytometry following staining
for T cell subsets using either antibodies directed to CCR7 and CD45RA (B,E) or CD28 and CD27
(C,F). Average (±SEM) proportions of T cells obtained from n = 11 kidney tissues (n = 5 nephrectomies
and n = 6 transplantectomies) are depicted in stacked bars. CM = central memory, EM = effector
memory, EMRA = CD45RA+ terminally differentiated effect or memory T cells. Naïve T cells are
identified as CCR7+CD45RA+, CM T cells as CCR7+CD45RA−, EM as CCR7−CD45RA− and EMRA
as CCR7−CD45RA+.

3.3. Profiles of Cytokine- and CD107a—Expressing Kidney T Cells before and after Tissue Culture

The profile of cytokine-expressing kidney T cells was dominated by IFN-γ, TNF-α
and IL-2, with low frequencies of IL-6-, IL-17A- and IL-21-producing cells, consistent
with a dominant Th1 signature of kidney T cells. Resident CD103+CD4+ T cells had



Cells 2022, 11, 2233 10 of 17

higher (p < 0.01) proportions of TNF-α, IL-2, IFN-γa, IL-17A and IL-21-producing cells
compared to CD103− CD4+ T cells (Figure 4B,C). Resident CD103+CD8+ T cells had
higher proportions of IFN-γ (p = 0.04), IL-6 (p < 0.01), IL-17A (p < 0.01) and IL-21 (p = 0.02)
producing cells compared to CD103− CD8+ T cells (Figure 4E,F). After 4 weeks culture,
the cytokine expression profiles remained largely unchanged except for an increase in the
% of CD107a+ CD4+ (from a median 22% to 55%, p < 0.01), CD107a+ CD8+ T cells (from a
median 38% to 89%, p < 0.01) and an increase in % TNF-
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Figure 4. Pro-inflammatory profile was maintained following 4 weeks of explant culture in the
presence of exogenous IL-2 and IL-15. Proportions of pro-inflammatory cytokine producing and
CD107a- expressing cells were determined upon overnight stimulation of T cells with PMA and
ionomycin. In (A) (CD4+) and (D) (CD8+), a typical flow cytometric example of the gating strategy is
depicted. In the upper panel, T cells obtained direct following enzymatic dissociation are depicted
(CD103+ in first row, CD103− in second row), whereas in the lower panel that of T cells harvested
following 4 weeks culture kidney tissue is given. Percentages of cytokine producing cells are depicted
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for resident (CD103+) as well as passenger (CD103−) kidney CD4+ (B,C) and CD8+ (E,F) T cells
either upon direct enzymatic processing of kidney tissue (closed symbols) or following four weeks
of explant culture in the presence of exogenous IL-2 and IL-15 (open symbols). Kidney tissue was
obtained from five transplantectomies (triangles) and seven nephrectomies (circles).

However, the CD107a expression of T cells directly isolated from transplantectomy
tissue was higher compared to nephrectomy-derived T cells while the % of inflammatory
cytokine producing cells tended to be lower (Supplementary Table S4). Poly-functionality
of T cells was assessed calculating the number of factors (two or more cytokines and/or
CD107a, a marker for degranulation) expressed per cell. The proportion of cells expressing
4 factors/cell was significantly increased compared to direct isolated kidney T cells for both
CD4+ resident (from a median 3% to 18%, p = 0.01, Figure 5B) and passenger T cells (from
a median 3% to 14%, p < 0.01, Figure 5C).

Figure 5. Poly-functional nature of T cells was maintained upon four weeks of explant culture in the
presence of exogenous IL-2 and IL-15. A typical example of the flow cytometric gating strategy to
evaluate the poly-functional nature of T cells is given in (A) (CD4+ T cells) and (D) (CD8+ T cells).
For example, CD103− T cells, highlighted by a red rectangle, are depicted in a dotplot with TNF-α
on the x-axis and CD107a on the y-axis, cells positive for both (second red rectangle, Q6) are depicted
in a dotplot, depicting IL-2 on the x-axis and IFN-γ on the y-axis and cells positive for both here
represent cells expressing all factors examined (third red rectangle). The poly-functional nature
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(i.e., either producing 4,3, 2 or 1) of the pro-inflammatory Th1-cytokines TNF-α, IL-2 and IFN-
γ producing and/or CD107a-expressing cells was determined for resident (CD103+) as well as
passenger (CD103−) CD4+ (B,C) and CD8+ (E,F) T cells either upon direct enzymatic processing
of kidney tissue (closed symbols) or following four weeks of explant culture in the presence of
exogenous IL-2 and IL-15 (open symbols). Kidney tissue was obtained from five transplantectomies
(triangles) and seven nephrectomies (circles).

Expression of transcription factors showed a predominant Tbet-positive signature, in
line with the Th1 cytokine expression profile of the kidney T cells. T cells harvested after
tissue culture showed more Tbet-positivity and an increase of RORγ-expressing T cells
(Figure 6).

Figure 6. T cells harvested from explant culture in the presence of exogenous IL-2 and IL-15 showed
increased expression of the Th1 transcription factor Tbet compared to T cells obtained following
direct enzymatic processing of kidney tissue. In (A,D), a typical example of the flow cytometric
gating strategy for analysis of expression of transcription factors of CD4+ (A) and CD8+ (D) T cells is
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depicted for those obtained following direct enzymatic processing of kidney tissue (first row) and
those upon four weeks of explant culture in the presence of exogenous IL-2 and IL-15 (second row).
T cells were characterized by flow-cytometry following staining for different transcription factors,
i.e., Tbet, RORγ and FOXP3. Proportions of transcription factor expressing CD69+ and CD69− CD4+
(B,C) and CD8+ (E,F) T cells obtained from n = 11 kidney tissues (n = 5 nephrectomies, circles and
n = 6 transplantectomies triangles) are depicted. The horizontal line represents the median.

3.4. CMV- and BKV-Reactive Kidney T Cells before and after Culture

Kidney resident T cells may harbor specific antigen-reactive T cells against CMV and
BKV [5]. In particular, the latter is an example of enrichment for specific resident T cells
that exert tissue-specific anti-viral responses like for instance influenza-specific resident
T cells in the lung parenchyma [8]. Kidney T cells obtained after culture were specifically
tested for the frequency of BKV and CMV-reactive T cells, which showed an increased
frequency of CMV-and BKV-reactive resident kidney T cells compared to the peripheral
blood PBMC (Figure 7). For BKV-reactive (i.e., CD137+) T cells, this was observed in both
the CD4+ (median 1.35% vs 0.16%, p = 0.03) and CD8+ T cell population (median 0.50% vs
0.0%). In accordance with this, both antigen-specific CD4+ and CD8+ T cell proliferation
was observed, which was substantially more for BKV-reactive kidney T cells compared to
the peripheral blood T cells. Polyclonal lectin-induced T cell stimulation with PHA caused
vigorous proliferation of kidney tissue culture-derived T cells, definitively excluding a
possible state of exhaustion of kidney T cells after culture.

Figure 7. T cells harvested following a 4-week kidney tissue culture in the presence of exogenous
IL-2 and IL-15 are functional. Functionality of T cells harvested following a 4-week culture of kidney
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tissue in the presence of IL-2 and IL-15 (right panel) was compared to that of T cells within peripheral
blood mononuclear cells (left panel), using a short-term stimulation and CD137-assay as read-out of
activation (A) as well as a 6-day stimulation using dilution CFSE as a readout of proliferation (D). In
A, a typical example is depicted for the different stimuli depicting CD69 on the x-axis as CD137 on
the y-axis. Percentages depicted are % CD137-expressing T cells within those lacking or co-expressing
CD69, respectively. Numbers depicted are CD137+ T cells within those lacking or co-expressing CD69
expressed as a percentage of CD4+ (B) and CD8+ (C) T cells with those from PBMC in closed and
those from explant in open symbols, respectively. Squares represent CD69+ T cells and circles that of
CD69- T cells. Data, corrected for background, are from four individuals, two of them underwent a
transplantectomy and two a nephrectomy, from which PBMCs were also available. The horizontal
line represents the median. In (D), a typical flow-cytometric example for analysis of proliferation is
given with dilution of CFSE depicted on the x-axis and amount of events on the y-axis. Percentages
depicted are % CFSE- CD4+ (top) and CD8+ (bottom) T cells, respectively. The closed histogram
represents T cells stimulated with either BKV, CMV or PHA. T cells within peripheral blood are
depicted on the left side and on the right side those harvested following four weeks of explant culture
in the presence of IL-2/IL-15. Peripheral blood T cells and kidney tissue are from the same individual,
i.e., a CMV-seropositive kidney transplant recipient that has developed BKV nephropathy following
transplantation. The renal tissue was obtained from a transplantectomy. Stimuli include overlapping
peptide pools of BKV and CMV. The negative and positive controls include cells left unstimulated
and stimulated with PHA, respectively (the latter only for the proliferation assay).

4. Discussion

The results of the present study show that kidney tissue cultures can yield substantial
more T cells per mm3 tissue as compared to the standard method of enzymatic tissue
digestion. Already some decades ago, several studies attempted to isolate T cells by tissue
culture of transplanted kidney samples under different experimental conditions [34–36].
Although enough T cells from rejection kidneys could be harvested for functional analysis,
kidney tissue cultures from non-rejecting [36] or kidneys prior to transplantation [35]
yielded no T cells. Using the current protocol, the increased yield of T cells even from a
kidney biopsy of a native non-inflamed kidney allows for performing multi-parameter
phenotypical and functional analysis. The fold expansion of T cells was higher compared
to the 10-fold expansion reported for the original skin-tissue culture protocol [18].

In accordance with other studies on kidney T cells (and other tissue-resident T cells),
the T cells are predominantly of the effector-memory phenotype, secrete multiple cytokines,
and CD4+ T cells are predominantly of the Th1 subtype. Expression of CD69 with or
without co-expression of CD103 is the defining characteristic of resident T cells (reviewed
in [1]), features that remained remarkably stable after tissue culture.

Prolonged in vitro culture periods with T cell survival and lymphocyte growth cy-
tokines like IL-2 and IL-15 may give rise to unwanted outgrowth of particular cell types.
However, the ratio of CD4+ and CD8+ T cells remained similar and the percentage of
cells with a naïve phenotype did not decline, indicating homeostatic proliferation and not
differentiation of these T cells. The CD4+ T cell differentiation status showed a relative
increase in highly differentiated EMRA T cells based on CCR7/CD45RA expression pat-
terns, while in the CD8+ T cell population a relatively modest shift towards more highly
differentiated memory T cells was observed based on the loss of both CD27 and CD28 cell
surface expression. After culture, the stimulation-induced CD107a and Th1-type signature
transcription factor Tbet expression increased, indicating a higher cytotoxic potential of
Th1 type T cells, which fits with the relative increase of differentiated effector-memory T
cells. Importantly, the TCR Vβ repertoire was not affected by the culture period, and no
indication was found for dominant outgrowth of particular T cell clones. This result is in
accordance with what was reported about the resident skin T cells obtained after whole
skin tissue cultures [18].

The functional capacities of the T cells as defined by proportion of cytokine producing
cells remained intact as was the proportion of poly-functional T cells, i.e., those able to
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produce two or more different cytokines and/or expressing the marker for degranulation,
CD107a. These results indicate that the T cells are not becoming senescent/exhausted and
still produce cytokines upon stimulation. In accordance with these findings, polyclonal
lectin-induced T cell proliferation remained vigorous in the kidney tissue-culture derived T
cells. In order to test their functionality with a more physiological stimulus, the presence
and proliferation of CMV- and BKV-reactive T cells was studied. The results not only
showed that cells remain responsive to these antigens but also that kidney resident T cells
have a higher frequency of the antigen-reactive T cells as compared to the circulation. In
particular, BKV-reactive T cells are more abundantly present in the kidney. This finding
confirms the recent results published by Dornieden et al., who used dextramers to identify
CMV- and BKV-specific kidney tissue-isolated CD8 T cells [5].

The advantage of the kidney tissue culture method is that in general enough T cells
can be obtained for both CD4+ and CD8+ T cell analysis with respect to antigen-specificity
and proliferative response. Current single cell techniques involving single cell RNA se-
quencing have shown to be a powerful analytic potential, e.g., showing the landscape of
immune cells present in the kidney at high granularity [37]. However, for translational
immunological research questions like the search for which kidney T cell type is pathogenic,
analysis of the functional status and the antigen-specificity of the isolated T cells is highly
instrumental. However, it should be realized that there is a shift towards more differenti-
ated memory T cells which can limit the interpretation of results, depending on the type of
experiments performed.

A detailed comparison between kidney T cells from normal kidney tissue and a failing
kidney graft was not the objective of the study, but the data obtained are worthwhile
to consider. The number of T cells obtained per mm3 was significantly higher in trans-
plantectomy tissue (which is not unsurprising given the inflammatory conditions of these
kidneys) [38], but the differences (before and after culture) in T cell subset composition,
cytokine expression profiles, transcription factors and tissue culture characteristics were
relatively minimal to modest. This unexpected finding was also reported in a recent study
by van der Putten et al. [33] and indicates that other data are needed, e.g., determination of
antigen-specificity, studies on control mechanisms of effector functions or T cell metabolic
state [39], to assess whether the tissue-resident T cells are active and deleterious or in a
resting state.

In conclusion, the newly developed kidney tissue-culture protocol allows for recruit-
ment of high numbers of functional resident kidney T cells facilitating functional analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11142233/s1, Figure S1: Immunohistochemistry of kidney
tissue; Table S1: Monoclonal antibodies for characterization of phenotype and function of kidney T
cells; Table S2: Lymphocyte composition following direct enzymatic processing of kidney tissue ob-
tained from nephrectomy versus transplantectomy; Table S3: CD4+ and CD8+ T cell phenotype char-
acteristics following direct enzymatic processing of kidney tissue obtained from a nephrectomy and
transplantectomy; Table S4: Proportions of cytokine producing and CD107a-expressing T cells follow-
ing direct enzymatic processing of renal tissue obtained from a nephrectomy and transplantectomy.
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