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Abstract: The innate immune system is the first line of defense against invading pathogens or sterile
injuries. Pattern recognition receptors (PRR) sense molecules released from inflamed or damaged
cells, or foreign molecules resulting from invading pathogens. PRRs can in turn induce inflammatory
responses, comprising the generation of cytokines or chemokines, which further induce immune
cell recruitment. Neutrophils represent an essential factor in the early immune response and fulfill
numerous tasks to fight infection or heal injuries. The release of neutrophil extracellular traps (NETs)
is part of it and was originally attributed to the capture and elimination of pathogens. In the last
decade studies revealed a detrimental role of NETs during several diseases, often correlated with
an exaggerated immune response. Overwhelming inflammation in single organs can induce remote
organ damage, thereby further perpetuating release of inflammatory molecules. Here, we review
recent findings regarding damage-associated molecular patterns (DAMPs) which are able to induce
NET formation, as well as NET components known to act as DAMPs, generating a putative fatal
circle of inflammation contributing to organ damage and sequentially occurring remote organ injury.

Keywords: neutrophil extracellular traps; damage associated molecular pattern; inflammation; innate
immune response; remote organ damage; HMGB1; LL37; histone; cfDNA; CIRP

1. Introduction

The essential task of the immune system is the recognition of potential danger, in-
vaders, or injuries to the organism, and to respond adequately to eliminate, fight or repair
the respective threats. The innate immune response acts as a first-line defense, and is largely
dependent on immune cells switching the organism into an inflammatory state. Sensing
of threats occurs through pattern-recognition receptors (PRRs), which recognize both
pathogen-associated molecular patterns (PAMPs), which are exogenous, microorganism-
derived molecules, as well as damage-associated molecular patterns (DAMPs), consisting
of endogenous and exogenous non-microbial molecules [1]. PRRs are a heterogeneous
family with four major subfamilies, comprising Toll-like receptors (TLRs), cytoplasmic
nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-
inducible gene 1 (RIG1)-like receptors, and C-type lectin receptors (CLRs) [2,3]. However,
non-PRRs are also able to recognize PAMPs, such as the receptor for advanced glycation
end products (RAGE), integrins, CD91, and CD44 [4]. They initialize a tightly regulated im-
mune response consisting of the production of pro-inflammatory cytokines such as tumor
necrosis factor alpha (TNFα), or interleukin 1 (IL1), reactive oxygen species (ROS), nitric
oxide (NO), vasoactive amines (e.g., histamine, serotonine), neuropeptides, and arachidonic
acid metabolites (prostaglandins, leukotrienes). Furthermore, the inflammatory response
includes the activation of platelets and also increases vascular permeability [5]. Platelets
are important players in the early immune response, expressing PRRs such as TLR2 and
TLR4 [6]. They are capable of secreting chemokines, cytokines, and other inflammatory
mediators [7], and further contribute to leukocyte recruitment, activation, and emigration

Cells 2022, 11, 1919. https://doi.org/10.3390/cells11121919 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11121919
https://doi.org/10.3390/cells11121919
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://doi.org/10.3390/cells11121919
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11121919?type=check_update&version=1


Cells 2022, 11, 1919 2 of 26

into inflamed tissues [8]. In addition, monocytes and macrophages essentially contribute
to the production of cytokines, lipid mediators, reactive oxygen or nitrogen species, and
release anti-microbial enzymes and peptides. Furthermore, monocytes and macrophages
are also involved in anti-inflammatory processes to prevent uncontrolled activation of
the immune system [9]. This tight regulation is a prerequisite for an appropriate immune
response. A maladaptive response causes systemic inflammation, organ injury, and a
disturbed resolution process, and may end in death. This review will summarize the role
of neutrophil extracellular traps (NETs), their components acting as DAMPs, and DAMPs
triggering NET formation during inflammation. Additionally, it provides an overview of
the influence of NET formation on kidney, lung, or liver injuries, and its contribution to
immunothrombotic events.

2. Mechanisms of Extracellular Trap Formation and Clearance

The release of pro-inflammatory mediators during the innate immune response results
in leukocyte recruitment to the inflammatory site. The intimate contact of immune cells,
such as neutrophils, with the inflamed endothelium results in the activation of different sig-
naling cascades [10]. Activated neutrophils fulfil numerous tasks to fight infection, such as
the production of ROS, phagocytosis, degranulation, and the release of neutrophil extracel-
lular traps (NETs). NETs are comprised of decondensed chromatin decorated with a variety
of proteins, e.g., neutrophil elastase (NE), myeloperoxidase (MPO), histones, cathelicidins,
α-defensins, calprotectin, and cytoskeletal proteins [11,12], whereas a stimulus-dependent
protein composition is likely [13,14]. To date, many stimuli have been shown to induce NET
formation. NET release can be stimulated via TLRs, G protein-coupled receptors (GPCRs),
chemokine and cytokine receptors, Fc receptors (FcRs), and β2-integrins [15]. Two main
pathways in neutrophils have been described: lytic NET formation, and non-lytic NET
formation, but other forms of extracellular traps also exist.

2.1. Lytic or Suicidal NET Formation

To date, most of the currently confirmed inducers of NET formation, such as Gram-
negative bacteria, fungi, viruses, PMA, monosodium urate crystals (MSU), or bacterial
molecules, initiate the lytic pathway, resulting in the death of the cell. In response to those
stimuli, infectious, as well as sterile, calcium is released from the endoplasmatic reticulum
into the cytosol, resulting in NADPH-dependent ROS production, implicating protein
kinase C (PKC) or the RAF-MEK-MAPK pathways [16,17]. This signaling further initiates
the dissociation of neutrophil elastase (NE) from a membrane-associated complex into
the cytosol and activates its proteolytic activity in a myeloperoxidase—(MPO) dependent
manner (Figure 1). To arrest actin dynamics, NE degrades F-actin and translocates into the
nucleus, where NE and MPO drive chromatin decondensation and histone cleavage [18,19],
further supported by peptidylarginine deiminase 4 (PAD4)-dependent histone citrullina-
tion [20]. However, NADPH-, NE- and PAD4-independent pathways have been described,
too [21–23]. Cell cycle proteins [24] support nuclear envelope breakdown followed by the
release of chromatin into the cytosol, where nuclear and cytosolic proteins are mixed [25].
The liberation of NET fibers involves gasdermin D (GSDMD), forming pores in granule
and plasma membranes [26,27]. This kind of NET formation occurs in a time frame of up to
eight hours, ends up with cell death and is often described as lytic NET release or suicidal
NETosis (Figure 1).
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membranes of azurophilic granules and translocates into the nucleus and in parallel degrading actin 

fibers. NE activity induces the decondensation of chromatin, further supported by the PAD4-de-

pendent citrullination of histones. The activation of gasdermin D (GSDMD) leads to the formation 

of pores in the cell membrane, thereby enabling the release of chromatin, which has been decorated 

with cytosolic or granule-associated molecules such as histones, LL37, HMGB1, MPO and NE into 

the environment. 

2.2. Non-Lytic or Vital NET Formation 

Early non-lytic NET release has been described for only a small number of stimuli. It 
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Figure 1. Inducers and mechanism of the lytic NET formation. Gram-negative bacteria and bacteria-
deriving molecules, antibodies, phorbol-12-myristat-13-acetat (PMA), monosodium urate crystals
(MSU) or damage-associated molecular patterns (DAMPs) are capable of activating neutrophils via
different receptors and initiating NET formation. Histones induce NET formation via the toll-like
receptors (TLR) 4 and 9, eCIRP via parallel binding of myeloid differentiation factor 2 (MD2) and
TLR4, and high-mobility group box 1 (HMGB1) via RAGE and TLR4. Calcium is released into the
cytosol, followed by activation of the NADPH-oxidase complex (NOX), which generates reactive
oxygen species (ROS). In a ROS-dependent step, neutrophil elastase (NE) gets released from the
membranes of azurophilic granules and translocates into the nucleus and in parallel degrading
actin fibers. NE activity induces the decondensation of chromatin, further supported by the PAD4-
dependent citrullination of histones. The activation of gasdermin D (GSDMD) leads to the formation
of pores in the cell membrane, thereby enabling the release of chromatin, which has been decorated
with cytosolic or granule-associated molecules such as histones, LL37, HMGB1, MPO and NE into
the environment.

2.2. Non-Lytic or Vital NET Formation

Early non-lytic NET release has been described for only a small number of stimuli.
It was observed for neutrophils in close contact with activated platelets [28,29] or in re-
sponse to Staphylococcus aureus [30] and Candida albicans infections [31,32] (Figure 2). The
pathogen-induced response has been shown to depend on TLRs and/or the complement
receptors [30,31], whereas platelet-induced NET formation during infection occurs in
an LFA1-dependent manner, and depends on the direct interaction of neutrophils and
platelets [29]. It takes place rapidly after 5–60 min of stimulation, and is independent
of the NADPH oxidase pathway [33]. It also involves the translocation of NE to the
nucleus, histone citrullination, and chromatin decondensation [34], as demonstrated fol-
lowing stimulation with C. albicans [18,19], but the membrane does not disintegrate, and
the protein-decorated chromatin is released via vesicles [30] (Figure 2). Even the remnants
of non-lytic NET formation, cytoplasts, are able to keep their mobility and fulfill important
functions, such as phagocytosis, the activation of dendritic cells, and the release of cytotoxic
molecules [30,35,36].
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Figure 2. Inducers and mechanism of non-lytic NET formation. To date, only S. aureus, C. albicans,
and activated platelets have been proven to induce early non-lytic NET formation in neutrophils.
C. albicans induces NET formation via MAC1-signaling in presence of fibronectin, S. aureus via TLR9
and MAC1, and activated platelets require LFA-1 and LPS. During early NET formation, NE and
MPO are released in an NADPH-independent manner into the cytosol and the nucleus, resulting the
decondensation of chromatin, supported by PAD4-activity. Nuclear DNA fibers are finally released
into the cytosol via vesicles, leaving an anucleated but functional cytoplast.

2.3. Other Forms of Extracellular Trap Formation

Besides the release of extracellular traps of nuclear origin, eosinophils as well as
neutrophils are able to release mitochondrial DNA (mtDNA). Neutrophils primed with
granulocyte-macrophage colony-stimulating factor followed by stimulation with a TLR4
agonist or C5a have been shown to release mtDNA [37]. Similarly, eosinophils primed with
IL5 or IFNγ and stimulated with LPS expelled mitochondrial DNA [38]. In contrast to NETs,
the mtDNA traps are not decorated with histones or antimicrobial granule proteins, thus
complicating their identification, and further questioning their role as potential pathogen
defense mechanism. Additionally, the release of nuclear DNA by macrophages or mono-
cytes has been described by different groups and is termed as macrophage extracellular
traps (METs). They are also considered to offer anti-microbial functions and contribute to
pathology, as has been reviewed in detail elsewhere [39].

2.4. Degradation or Anti-Inflammatory Properties of NETs

Little is known about the removal of NETs. Besides the degradation of NETs through
DNases, some studies also suggest a contribution of macrophages to NET elimination
by resolution and degradation [40]. In vitro experiments with human monocyte-derived
macrophages and PMA-stimulated human neutrophils demonstrated that macrophages are
able to internalize NETs in a cathelicidin LL37-dependent manner and degrade DNA via
TREX1/DNAseIII. In this setting, dendritic cells contribute to extracellular NET degrada-
tion by providing DNase1L3 [41]. In contrast, Apel and colleagues revealed a mechanism
where phagocytosed NETs activate the innate immune sensor cyclic GMP-AMP synthase,
thereby inducing the production of pro-inflammatory type I interferons [42]. Another
study suggested a two-phase model of macrophages: in the early phase, M2 macrophages
induce a pro-inflammatory response and sustain the inflammatory state, whereas in the
second phase, M1 macrophages undergo cell death with nuclear decondensation in a
PAD4-dependent manner, resulting in the local release of extracellular DNA. In the late
phase, M1 macrophages degrade DNA in a caspase-activated DNase-dependent manner,
resulting in the clearance of extracellular DNA within 24 h [43].

Studies describing anti-inflammatory properties of NETs are scarce. To date, only
NET aggregates (aggNETs), which are formed at sites of high neutrophil density, have
been suggested to act in an anti-inflammatory capacity, since they have been shown to
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sequester and degrade histones further attenuating their cytotoxic effect on epithelial
cells [44]. This process was executed by at least two aggNET-borne serine proteases, NE
and proteinase 3 (PR3). Furthermore, they are capable of resolving inflammation by the
proteolytical degradation of inflammatory cytokines and chemokines [45,46]. Nevertheless,
the physiological relevance of these proposed mechanisms remains elusive, and further
work is required to shed light on the mechanisms of NET resolution and degradation.

3. DAMPs Associated with NETs or Capable of Inducing NETs

During inflammation, danger signals initiate the immune response, resulting in the re-
cruitment of immune cells to fulfill the appropriate function for antagonizing the triggering
insults. Several studies have identified DAMPs that can induce NET formation. Interest-
ingly, some proteins decorated on NETs may function as DAMPs, resulting in enhanced
cytokine production and therefore enhanced neutrophil recruitment and activation. This
may result in a fatal circle (Figure 3) of persisting inflammation, which may further end in
organ damage, systemic inflammation, organ failure, or death. A brief summary of those
molecules addressing these criteria are listed in the following Table 1 and are consecutively
described in more detail.

Table 1. DAMPs with a close association with NETs and their respective receptors.

DAMP NET-Association PRRs Involved References

Histones Part of NETs
Induce NET formation TLR2, TLR3, TLR4, TLR9 [47–49]

cfDNA Part of NETs TLR9, cGAS, IFI16, AIM2, STING [50]

LL37
Protects NET-DNA

Induction of NET formation
through LL37 autoantibodies

TLR4, TLR7, TLR8, TLR9, TLR13 [51–56]

HMGB1 Induce NET formation
Part of NETs

TLR2, TLR4, TLR9, CXCR4,
RAGE, TREM [57–67]

CIRP Induce NET formation TLR4 [68–70]

3.1. Histones

Histones are usually located in the nucleus, complexed with DNA to form the nucleo-
some [71]. They can be released either passively during cell death, or actively during NET
formation or vesicle release, as observed for LPS-challenged murine macrophages [72,73].
Their direct cytotoxicity has been demonstrated in vitro for endothelial cells and in vivo in
murine models of lipopolysaccharide- (LPS-) or cecal ligation and puncture (CLP)-induced
sepsis [74]. Other studies revealed that NET-induced cytotoxic effects on human alveolar
epithelial cells were reduced upon treatment with anti-histone antibodies [75]. Furthermore,
it has been shown that sublethal application of histones to mice induces high levels of
cytokines such as TNFα, IL6, and IL10 in a TLR4- but not TLR2-dependent manner. In
contrast, in vitro experiments revealed that histones are able to signal via both TLR2 and
TLR4 [47]. In line with this, histone levels in septic patients are significantly increased.
Applying sera of these patients to cardiomyocytes ex vivo induced cell death, which was
abrogated by antibody-histone depletion [76]. Interestingly, studies suggest a role for
histones as NET inducers. During acute kidney injury, histones released from necrotic cells
induced NET formation, further accelerating kidney damage, promoting inflammation,
and triggering remote organ injury in the lungs through TLRs [48]. Following ischemia–
reperfusion injury (IRI) in the murine liver, a dose-dependent increase in NET-specific
markers in response to histones was observed. This effect was dependent on TLR4 and
TLR9 on neutrophils. These authors demonstrated that histones released from stressed
hepatocytes stimulate neutrophils to form NETs to exacerbate liver damage [49]. In both
cases, anti-histone treatment was effective in reducing injury severity. Taken together, these
data indicate that histones are part of a pro-inflammatory positive feedback loop of damage.
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Their passive release through cell death initiates the PRR-induced immune cell recruit-
ment, induces NET formation, subsequently leading to the active release of more histones,
whose cytotoxic activity further potentiate local damage. A possible inflammation-limiting
intervention in this loop is the presence of fibrinogen, which is able to reduce the cyto-
toxicity through binding to histones, and additionally delay further NET formation in a
β2-integrin-dependent manner [77]. Fibrinogen depletion or consumption, when it occurs
during sepsis or trauma, might accordingly contribute to the maladaptive overwhelming
immune response.

3.2. Cell Free DNA (cfDNA)

Cell free nuclear DNA in the extracellular space can either be foreign, originating from
invaders such as bacteria and viruses, or derive from the host itself through apoptosis,
necroptosis, pyroptosis, or NET formation. Additionally, mitochondrial DNA can be
released, as well, for instance during sepsis or trauma. Both nuclear and mitochondrial
DNA have been proven to act as DAMPs [78,79]. Despite the origin of these different
cfDNAs, they can all function as DAMPs and initiate multiple pro-inflammatory cascades
(Figure 3). Elevated levels of cfDNA have been found in septic patients, as well as in
patients with various autoimmune diseases [80]. Besides promoting the release of pro-
inflammatory cytokines, it contributes to sustained inflammation by prolonging the life
span of neutrophils [79]. Interestingly, there is a spatial segregation between cfDNA and
its respective signaling receptors TLR9, cGAS, IFI16, AIM2, or STING, which are located
intracellularly and are able to initiate immune responses [50]. This separation is likely
related to their usual function in recognizing nucleic acids resulting from infectious insults
by bacteria or viruses. An intracellular location of receptors may also prevent inadvertent
stimulation by extracellular host DNA, since the uptake of DNA into the cytosol has to
be supported actively. One possible mechanism of active DNA delivery to the cytosol in
the context of inflammation is via LL37 (human) or mCRAMP (mouse), which has a high
binding affinity to DNA and is able to shuttle it across membranes [81]. Since it is also
described as part of NETs during anti-bacterial and anti-viral defense, it is a promising
molecule worth shedding further light on.

3.3. LL37—mCRAMP

LL37, as the only human cathelicidin, is a 37-amino-acid cationic peptide, generated
by cleavage of the C-terminal end of the 18-kDa hCAP18 protein by serine proteases of the
kallikrein family in keratinocytes [54,82] and proteinase 3 in neutrophils [83]. LL37 is able to
form aggregates in solution and lipid bilayers and thus, unlike other antimicrobial peptides,
confers protection from proteolytic degradation. Due to its positive charge, it is able to
associate with negatively charged phospholipid membranes [84]. Furthermore, it has a
primarily α helical shape allowing the unilateral segregation of its hydrophobic residues
during membrane interactions [85]. This enables membrane penetration, formation of
transmembrane pores, and bacterial lysis [85,86]. Cellular membranes associated with
cholesterol, such as those found in mammals, are protected from the pore-forming effects of
LL37; however, this effect can be overcome by higher concentrations of the peptide [87,88].

Exposure to LL37 results in recruitment of inflammatory cells, induction of M1
macrophages, and stimulation of inflammatory responses such as inflammasome acti-
vation and type I IFN production. Dendritic cell Type I IFN production is promoted via
LL37-mediated protection of both RNA and DNA from nuclease degradation, allowing
for activation of endosomal TLR7 (RNA) and TLR9 (DNA), respectively [51,52]. LL37,
expressed on the surface of neutrophils, is recognized by anti-LL37 autoantibodies, which
promote NET formation, generating a source of additional LL37–DNA complexes. In line
with this, LL37 also contributes to protecting NET-DNA against degradation by bacterial
nucleases [89]. Accordingly, LL37 has been attributed anti-microbial activities. Several
murine disease models demonstrate this protective role of LL37 during bacterial as well as
viral infections [90–94]. A recent study suggested a major role for NET-associated RNA,
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protected by LL37 during psoriasis, by triggering cytokine and further NET release via
TLR8 and TLR13 on PMNs [53]. The newly identified component RNA within NETs, as a
contributor to a self-propagating inflammatory cycle, remains to be further elucidated.

However, studies also demonstrate anti-inflammatory effects for LL37, which are
strongly dependent on the experimental setting. The antagonistic action on IFN-γ, TNF-α,
IL-4, and IL-12 responses has been shown in various cell types [95–97]. Indeed, LL37 down-
regulates signaling through TLR4 via binding of its ligand, LPS [54,55], as well as through
interruption of TLR4 receptor complex function in dendritic cells and macrophages [56,98].
This results in lower levels of pro-inflammatory cytokine production when LL37 and LPS
are present simultaneously. Similar repression of chemokine release has been noted in ep-
ithelial cell lines [99]. In vivo, mCRAMP represses the response to 2,4-dinitrofluorobenzene-
mediated contact hypersensitivity through pathways that require the TLR4 receptor [56].
Nonetheless, in a model of LPS-induced shock in mice, mCRAMP-deficiency did not signif-
icantly alter the outcome [100]. Taken together, the LL37-mediated interplay with nucleic
acid and the resulting inflammatory responses warrants the further exploration of the
underlying mechanisms.

3.4. High-Motility Group Box 1 (HMGB1)

HMGB1 has been reported to act as a DAMP to cause sterile inflammation and is a
highly conserved, non-histone chromosomal chaperone that localizes under normal physi-
ological conditions in the nucleus of mammalian cells [101]. Human platelets, although
anucleate, express HMGB1 as well [102]. Upon activation, HMGB1 localizes to the cell
surface. Additionally, it can be released passively by dying cells or actively via cytoplasmic
vesicles [60,103]. The passive release is rather rapid, whereas the active release is much
slower [104]. During active release, HMGB1 translocates from the nucleus to the cytoplasm
via JAK/STAT1-mediated acetylation. The release is at least partially mediated by double-
stranded RNA-activated protein kinase R (PKR)/inflammasome-mediated pyroptosis [105].
Some studies demonstrated that HMGB1 could also be among the NETs. Following stim-
ulation of human neutrophils with calcium phosphate-based mineralo-organic particles,
NETs were released that carried HMGB1, which is relevant for the release of TNFα in
co-cultured macrophages in a TLR2/4-MyD88-dependent manner [57]. In biopsies of
lupus nephritis patients, it was shown that the amount of HMGB1 within NETs is elevated
compared to patients without kidney disease, and it is correlated with nephritis indices
such as fibrinoid necrosis, rate of glomerular filtration descent, or cellular crescents [106].
However, relatively little is known about NET-associated HMGB1, and it remains elusive
whether this association is only due to its nuclear localization and DNA-binding abilities
or whether it is stimulus-dependently associated with NETs with a specific task.

HMGB1-induced signaling is influenced by the redox state of three cysteines C23, C45,
and C106 [107]. Fully reduced HMGB1 forms a hetero complex with CXCL12 binding to
CXCR4, promoting migration of immune cells and cytokine release [58,108,109]. In contrast,
fully oxidized HMGB1 does not bind to CXCR4 or TLR4 and possesses no pro-inflammatory
potential [110]. Partially reduced HMGB1, also termed disulfide-HMGB1, carries a disul-
fide bond between C23 and C45, and can trigger inflammatory responses [111]. Once
released into the extracellular space, reduced HMGB1 potentiates the inflammatory re-
sponse through different mechanisms [112,113]. It is able to induce neutrophil recruitment
to the site of injury [114], bind directly to PRRs such as RAGE, TLR2, TLR4, TLR9, and trig-
gering receptor expressed in myeloid cells 1 (TREM1) [59,62–66], but also bind to PAMPs
such as LPS [115], DNA [116] or lipoteichoic acid [117]. Following receptor ligation, a pro-
inflammatory response occurs, including activation of macrophages and endothelial cells,
resulting in enhanced production of pro-inflammatory chemokines, cytokines, or adhesion
molecules [113]. Stimulation of platelets with thrombin, collagen, ADP, or CRP induces
HMGB1-release, which in turn exerts pro-thrombotic functions [60]. Platelet HMGB1 defi-
ciency in mice that underwent experimental trauma resulted in increased bleeding times,
reduced thrombus formation, inflammation, organ damage, and platelet aggregation [60].
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In vitro experiments indicate that HMGB1 is critical for regulating platelet activation, gran-
ule secretion, adhesion, and spreading in a TLR4- and MyD88-dependent manner [60,61].
Similarly, in a murine model of deep vein thrombosis, platelets accounted for the majority
of HMBG1 in the circulation as well as in the development of clots. This pro-thrombotic
effect was further supported and enhanced by neutrophil recruitment and NET formation,
indicating that the interplay between platelet-derived HMGB1 and NET release has a
crucial contribution to deep vein thrombosis in mice [118]. The induction of NET formation
by platelet-derived HMGB1 was shown by Maugeri and colleagues [67]. They were able
to reveal that activated platelets are able to induce NET release in a RAGE-dependent
manner, whereas activated HMGB1−/− platelets or the use of HMGB1 antagonists did not
evoke the same effect. In a murine model of LPS-induced lung inflammation, neutrophils
deriving from mice exposed to LPS and HMGB1 displayed greater ability to produce NETs
compared to neutrophils isolated from mice that received LPS alone. The broncho-alveolar
lavage fluids of mice treated with LPS and an HMGB1-neutralizing antibody exhibited de-
creased amounts of TNFα, MIP-2, histones, and cfDNA. These results indicate that HMGB1
might contribute to the production of inflammatory cytokines, as well to TLR4-mediated
induction of NET release (Figure 3).

3.5. Cold-Inducible RNA Binding Protein (CIRP)

This recently identified DAMP is mentioned within this review, since studies suggest
that it has an important role as a NET inducer and contributes to the inflammatory circle
of NETs and DAMPs (Figure 3). CIRP is an 18 kDa RNA chaperone protein, originally
recognized as a protein suppressing mitosis and promoting cell differentiation during
hypothermia [119]. In addition to its passive release during necrotic cell death, in times of
cellular stress, such as hypothermia, hypoxia, or oxidative stress, CIRP can translocate from
the nucleus to cytoplasmic granules, and be further released into the environment [120,121].
Qiang and colleagues demonstrated that recombinant CIRP (eCIRP) binds TLR4 and
myeloid differentiation factor 2 (MD2) and induces the release of TNFα and HMGB1 from
cultured RAW264.7 cell in vitro, as well as rat macrophages in vivo [68]. Furthermore,
Ode and colleagues suggested that eCIRP can induce intercellular adhesion molecule
1 (ICAM-1) expression in neutrophils, coming along with a greater ability to produce
higher levels of inducible nitric oxide synthase (iNOS) and also NETs in a TLR4- and
NFκB-dependent way, thereby exaggerating inflammation. Investigating CIRP−/− mice
during sepsis, revealed less ICAM1+ neutrophils in the blood and the lungs, coming along
with a significant improvement in their survival compared to wildtype (WT) mice [70].
Accordingly, NET formation and PAD4-expression were significantly decreased in the
lungs of septic CIRP−1 mice compared to WT controls [69]. Further evaluating CIRP as
a potent NET inducer, the same working group investigated the effect of eCIRP-induced
NETs on phagocytic clearance of apoptotic cells [122]. Here, they suggest a mechanism
whereby CIRP-induced NETs inhibit efferocytosis by NE-mediated cleavage of αvβ3/αvβ5
integrins in macrophages. Accordingly, during CLP-induced sepsis, CIRP−/− mice exhib-
ited enhanced efferocytosis in the peritoneal cavity compared to WT mice. Taken together,
CIRP appears to be an interesting molecule involved in NET formation and inflamma-
tion. However, further investigations from independent working groups are necessary to
confirm these promising findings.
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Figure 3. Schematic illustration of NET-associated DAMPs contributing to inflammation. During
inflammation, resident cells such as macrophages or endothelial cells lining the vessel release pro-
inflammatory cytokines and chemokines, inducing neutrophil recruitment. Activated neutrophils
may release NETs decorated with diverse proteins such as neutrophil elastase, myeloperoxidase,
LL37 or mCramp in murine cells, HMGB1, and histones. Some of them have been reported to act as
DAMPs. Arrows indicate the contribution of the respective proteins to the pro-inflammatory features.
HMGB1 induces NET formation, as well as cytokine/chemokine release. LL37 protects NET fibers
from degradation, and also facilitates the internalization of cfDNA, which in turn also promotes
cytokine release. Histones have cytotoxic effects on endothelial cells, resulting in additional cfDNA,
and are also capable of directly inducing NET formation. The molecule eCIRP has recently been
described as promoting NET formation.

4. Organ Dysfunction and Remote Organ Injury

During inflammation, many components of the innate immune system act in concert to
fight infection, or initiate repair mechanisms to counteract sterile injuries. As demonstrated
above, there is a fragile interplay between DAMPs and the innate immune response. Studies
have elaborated that NETs are possibly able to tip the scale to the inflammatory side, leading
to an overwhelming immune response resulting in systemic inflammation, or cytokine
storm. Those overshooting reactions might affect distant organs, which is also referred to
as remote organ injury, finally resulting in multiorgan dysfunction. The following section
describes impairments of organs in which NETs and NET-associated DAMPs play a pivotal
role in organ dysfunction, and subsequently occurring remote organ damage. Detailed
descriptions of NETs in the course of different lung or kidney diseases have recently been
reviewed in more detail [123,124].

4.1. Kidney

A dysregulated immune system is often closely linked with renal diseases or in-
juries. Drivers of the immunopathology of renal dysfunction are versatile and comprise
immune cell recruitment, formation of immune complexes, dysregulation of inflammatory
mediators, immunodeficiency, autoantibody production or impaired repair mechanisms.
Neutrophils and the release of NETs may contribute significantly to the pathology of renal
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diseases. Within this review, we focus on two renal diseases in which NETs are suggested
to play an important role, not only for the underlying disease, but also for subsequently
occurring complications in other organs.

4.1.1. Anti-Neutrophil Cytoplasmic Antibody (ANCA)-Associated Vasculitis

Vasculitides are inflammations in the walls of blood vessels of any organ in the
body. ANCA-associated vasculitis is characterized by the lack of immune depositions
(pauci-immune) and the presence of anti-neutrophil cytoplasmic antibodies (ANCAs),
mostly targeting MPO and PR3, both components of NETs [125]. AAV comprise three sub-
forms: granulomatosis with polyangiitis (GPA) [126], microscopic polyangiitis (MPA), and
eosinophilic granulomatosis with polyangiitis (EGPA) [127]. GPA and EGPA mostly exhibit
necrotizing granulomatous inflammation of the lower respiratory tract. GPA often affects
the upper respiratory tract and can result in rhinitis, otitis, and cartilage destruction, while
eosinophilia and asthma are defining features of EGPA. Renal involvement is observed in
up to 90% of patients with MPA, similarly in up to 80% of patients with GPA, compared
to 45% in EGPA. Accordingly, several studies have revealed NETs with NE, MPO, LL37,
and PR3 in the glomeruli [128,129], or in skin lesions [130,131] and thrombi from AAV
patients [132,133]. Accordingly, another study demonstrated activated tissue factor con-
tributing to thrombosis in AAV patients [134]. During active disease, an increased incidence
of venous thromboembolism in AAV patients can be observed [135,136]. Furthermore, PR3
or MPO autoantibodies are found in over 90% of patients with active disease [137], which
have been suggested to harbor pathogenic functions, as further supported by results from
animal models [138,139]. PR3- and MPO-ANCAs can activate neutrophils to produce ROS
and proteolytic enzymes in vitro [140]. ANCA-induced neutrophil activation also leads to
increased adhesion of the neutrophils [141] and the activation of the alternative complement
pathway [142] with the generation of C5a. C5a in turn potentiates the inflammatory re-
sponse by priming neutrophils and acting as a chemoattractant to recruit more neutrophils
to the inflammatory site [143], thereby representing an inflammatory circle. Additionally,
studies have revealed elevated levels of NET components, such as MPO, NE, calprotectin,
PR3, and HMGB1 in the circulation of AAV patients. This might be explained by studies
suggesting that neutrophils from AAV patients are more easily activated, and that PR3- and
MPO-ANCA are capable of inducing NET formation in an FcR- and PR3/MPO-dependent
way [144]. The high immunogenic potential of NETs was further demonstrated by injecting
NET-loaded murine dendritic cells (mDCs) into recipient mice. These mice develop AAV-
like disease, and exhibit circulating MPO- and PR3-ANCAs. Injection of DNAse-treated
mDCs or mDCs co-cultured with apoptotic neutrophils did not evoke AAV-like disease,
due to the expression of autoantibodies [131]. These observations further underline the
potential of NETs and NET fragments to distribute pro-inflammatory molecules throughout
the body, further exaggerating inflammation. Interestingly, in this setting, NETs link innate
with adaptive immunity, indicating their relevance for autoimmune diseases.

4.1.2. Acute Kidney Injury (AKI)

AKI can be caused by many etiologies, whereas IRI belongs to the most common
causes. It is characterized by a rapid decline in glomerular filtration rate and inflammation
and is associated with high morbidity and mortality. Pathological presentations of AKI
often include damaged tubules, dysfunctional renal vasculature, excessive inflammation,
and immune cell infiltration [145]. Investigating human renal allograft biopsies with acute
tubular necrosis revealed the occurrence of NETs. Ischemic AKI boosts levels of circu-
lating and localized NETs, histones, and PAD4 expression in the affected kidneys [48].
Raup-Konsavage and colleagues demonstrated that PAD4-expressing cells are mostly neu-
trophils that aggregate in peritubular capillaries, interstitial space, and renal tubules after
IRI [146,147]. NETs induce tubular epithelial cell death, promote clotting in peritubu-
lar capillaries via platelet–neutrophil interactions, and prime other neutrophils to form
NETs [48,148]. All these events sustain hypoxia and enhance tissue damage. Interestingly,
several studies demonstrate that PAD4 inhibition using pharmacological or genetic ap-
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proaches protects from AKI in animal models due to a decrease in inflammation and NET
formation. Meanwhile, degradation of NETs by DNase1 or anti-histone IgG also reduces
renal injury, underscoring the importance of NET formation in the pathogenesis of ischemic
AKI [48,147,149,150]. The pivotal role of PAD4 was further confirmed by transferring
PAD4-expressing neutrophils to Pad4−/− mice, which restored NET formation in these
mice and also re-sensitized them to develop AKI, indicating a pathogenic role for PAD4
or NET formation, respectively [147]. Nevertheless, PAD4 has also been connected to
non-NET-related pro-thrombotic events such as the activity-reducing citrullination of a dis-
integrin and metalloproteinase with thrombospondin type-1 motiv-13 (ADAMTS13). It is
responsible for the removal of von Willebrand factor (vWF)-platelet strings from activated
endothelial cells; the relationship of vWF/ADAMTS13 is associated with an increased
risk of ischemic stroke [151]. Additionally, increased levels of citrullinated antithrombin
led to higher thrombin activity in patients with rheumatoid arthritis or cancer [152,153],
also potentially contributing to a higher risk of vascular occlusions. Interestingly, PAD4
also citrullinates HMGB1, facilitating chromatin decondensation [154]. Whether or not
citrullination of HMGB1 provides additional pro-inflammatory activity is not known yet.
However, tubular necrosis and NET formation also augment remote organ dysfunction, a
common feature of severe AKI, through the release of pro-inflammatory molecules, such
as circulating NET-associated DAMPs such as HMGB1, and histones, or other mediators
such as chemokines and cytokines [48,155]. The most frequent remote organ damage asso-
ciated with AKI is Acute Lung Injury (ALI), which has a predicted mortality approaching
80% [156]. A fatal lung–kidney crosstalk occurs, and due to the extensive capillary network,
the lung is highly susceptible to inflammatory mediators released by the inflamed kidney.
Additionally, kidney disease is often related to a secondary immunodeficiency, which
predisposes patients to secondary infections, often related to the airways and lungs [157].

4.2. Lung

Neutrophil recruitment to the lung is an important risk factor in the course of several
infectious and non-infectious pulmonary insults. Inappropriate immune responses may
turn infections into life-threatening diseases, or genetic disorders may predispose patients
for chronic lung diseases. There is a strong contribution of NETs to several lung-related
diseases, and the implications have recently been reviewed in detail [123]. Here, we focus
on the contributions of NETs and NET-related DAMPs to respiratory dysfunction as remote
organ damage, or vice versa the effect of lung injury on other organs, respectively.

Respiratory dysfunction is characterized by hypoxemia, where the partial pressure
of oxygen decreases, resulting in respiratory alkalosis and tachypnea, and thereby an in-
creased respiratory rate in patients. Upon exposure to DAMPs, lung-resident macrophages,
dendritic cells, or endothelial and epithelial cells produce inflammatory cytokines and
chemokines, including TNFα, IL1, IL2, IL6, and IL8. As a consequence, the alveolar–
capillary membrane permeability increases, and immune cells are recruited, further perpet-
uating the inflammation. Proteins leak into the interstitial tissue, resulting in alveoli injury
and impaired gas exchange [158]. Several studies using different murine disease models
demonstrate a pivotal role of NETs and their components on the pathogenesis of remote
organ damage of the lung. Following ischemia–reperfusion of the kidney, neutrophils
infiltrate the lung, increasing cytokine secretion, and NET formation, which was ame-
liorated upon PAD4 inhibition, thereby reducing ischemia–reperfusion-consecutive lung
injury [159]. Doi and colleagues [160] revealed that ALI following AKI depends on HMGB1,
which is further underlined by a recently published study demonstrating that acute lung
injury following intestinal ischemia–reperfusion depends on HMGB1-induced NET for-
mation, associated with tissue inflammation, and pathological injury in the lung [112,161].
In line with this, histones have detrimental effects on alveolar cells in vitro and in vivo
during transfusion-related lung injury [75,162]. Nevertheless, a disease-dependent effect
of individual histones cannot be excluded [75,163]. However, kidney–lung crosstalk may
also occur, starting from lung injury, as it often occurs following mechanical ventilation.
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Studies using a murine model of ventilation-induced lung injury detected neutrophils
and NET components in the lung microvasculature, which was proven to depend on the
interaction of neutrophils and platelets [164] as well as partially on TLR4 signaling [165].
Targeting NET components by DNAse or using NE-deficient mice protected mice from lung
damage, indicating that NETs contribute significantly to lung damage during ventilation-
induced lung injury [164,165]. In septic patients, increased levels of complexed MPO-DNA
were found, and were associated with the pathogenesis of ventilator-associated pneumo-
nia [166]. Similarly, the damaged lung during SARS-CoV2-infection displays deformed
capillaries, alveolar–capillary damage, fluid-filled alveoli, hemorrhage, fibrin deposition,
signs of compensatory neovascularization, and immune cell infiltration [167–170], account-
ing for respiratory symptoms and shortness of breath. Disease severity was correlated
with neutrophilia, indicating a direct contribution of neutrophils [171]. Sera from patients
with COVID-19, exhibited elevated levels of MPO-DNA, cfDNA, and citrullinated histone
H3 [167], with cfDNA and MPO-DNA being even higher in patients receiving mechanical
ventilation compared to non-ventilated hospitalized patients [172]. However, the risk of
AKI following mechanical ventilation is threefold higher [173], which is supposed to be
induced by systemic cytokines released from injured pulmonary epithelial and endothelial
cells [174,175]. A murine model of sepsis-associated ventilation indicated that ventilation
may alter the expression of VEGF, VCAM-1, and angiopoietin-2 in the kidney [176]. Addi-
tionally, another study suggested that lung-derived inflammatory mediators may induce
the release of inflammatory cytokines by liver endothelial cells, thereby perpetuating in-
flammation [177]. However, although there are several studies indicating that mechanical
ventilation is associated with increased amounts of NETs, to date, there have been no
studies revealing their association with remote organ damage in this setting.

4.3. Liver

In terms of pathogenic conditions, there is a functional association between the liver
and the lung, as well as the liver and the kidney. Dysfunction of one of these organs may
cause deterioration of the other organ. It has been proposed that inflammatory mediators
reaching the liver are amplified in an NFκB-dependent pathway and further released in
the circulation to other organs and initiate a feed-forward mechanism of acute inflam-
mation [177]. Additionally, the liver has a pivotal role fighting infections through the
coordinated activity of neutrophils and Kupffer cells. Several studies have proven that
most circulating bacteria can be efficiently cleared within the liver [178,179]. Kupffer cells
can capture bacteria under flow conditions activating the complement receptor of the
immunoglobulin receptor superfamily. Platelets have been suggested to fulfill a patrolling
function in short-term contact with Kupffer cells, and in terms of infection with Staphylococ-
cus aureus to swarm and encapsulate the caught bacteria, helping to eliminate the invaders
in a vWF-dependent manner [180]. Neutrophils use expelled NETs to immobilize and
eliminate pathogens from the bloodstream [29]. In contrast to other organs, liver vascular
cells are able to retain NETs by anchoring them to vWF [181]. Interestingly, these anchored
NETs are essentially contributing to NET-mediated injury of the respective tissue, especially
through NE and histones, which are resistant to removal via DNase [181]. However, the
NET-mediated early defense in the liver against invading pathogens has been proven to be
indispensable for a successful immune response. Nonetheless, the long-term anchorage of
the deleterious NET components harbors significant potential to perpetuate inflammation,
thereby contributing to overwhelming immune responses resulting in subsequent systemic
responses. This becomes evident when having a closer look on sterile liver injury. Ischemia–
reperfusion injury of the liver occurs during liver surgeries, when hepatic blood supply
is temporarily occluded. This results in an initial hepatocellular damage, followed by a
rapid inflammatory response upon reperfusion [182,183], including the release of DAMPs,
such as HMGB1, and histones [184–186], further inciting NET formation. In a murine liver
ischemia–reperfusion model, TLR4 or TLR9 deficiency, as well as inhibition of NET forma-
tion by PAD4 inhibitors or DNase1, protected from HMGB1 and histone-mediated liver
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injury [49]. Accordingly, another study suggested that superoxide induces NET formation
following ischemia–reperfusion in a TLR4- and NADPH-oxidase-dependent manner. Mice
pretreated with allopurinol and N-acetylcysteine to decrease circulating superoxide levels
exhibited decreased NET formation and improved liver injury [187]. Further studies are
required to prove whether antioxidant treatment might be a valuable tool for conferring
protection against NET-mediated organ injury.

4.4. Immunothrombosis

Thrombotic complications are among the main causes of mortality in critical ill pa-
tients. Despite the underlying injury, the factors contributing to thrombosis are versatile
and very complex. Hemodynamics or blood flow in the vasculature belong to the pre-
dominant factors that dictate the rate of thrombosis by disseminating reactive components.
Shear flow alterations may activate platelets and increase vWF binding and cell aggrega-
tions, leading to blockades or increased blood viscosity [188]. Additionally, the release of
DAMPs or NETs can further influence hemodynamics, while also having a direct effect on
thrombosis. Histones can dose-dependently enhance thrombin generation [189], and elicit
thrombus formation using coagulants and triggering platelets, encouraging pro-thrombotic
and pro-coagulant activity [190]. NET-associated plasma proteins such as tissue factors,
fibronectin and vWF further support platelet adhesion and thrombus development [191].
Neutrophils are able to initiate thromboxane A2 production in platelets, which induces the
upregulation of ICAM-1, further strengthening neutrophil–endothelium interactions [192].
Activated platelets can further fuel NET formation by vWF, platelet factor 4, and throm-
boxane A2 release [193], and provide the pro-inflammatory heterodimerized CXCL4 and
CCL5, acting in cooperation with GPCRs and integrins [164]. Their spatial proximity is
supported via anchorage of vWF to GPIb and CD11b [193]. Platelets aggregate with red blood
cells into a fibrin network and attach to the damaged endothelium. Here, platelet activation
and degranulation convert inactive IL-1 to the active form by thrombin cleavage, thereby
connecting the coagulation system to immunothrombosis. All these mechanisms lead to the
inhibition of fibrinolytic activity, thereby promoting thrombus formation and growth. Interest-
ingly, thrombi with associated NET structures are more rigid and less permeable [194]. Many
experimental animal models exist to investigate thrombosis, and the impact of extracellular
DNA, not only provided by NET formation, has been reviewed in detail elsewhere [195].

Excessive inflammatory responses have been associated with elevated levels of inter-
ferons, interleukins, TNFs, chemokines, termed the “cytokine storm”, resulting in systemic
inflammation getting along with an increased risk of thrombosis. In recent years, this dereg-
ulated immune response has gained even more attention, since it has been linked to severe
manifestations of COVID-19. Here, a hypercoagulable state with thrombosis and fibrinolysis
have been observed, along with high levels of D-dimer, vWF, and factor VIII [196,197]. Accord-
ingly, platelet count, ADAMTS13, IL6, antiphospholipid antibodies, and fibrinogen were
elevated [198]. Interestingly, the expression of P-selectin, as well the aggregation of platelets,
neutrophils and monocytes, increased [199]. Thus, it is likely that NETs play a pivotal role
during deregulated immunothrombosis and contribute significantly to respiratory diseases.
Indeed, NET components such as MPO-DNA complexes are markers of disease severity in
patients suffering from COVID-19 [172,200]. Microthrombi have been found in the lung,
heart, and kidneys of patients with COVID-19 [200,201], and single-case autopsies exhibited
NETs in the lung parenchyma and alveolar space [202,203], indicating that excessive NET
formation might be a driver of COVID-19-associated intravascular coagulopathy.

Furthermore, it has been shown that NETs are associated with thrombin stimulation,
fibrin clot formation, and platelet accumulation, therefore indicating the influence on the ele-
vation of disseminated intravascular coagulation in sepsis [204]. Supporting this idea, cfDNA
has been demonstrated to directly correlate with the frequency and magnitude of thrombin
generation [205]. cfDNA blocks the tissue plasminogen activator, resulting in impaired fibri-
nolysis, and also reinforces thrombus ultrastructure by scaffolding for the binding of red blood
cells, fibrin, platelets, and coagulation factors [23]. Another important factor contributing to
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microvascular thrombosis is HMGB1. Being also an initiator of NET formation, as compo-
nent of NETs, it may be part of an inflammatory circle contributing to thrombotic events
(Figure 3). In a rat model of disseminated intravascular coagulation, HMGB1 stimulated
tissue factor expression in monocytes and inhibited the anticoagulant protein C pathway,
mediated by the thrombin-thrombomodulin complex [103]. Interestingly, investigating a
murine model of deep vein thrombosis revealed that the pro-thrombotic effect of HMGB1
was mediated through the release of extracellular DNA during NET formation [118].

5. NET-Targeting Therapies

Regarding the ambiguous function of NETs, it appears difficult to find the appropriate
treatment. Accordingly, the published studies could not reveal a singular treatment that
results in improved outcomes. However, as described above, some NET components are
more noxious to the organism than others. Targeting them in preclinical studies exhibited
promising results; nonetheless, currently, DNase is the only NET-targeting therapy in
clinical use. Here, we summarize the most relevant and promising treatment strategies.

5.1. Dnase1

Extracellular chromatin and NETs can be digested by naturally occurring Dnase1.
It dismantles the DNA structure and liberates entangled components, which must be
calculated as a significant risk factor since, e.g., histones, NE or MPO are capable of
perpetuating inflammation. To date, it has been used for the treatment of virus-associated
bronchiolitis [206], as well as cystic fibrosis, in order to improve lung function and reduce
the occurrence of infectious exacerbations [207,208]. Similarly, NET DNA in COVID-19
contributes to mucus accumulation, rigidity, and airway occlusion. A clinical pilot study
investigated the effect of nebulized dornase-α on COVID-19 [209]. The obtained data from
10 patients treated with Dornase-α suggested a positive effect on oxygenation, which is
supposed to occur through degeneration of NET complexes, as demonstrated by measuring
MPO-DNA complexes. The degradation of NET structures in these patients did not result
in a significant increase in secondary pulmonary infections.

5.2. Histones

Disentangling DNA fibers can lead to the subsequent release of histones or proteases,
potentially causing cytotoxicity. As demonstrated in different murine disease models,
neutralization of histones might be a promising target [210,211]. The C1 esterase inhibitor
(C1INH), a serine protease inhibitor, targets multiple pathways [212,213], and due to its
glycosylation-dependent overall negative charge, it is able to bind and neutralize histones.
C1INH treatment reduced neutrophil activation and improved inflammation and survival
in sepsis patients [214,215]. Furthermore, a recent study demonstrated that the application
of anti-citrullinated protein antibody (tACPA) prevented NET-associated disease symptoms
in different inflammatory pathologies in mice by inhibiting NET formation and increasing
NET degradation through macrophages [211]. Another study suggested that neutralizing
citH3 attenuates endothelial damage in vitro and results in improved survival rates and
inflammatory responses during LPS-induced sepsis in mice [216]. Heparin is a medication,
and naturally occurring glycosaminoglycan is used as an anticoagulant, able to antagonize
the effects of histones [217]. Studies suggest that heparin significantly suppresses histone-
induced disease [218,219], and the effect of unfractionated heparin, low-molecular-weight
heparin, e.g., parnaparin, and non-anticoagulant heparin has been evaluated [219–221].
Here, heparin protected mice from organ damage and death by antagonizing circulating
histones. Administration of heparin, especially non-anticoagulant heparin, is a novel and
promising approach that requires further investigation to confirm these data.

5.3. HMGB1

Studies have elaborated that anti-HMGB1 antibodies may diminish NET formation, as
a reduction of H3 and cfDNA in the BALF of LPS-treated mice that received neutralizing
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antibodies to HMGB1 was observed [222,223]. However, blocking HMGB1 might diminish
HMGB1-mediated activation of other pro-inflammatory pathways, resulting in reduced
cytokine levels and therefore less immune cell recruitment. Targeting HMGB1 might be
a promising approach, since it appears to play a pivotal role in the vicious circle of over-
whelming inflammation during systemic diseases. Indeed, another study demonstrated
that the antidiabetic drug metformin directly binds HMGB1, resulting in increased NET
clearance, thereby attenuating the pro-inflammatory activity of NETs [224,225].

5.4. Other Treatments

There are several molecules that are able to influence NET formation. Aspirin treat-
ment decreases NET formation in lung microcirculation and plasma [226], and also de-
creases the deposition of platelets with neutrophils on the lungs’ vascular walls [227].
However, a clinical study failed to verify an improved outcome following low-dose Aspirin
treatment in septic patients [228]. Hydroxychloroquine, also known as an anti-malarial
and anti-inflammatory drug, interferes with cytosolic sensors of nucleic acids [229,230] and
inhibits the stimulation of dendritic cells by NETs via TLR9 [231]. Furthermore, it has been
identified to inhibit NET formation in murine disease models [232,233]. However, its use
as anti-inflammatory drug in COVID-19 patients presented controversial outcomes [234].
TLR-mediated NET formation can be inhibited by the use of blocking antibodies, such as
anti-CLEC or the bispecific anti-CLEC5A/TLR2 [235]. Glucocorticoids, such as dexam-
ethasone, belong to a class of drugs with anti-NET formation activity [236]. Furthermore,
NET-inhibitory factors have been identified. They specifically inhibit NET formation
in vitro and in vivo, thereby appearing to be a potential therapeutic agent [237]. Further
treatment options exist that do not directly target NET formation but rather neutrophil
recruitment. For example, a CXCR2 antagonist reduced neutrophil influx into the airways
following an LPS challenge in humans [238]. Nonetheless, blocking neutrophil recruitment
always harbors the risk of impairing the innate immune response, which might facilitate
secondary infections. In this regard, a promising therapy might be the use of the CD40
antibody M7, which has been shown to limit inflammation without affecting the protective
host defense in mice [239]. Nonetheless, the interplay of CD40 and its ligand CD40L was
recently linked to successful resolution responses in the lung [240]. A summary of possible
interventions that are targeted against NETs or their components is listed in Table 2.

Table 2. Summary of NET-inhibitory compounds used for clinical and preclinical application.

Compound Target Model Reference

Dornase Alfa/Dnase DNA
Bronchiolitis

Cystic fibrosis [206–208]

COVID-19 [209]

C1 esterase inhibitor Histones Sepsis patients [210,214,215]

tACPA
α-H3-cit Citrullinated Histones Inflammatory murine

disease models [211,216]

Heparin Histones Inflammatory murine
disease models [217–221]

HMGB-antibodies HMGB1 blockade LPS-treated mice [222,223]

Metformin HMGB/NET clearance Diabetes patients [224,225]

Aspirin
(Hydroxy)chloroquine
αCLEC
Glucocorticoids
NET-inhibiting factors

Inhibition of NET
formation

COVID-19
Critically ill patients

Inflammatory murine
disease models

[226–228]
[232–234]

[235]
[236]
[237]

CXCR2 antagonist Neutrophil recruitment LPS-challenged humans [238]

CD40L-M7 Mac1 Inflammatory murine
disease models [239]
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6. Summary

The organism responds to a large variety of injuries or infections with the activation
of the innate immune system. Its tasks are the switch to an inflammatory state to fight
invaders, restrict or repair injuries, and finally resolve the inflammatory state and switch
back to the steady state. However, although this multi-cascade process is tightly regulated,
disturbances occur, and the well-balanced immune response may turn into a detrimental
overwhelming inflammation. The overdosed release of cytokines or chemokines leads
to the massive infiltration of neutrophils, and their subsequent activation. Neutrophil
effector functions such as the release of NETs concomitantly injure surrounding tissues.
Furthermore, their fragile structure, and their occurrence in the blood stream enables an easy
distribution through the organism. NET-DNA, as well as NET-associated proteins, such
as histones, LL37, or HMGB1, may act as DAMPs and perpetuate inflammation through
the activation of PRRs and other pro-inflammatory receptors. Once distributed to other
organs, they are capable of initiating further cytokine release with subsequent immune cell
recruitment and activation, thereby initiating a fatal circle of pro-inflammatory mediators.
Several studies have revealed a contribution of NETs to remote organ damage, hence
supporting the hypothesis that NET formation may negatively influence the fine-tuned
balance of the immune response towards an overshooting reaction. So far, NET-associated
anti-inflammatory functions or factors contributing to the resolution of inflammation are
poorly understood. However, identifying those components representing pivotal players
within this circle might also provide potential targets to interrupt this pro-inflammatory
circuit. To date, treatment options are scarce, and NET-directed therapies besides Dnase
do not exist. Nonetheless, preclinical studies revealed that targeting NETs might be a
promising strategy to reduce tissue damage, organ dysfunction, and remote organ damage,
hence improving the course and outcome of many inflammatory diseases.
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