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Abstract: Cystic fibrosis (CF) is the most common monogenic disorder, caused by mutations in the
CF transmembrane conductance regulator (CFTR) gene. Over the last 30 years, tremendous progress
has been made in understanding the molecular basis of CF and the development of treatments
that target the underlying defects in CF. Currently, a highly effective CFTR modulator treatment
(Kalydeco™/Trikafta™) is available for 90% of people with CF. In this review, we will give an exten-
sive overview of past and ongoing efforts in the development of therapies targeting the molecular
defects in CF. We will discuss strategies targeting the CFTR protein (i.e., CFTR modulators such as
correctors and potentiators), its cellular environment (i.e., proteostasis modulation, stabilization at the
plasma membrane), the CFTR mRNA (i.e., amplifiers, nonsense mediated mRNA decay suppressors,
translational readthrough inducing drugs) or the CFTR gene (gene therapies). Finally, we will focus
on how these efforts can be applied to the 15% of people with CF for whom no causal therapy is
available yet.

Keywords: cystic fibrosis (CF); cystic fibrosis transmembrane conductance regulator (CFTR);
personalized medicine; CFTR modulators; proteostasis modulation; stabilizers; amplifiers;
translational readthrough inducing drugs (TRIDs); NMD inhibition; gene therapy

1. Introduction into Cystic Fibrosis

Cystic fibrosis (CF) is Europe’s most common life-threatening autosomal recessive dis-
order, which affects approximately 50,000 people in Europe and over 85,000 worldwide [1].
While CF in the past has mainly been a pediatric condition, the predicted mean survival
of newborns with CF in 2019 was 48 years [2]. Morbidity and mortality in people with
CF (PwCF) are mainly caused by progressive obstructive lung disease, with perpetual
cycles of airway infection and inflammation, resulting in bronchiectasis, tissue remodeling
and a decline in lung function over time [3,4]. Besides the airways, many other organs
are affected in CF, including the exocrine pancreas, intestines and sweat glands (reviewed
in [5]). Co-morbidities are becoming increasingly important in CF. They can either be
congenital, such as congenital bilateral absence of vas deferens (CBAVD), or have a later
onset due to progressive damage to organs, such as CF related diabetes (CFRD) and CF
related liver disease (CFLD). CF is now, more than ever, a multi-organ disease, requiring
therapeutic approaches that cover a wide range of organs.

CF symptoms are caused by an imbalance in ion and water homeostasis in the
secretory epithelia of these organs due to loss of function of the apical chloride and
bicarbonate channel CFTR (cystic fibrosis transmembrane conductance regulator, see
Section 2.1. CFTR—Structure, Folding and Function). In the pancreas, the absence of
CFTR-dependent fluid secretion leads to the destruction of the exocrine pancreatic
glands at birth for 85% of PwCF [6]. In the airways, mucus is not readily removed
due to a decrease in periciliary liquid height, a watery layer between cells and mucus
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that depends on CFTR chloride secretion and resulting osmosis and is essential for
good mucociliary clearance. In addition, pH changes from lack of bicarbonate secretion
prevent the proper unfolding of mucins, compacting the mucus and making it even
harder to expel (reviewed in [7]). Combined with altered innate immune responses, such
as loss of antimicrobial peptide function [8] and the overactive but ineffective response of
infiltrating neutrophils, this creates an environment for opportunistic micro-organisms
to thrive in ([9] and reviewed in [10]). Chances of chronic colonization with Pseudomonas
aeruginosa, Burkholderia cepacia, Staphylococcus aureus and other common CF pathogens
increase throughout the lifespan of PwCF, and by the age of 20, over 80% of PwCF are
colonized with at least one micro-organism [2]. Chronic infection is correlated with a
more rapid disease progression and worse prognosis [11], stressing the urgency of early
treatments in PwCF, preferably before the onset of chronic infections.

In this review, we will discuss different strategies for the causal treatment of CF, both
market-approved and in development. First, we will briefly discuss the CFTR protein and
different mutations to stress the need of multiple strategies to cover all PwCF. Next, we will
look into strategies to (1) improve CFTR function, (2) increase the amount of CFTR at the
plasma membrane (PM), (3) increase the amount of immature CFTR protein or (4) provide a
correct CFTR template. Finally, we will briefly discuss how to further personalize treatment
for PwCF and bring causal therapies to the entire CF population.

2. One Size Does Not Fit All

A good understanding of the structure and function of the wildtype CFTR protein is
essential for (1) grasping the molecular consequences of mutations that result in CF and
(2) developing strategies using these models to correct the identified defects. As we will
discuss in the next section, the multitude of mutations in CFTR identified and characterized
to date will evidence the need of therapeutic strategies tailored to individual (classes of)
molecular defects.

2.1. CFTR—Structure, Folding and Function

CFTR is a 1480 amino acid glycoprotein and member of the ATP-binding cassette
(ABC) transporter family. Uniquely for ABC transporters, it functions as an ion channel
rather than a transporter (reviewed in [12]). It is comprised of two halves containing a
nucleotide binding domain (NBD) and a membrane spanning domain (MSD)—a common
architecture for ABC transporters. The two halves, however, are linked via a regulatory (R)
domain that is not found in other members of this protein family.

Folding of the CFTR protein is a complex process which mainly takes place co-
translationally, however inter-domain interactions are completed post-translationally
( [13,14] and reviewed in [15]). The endoplasmic reticulum (ER) quality control (ERQC)
evaluates the folding-status of the nascent CFTR protein at several checkpoints [16].
Proteins with a non-native conformation are readily recognized by this machinery. They
are primed via ubiquitination for ER associated degradation (ERAD) by the proteasome.
It can, however, be argued that all disease-causing mutations lead to a conformational
change to some extent, although not all are recognized as faulty by ERQC, e.g., gating
mutations (see Section 2.2. CFTR Mutations) [17]. Checkpoints include a Hsp40/70/90
chaperone trap, which recognizes and removes the majority of misfolded CFTR pro-
tein [18], and a calnexin/calreticulin cycle involving the core N-glycosylated CFTR [19].
Before the newly produced protein can exit the ER and progress to the Golgi, folding is
again assessed via arginine-framed tripeptide motifs (which should be hidden on the
inside of the 3D protein structure) and di-acidic exit codes (which should be present
on the outside) [20,21]. In the Golgi, the high-mannose glycosylation from the ER is
modified to a more complex arrangement of sugars, containing galactose and fucose,
among others [22]. At this point, CFTR is considered “mature” and delivered from the
Golgi to the PM. Once at the PM, it is subject to peripheral quality control and repeated
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cycles of internalization and recycling [23,24]. For an extensive review on CFTR folding
and trafficking, we refer to [16].

CFTR’s ion channel function starts with the unique R domain. This unstructured
domain contains several important serine residues which, upon phosphorylation by protein
kinase A (PKA), induce a conformational change [25]. This allows dimerization of the two
NBDs, a first step towards the opening of the channel. Combined, the two NBDs create
two ATP binding sites with the Walker A and B motifs from one domain connecting with
the Walker C motif from the other [26]. The ATP-bound NBD dimer subsequently opens
the channel (reviewed in [27]). The twelve transmembrane spans (TM) from the MSDs
combine to form a pore allowing anions like chloride, bicarbonate but also iodide, to cross
the PM. Only ATP binding site 2 has retained its ability to hydrolyze ATP, while site 1 was
proposed to modulate the stability of CFTR function [28]. Dissociation of ADP in the NBD
dimer after ATP hydrolysis at site 2 closes the channel (reviewed in [29]).

Over the last couple of years, cryo-electron microscopy (cryo-EM) has provided
high-resolution structures of various states of both human and zebrafish CFTR, such
as closed-open or (de)phosphorylated conformations, and with ATP or CFTR modu-
lating compounds [30–34]. These structures have provided insights into the molecular
mechanisms of CFTR channel function, i.e., its anion conductance pathway [35], as well
as identified new features not previously described in ABC transporters, such as the
N-terminal lasso motif [32]. This motif is of importance for CFTR channel gating as
well as for folding of downstream domains and thereby might (partially) explain the
molecular mechanism of several missense mutations located within this motif or in its
vicinity [36–38]. Cryo-EM was further also used to determine the binding site of CFTR
corrector VX-809 (see Section 3.2.1. CFTR Correctors) [34].

2.2. CFTR Mutations

When the CFTR gene and the major disease-causing mutation c.1521-1523delCTT
(F508del; ~70% of CF alleles and found in ~85% of PwCF) were first described in
1989 [39–41], it was proposed that multiple mutations would make up the remaining
30% of CF alleles. To date, over 2100 CFTR mutations have been described (Cystic
Fibrosis Mutation Database, https://www.genet.sickkids.on.ca/ (accessed on 10 May
2022)), of which currently 401 are confirmed to cause CF (Clinical and Functional
Translation of CFTR (CFTR2), https://www.CFTR2.org/ (accessed on 10 May 2022)).
Most mutations, however, are very rare, with only five mutations reaching an allele
frequency above 1% and 20 above 0.3%. Compared to F508del, all other mutations are
rare. An overview of the mutations discussed in this review can be found in Table 1.

Table 1. Overview of CFTR mutations in this review, their frequency and approved treatments.

Name cDNA Name Allele
Frequency (%)

CFTR2
Alleles

Approved
Treatment

CFTRdele2,3 c.54-5940_273 +
10250del21kb 0.3 417 NA

P67L c.200C>T 0.2 239 K/S/T

G85E c.254G>A 0.4 616 T

E92K c.274G>A <0.1 49 S/T

R117H * c.350G>A 1.3 1854 K/S/T

Y122X c.366T>A 0.1 88 NA

621+1G>T c.489+1G>T 0.9 1323 NA

G178R c.532G>A 0.1 87 K/S/T

R334W c.1000C>T 0.3 429 NA

https://www.genet.sickkids.on.ca/
https://www.CFTR2.org/
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Table 1. Cont.

Name cDNA Name Allele
Frequency (%)

CFTR2
Alleles

Approved
Treatment

W496X c.1487G>A <0.1 3 NA

I507del c.1519-1521delACT 0.5 651 NA

F508del c.1521-1523delCTT 69.7 99061 O/S/T

1717-1G>A c.1585-1G>A 0.9 1216 NA

G542X c.1624G>T 2.5 3610 NA

S549R c.1645A>C 0.1 93 K/S/T

S549N c.1646G>A 0.1 203 K/S/T

G551S c.1651G>A <0.1 19 K/S/T

G551D c.1652G>A 2.1 2986 K/S/T

R553X c.1657C>T 0.9 1323 NA

2789+5G>A c.2657+5G>A 0.7 1027 K/S

G970R c.2908G>C <0.1 12 NA

R1162X c.3484C>T 0.5 651 NA

I1234V c.3700A>G <0.1 33 NA

3849+10kbC>T c.3718-2477C>T 0.8 1158 K/S

G1244E c.3731G>A 0.1 106 K/S/T

S1251N c.3752G>A 0.1 120 K/S/T

S1255P c.3763T>C <0.1 10 K/S/T

W1282X c.3846G>A 1.2 1726 NA

N1303K c.3909C>G 1.6 2246 NA

Q1313X c.3937C>T <0.1 30 NA

G1349D c.4046G>A <0.1 22 K/S/T

Q1412X c.4234C>T <0.1 4 NA
NA: no treatment available; K: Kalydeco™; O: Orkambi™; S: Symdeko™; T: Trikafta™. * mutation with
varying clinical significance. Frequency/allele numbers: www.CFTR2.org (accessed on 10 May 2022); Ap-
proved treatments: www.kalydeco.com (accessed on 10 May 2022)/www.orkambi.com (accessed on 10 May
2022)/www.symdeko.com (accessed on 10 May 2022)/www.trikafta.com (accessed on 10 May 2022).

Mutations in CFTR result in the loss or reduction of CFTR function and are commonly
grouped by the mechanism by which this loss is caused, from Class I (most severe) to Class
VI (mild) (Figure 1) [42,43]. PwCF with two mutations from the first three classes usually
present with severe CF and are predominantly pancreatic insufficient. Mutations from
Classes IV-VI give rise to a certain level of residual function, and are associated with milder
forms of CF.

Class I contains the most severe mutations where no CFTR protein is produced. On
the one hand, these cover mutations were the “blueprint” for CFTR is gone due to large
insertions and deletions or by frameshift inducing indels. These mutations are unrescuable
by means of small molecules (Class Ia, Figure 1), such as the 21 kb deletion CFTRdele2,3
(c.54-5940_273+10250del 21 kb; 0.3% of CF alleles) [44]. Canonical splicing mutations, for
example 621+1G->T (c.489+1G>T) and 1717-1G->A (c.1585-1G>A) (both 0.9% of CF alleles),
produce no normal CFTR mRNA [45], and are unlikely to be rescued by other means than
gene therapy.

This is in contrast to nonsense mutations (Class 1b) such as G542X (c.1624G>T;
2nd most common CFTR mutation, 2.5% of CF alleles) and W1282X (c.3846G>A; 5th
most common mutation, 1.2% of CF alleles). Here, the CFTR mRNA is mostly degraded
by the process of nonsense mediated mRNA decay (NMD) [46], and CFTR protein

www.CFTR2.org
www.kalydeco.com
www.orkambi.com
www.symdeko.com
www.trikafta.com
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production is abolished. They are, however, considered rescuable by inhibition of
NMD (see Section 3.3.3. NMD Suppression) and translational readthrough inducing drugs
(TRIDs, see Section 3.3.4. TRIDs).
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Figure 1. CFTR mutations can cause different defects and are grouped accordingly. Green arrows:
normal CFTR biogenesis and function. Red arrows/crosses: defects caused by the mentioned
mutation classes.

For Class II mutations, which include the most common F508del mutation as well as
the 4th most common mutation N1303K (c.3909C>G; 1.6% of CF alleles), translation takes
place but the immature protein does not achieve its native conformation. As a result, most
misfolded proteins are recognized by the ERQC as faulty and primed for ER associated
degradation (ERAD) by the proteasome. This results in a (near) absence of mutant CFTR
channels at the PM [47]. Due to the location of the N1303K mutation near the end of the
protein (in the NBD2 domain), folding is arrested at a late stage; indeed, while the N1303K
folding intermediate resists ERAD, most of it accumulates instead in autolysosomes, where
it is degraded via ER-associated autophagy [48].

In Class III, the mutant protein reaches the PM but its function is severely impaired.
Generally speaking, the ATP-dependent gating of the channel is defective and, as a result,
the open probability (PO) is strongly reduced, as is the case for G551D (c.1652G>A; 3rd
most common mutation, 2.1% of CF alleles) [49].

Class IV mutations are situated around the channel pore, lowering its conductance of
anions and thereby reducing the net transport of anions over the PM. R334W (c.1000C>T;
0.3% of CF alleles) belongs to this class.

A reduced amount of correctly spliced CFTR mRNA is a hallmark of Class V mutations.
These mutations cause cryptic splice sites, resulting in alternative splicing in a subset of
transcripts, generating both aberrant and correct mRNA copies. One such example is
3849+10kbC>T (c.3717+12191C>T; 9th most common mutation, 0.8% of CF alleles). The
remaining correctly spliced mRNA copies will give rise to wild-type (WT) CFTR proteins,
but their overall quantity is significantly reduced [50].

A reduction in the number of CFTR channels is also found in Class VI [51], albeit by a
different mechanism. Here, the protein stability is reduced compared to WT, enhancing
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its turnover and leaving fewer channels at the PM. Several C-terminal truncations, such
as Q1412X (c.4234C>T), destabilize CFTR without interfering with its biogenesis [52].
Temperature rescued F508del, where cells are cultured at 26 ◦C to promote ERQC escape, is
another example of this class [53].

Insights into the different molecular defect classes provide a starting point for the
development of different therapeutic strategies needed to specifically tackle each defect.
Not only does the variety and large number of CFTR mutations complicate causal treatment
of CF, a single mutation can have multiple molecular defects—all of which need to be
overcome to reverse the phenotype [54]. This phenomenon was best studied for F508del,
which is usually quickly degraded (Class II) [55]. The small amount that reaches the PM
shows defective gating (Class III) as well as reduced stability (Class VI) [56,57]. Multiple
defects have since also been described for other mutations, including N1303K and W1282X
(the latter, when NMD is suppressed) [58,59].

3. CFTR Causal Therapies

The need for distinct CFTR-rescuing strategies is underscored by the different CFTR
mutation classes. In the next paragraph, we will discuss strategies that aim—alone or in
combinations—to restore CFTR channel activity (Figure 2). They can be divided into three
groups, based on whether they work on the protein, mRNA or DNA level. CFTR modula-
tors are small molecules that interact directly with the CFTR protein. They either increase
CFTR channel function (CFTR potentiators) or promote the folding and trafficking of CFTR
to the PM (CFTR correctors). Other therapies target proteins that interact with CFTR to
increase the amount of CFTR at the PM (proteostasis modulators and stabilizers) or its
function (CFTR activators). mRNA-focused strategies aim to increase the amount of protein
that is produced, either mutant or WT, and this treatment can further be supplemented
with CFTR modulators where needed. As neither protein nor mRNA modulation provide
long lasting effects, both need to be taken lifelong at regular intervals. Only when a correct
genetic CFTR sequence is introduced into the host genome (by addition of a WT cDNA
copy or correction of the mutated CFTR gene), the treatment has the potential to provide a
cure for CF.

We will start our discussion with protein targeting therapies and move towards the
ultimate goal, i.e., to restore the CFTR “blueprint” in the DNA. Not co-incidentally, the
CFTR-targeted drug discovery pipeline is following a similar route (Figure 2). Currently,
CFTR modulator therapy is the only causal treatment for CF that is market-approved. It
started in 2012, with the approval of Kalydeco™ for a small percentage of PwCF with
the gating mutation G551D [60,61]. Its label was later extended [62,63], and currently
Kalydeco™ is FDA approved for 97 CFTR mutations [64,65], covering ~8% of PwCF. In
2015 and 2018, CFTR modulator treatments Orkambi™ and Symdeko™ (Symkevi™ in
Europe) were approved as the first causal therapies for PwCF homozygous for the F508del
mutation [66–69]. Highly effective modulator therapy for PwCF carrying at least one
F508del mutation only became available in 2019, marketed as Trikafta™ (Kaftrio™ in
Europe, approved in 2020) [70,71].

While current CFTR modulator therapies have the potential to treat the majority of
PwCF, about 15% of PwCF have mutations not responsive to (current) CFTR modulators [1].
These mainly include premature termination codon, frameshift and deletion mutations
as well as certain canonical splice mutations (all in Class I—no protein) but also several
missense mutations from Class II or III/IV that are refractory to the available CFTR modu-
lators. As we will discuss below, several novel treatments are in development for the last
15% of PwCF currently without causal therapy.
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3.1. Improving CFTR Function: Activators, Potentiators and Co-Potentiators
3.1.1. CFTR Activators

One might argue that restoring CFTR activity is most straightforward when CFTR is
already present at the PM (Figure 3). This can be done by any process that enhances the
availability of intracellular cAMP to phosphorylate and hence activate the CFTR channel,
or by promoting its open state. Indeed, it was recognized early-on that enhancing the
intracellular cAMP concentration by means of forskolin (adenylate cyclase activator) or
IBMX (phosphodiesterase inhibitor) could enhance CFTR Cl− currents [72]. Lubiprostone,
approved for the treatment of chronic constipation [73], stimulates fluid secretion via
activation of the CFTR channel through prostaglandin receptor EP4 mediated modulation of
cAMP levels [74]. Recently, Shaughnessy and colleagues reported enhanced F508del rescue
in CF airway epithelia when Trikafta™/Kaftrio™ was combined with lubiprostone [75].
The dual phosphodiesterase 3 and 4 inhibitor RPL554 (ensifentrine), in clinical development
for chronic obstructive pulmonary disease (COPD) and asthma [76], was shown to activate
CFTR with rare class III and IV mutations [77,78] and was tested in a small phase II trial
with promising results ([79] & NCT02919995). Similarly, ATP analogues can activate the
CFTR channel by locking it in an open state [80]. Several CFTR activators, including CBIQ
(4-Chlorobenzo[F]isoquinoline), increased Cl− secretion in heterologous cell models like
Calu3 cells by simultaneous activation of CFTR and basolateral K+ channels [81].
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Figure 3. Strategies to improve CFTR function. Left: Activators (red) improve CFTR function by
altering its normal regulation, for example by promoting phosphorylation of CFTR or via ATP
analogues which lock CFTR in an open state. Right: CFTR potentiators (orange) interact directly
with CFTR to promote function, in a phosphorylation-dependent, but ATP-independent manner.
Co-potentiators (blue) also interact with CFTR, to further stimulate function but only in the presence
of CFTR potentiators.

A caveat for the use of CFTR activators is the generally unspecific nature of their
mechanisms of action (MoA), which include interaction with general cellular functions
such as kinase/phosphatase activity and ATP levels. Nevertheless, they have been highly
valuable for unraveling CFTR regulation and gating mechanisms [82,83]. Forskolin and
IMBX in particular are commonly used to activate CFTR channels in experimental settings,
either to evaluate the function of CFTR mutants or to test therapeutic strategies.

3.1.2. CFTR Potentiators

In contrast to CFTR activators, CFTR potentiators interact directly with CFTR to
increase the PO of the channel while leaving the native regulation intact (Figure 3). The
isoflavone genistein was one of the first CFTR potentiators discovered, already in the
mid-nineties [84,85]. Although generally described as a tyrosine kinase inhibitor, it
was shown to bind CFTR at two distinct sites, with opposite effects, creating a bell-
shaped dose response curve [86,87]. A high affinity stimulatory binding site delays
closing of the channel, thereby improving the PO of CFTR [86]. A second, low affinity
inhibitory binding site was proposed around the CFTR ATP binding sites, which could
prevent binding of ATP and thus inhibit channel opening [87]. The exact binding sites
of genistein have not yet been determined, although the high resolution of cryo-EM
would potentially allow doing so [29]. A clinical trial (NCT00016744) testing genistein
in combination with the proteostasis modulator sodium 4-phenylbutyrate (4PBA; see
Section 3.2.2. Proteostasis Modulators) in people homozygous for the F508del mutation
was eventually withdrawn as different classes of CFTR modulators with higher potential
efficacy were being developed at the same time.
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Several of these novel CFTR potentiators were identified by high throughput screen-
ing (HTS). Phenylglycine (PG-01) and sulfonamide (SF-01) were identified as distinct
chemical classes with CFTR potentiator activity by screening of 50,000 molecules [88]. As
they were screened for their ability to potentiate F508del, mutant CFTR was first rescued
by low temperature (27 ◦C) in order to allow measuring subsequent improved gating
by halide sensitive yellow fluorescent protein quenching, indicative of improved CFTR
function. As with genistein, there was synergy with cAMP agonists such as forskolin.
While only PG-01 could potentiate CFTR mutants other than F508del, it was rapidly
metabolized in vivo and therefore not clinically investigated [88]. Van Goor and col-
leagues screened 228,000 compounds using a fluorescence membrane potential assay on
temperature-rescued F508del-overexpressing cells which, after chemical optimization,
led to the discovery of VX-770 (ivacaftor) [89,90]. This compound was selected as a
good clinical candidate based on its ability to potentiate multiple CFTR mutants, its
high selectivity and promising pre-clinical pharmacokinetic profile. When evaluated
in a clinical trial setting in PwCF carrying the gating mutation G551D, ivacaftor treat-
ment resulted in rapid and substantial improvements in lung function (NCT00909532
and [61]). In 2012, ivacaftor monotherapy became the first approved CFTR modulator,
marketed as Kalydeco™ [60]. Around the same time, VX-770’s mode of action was
further unraveled, showing that it potentiates both mutant and WT-CFTR in a phospho-
rylation dependent but ATP independent manner [91], uncoupling the gating from the
ATP hydrolysis cycle [92]. The exact binding site from which VX-770 exerts its effect
remained elusive, however, and different strategies were employed to identify this site.
NBD2 was dismissed, as VX-770 potentiated CFTR lacking this domain [93]. Byrnes and
colleagues suggested the binding site at the intracellular loop 4 (ICL4), as this site was
protected from hydrogen-deuterium exchange in the presence of VX-770 [94]. Cryo-EM
on the other hand identified a binding site in the PM in a cleft created by TM 4, 5 and
8 [95]. Recently, both the ICL4 and TM binding site were confirmed using labeled VX-770
probes, suggesting there are in fact two binding sites [96]. Whether both sites contribute
to CFTR potentiation, or one of these sites might contribute to the destabilization of
CFTR in the presence of CFTR correctors [97], remains to be investigated further.

A more stable variant of VX-770, VX-561 (formerly: CPT-561; also known as deuti-
vacaftor), where 9 hydrogens are substituted by deuterium, is currently being tested
in two phase 3 clinical trials (NCT05033080 & NCT05076149). Other potentiators, like
H-01 and A-04 [98], P1, P2, P7 (from the Cystic Fibrosis Foundation’s CFTR Compound
Program) and most notably ABBV-974 ([99]; formerly GLPG-1837) clustered together in
combinatorial profiling, suggesting a similar mode-of-action as VX-770 [100]. In partic-
ular, VX-770 and ABBV-974 were shown to compete for the same binding site [101,102].
The efficacy of ABBV-974 on G551D potentiation was three-fold higher compared to VX-
770, albeit with a lower potency [102]. In contrast to VX-770, however, ABBV-974 and
other potentiators did not reduce the stability of the CFTR protein at the PM [98,103,104].
ABBV-974 was tested in clinical trials (NCT02690519 & NCT02707562; [105]), but has
since been replaced by the novel potentiator ABBV-3067 (navocaftor) in the latest com-
bination trial (with corrector ABBV-2222/GLPG-2222; NCT03969888). PTI-808 (also
known as dirocaftor, NCT03500263, [106]) and QBW251 (icenticaftor; NCT02190604)
were two other CFTR potentiators evaluated in clinical trials. While further develop-
ment for CF is not planned, the latter is currently under investigation for the treatment
of COPD, where mucociliary clearance is reduced due to smoke-induced acquired CFTR
loss-of-function [107].

3.1.3. CFTR Co-Potentiators

VX-770, alone or in combination with CFTR correctors, has provided substantial
clinical benefit for PwCF. However, long-term follow-up in PwCF on Kalydeco™ has
shown that lung function still declines while on the treatment, though at a slower pace [108].
Although many factors might contribute to the continued worsening of lung function, it
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has been shown for G551D and other (gating) mutations that VX-770 on its own is not
able to fully restore the electrophysiological properties of mutant CFTR, such as PO, to
WT levels [92,109]. This suggested that combinations of CFTR potentiators might further
improve CFTR function. Indeed, combining VX-770 with other potentiators, such as
genistein, synergistically improved CFTR functional rescue in gating mutants [100,110].
Moreover, it was recognized that potentiator combinations could be beneficial for mutations
with a severe gating defect that are not rescued by current modulators, such as N1303K
and W1282X [111–113].

The flavone apigenin, previously identified as a weak CFTR potentiator [84], was
found in a synergy screen with ivacaftor and forskolin to effectively improve function of
the W1282X truncation product, but only in the presence of VX-770 [113]. As it requires
simultaneous VX-770 administration, apigenin was termed a co-potentiator or type II po-
tentiator (in contrast to type I potentiators like VX-770 or ABBV-974) (Figure 3). Its MoA
of co-potentiation has not been elucidated to date. Similarly, ASP-11 is a co-potentiator
from the same class, equally showing great synergy with VX-770 and forskolin, in
this case, for example, tested on processing and gating mutant N1303K [111,114]. Co-
potentiators were later shown to benefit other NBD2 mutations besides N1303K, such as
I1234del (c.3700A>G; the mutation gives rise to missense mutant I1234V as well as an
alternatively spliced mutant with a six amino-acid deletion, I1234del), and the truncation
products of W1282X and Q1313X (c.3937C>T)—all of which are currently without ap-
proved CFTR modulator therapy [112]. At maximum concentrations of VX-770, however,
no additive or synergistic effect of ASP-11 was seen for F508del, suggesting a mutation
or domain (NBD2) dependent mechanism [111].

VX-445 (elexacaftor), one of the CFTR modulators in Trikafta™/Kaftrio™, was
recently shown to exert both potentiator and corrector activity (see Section 3.2.1. CFTR
Correctors), depending on the mutation studied [114–116]. To date, the potentiator MoA
of VX-445 has not been elucidated yet, although it showed synergy with both type I (e.g.,
VX-770) and type II (e.g., apigenin) potentiators [114,116]. This suggests the existence
of at least three different potentiator MoA which can be targeted simultaneously for
maximized CFTR rescue.

3.2. Improving the Amount of CFTR at the Plasma Membrane: Correctors, Proteostasis Modulators
and Stabilizers

Class II CFTR mutations present with maturation and trafficking defects, leading
to a reduction in the number of channels at the PM. Therefore, folding of the mutant
CFTR channel should be restored to levels that allow ERQC escape and trafficking to
the PM. Alternatively, the degradation of misfolded CFTR by the ER or peripheral QC
should be prevented by other means. Early-on, it was shown that incubation of cells
at lower temperatures, e.g., 26 ◦C, prevented degradation of some class II mutations,
most notably F508del [117], but not others, like G85E (c.254G>A) or N1303K [118,119].
F508del degradation is initiated early in the ER by the so-called chaperone trap [18,19],
and lowering the temperature results in an accumulation of immature F508del protein by
reduced proteasomal degradation, allowing F508del to escape the ERQC and be “rescued”
to the PM [120]. Temperature sensitive mutants could also be rescued after treatment with
10% glycerol, which appeared to have a stabilizing effect on an early folding intermediate by
acting as a chemical chaperone [121]. However, while they are useful tools to study CFTR
(mis)processing, neither can serve as a potential therapeutic strategy. CFTR correctors,
interacting directly with CFTR, or proteostasis modulators and stabilizers, targeting CFTR
interactors, on the other hand, could be translated into therapeutic strategies. As the MoA of
most compounds remain incompletely understood and compounds could potentially exert
multiple mechanisms, the distinction between CFTR correctors, stabilizers and proteostasis
modulators is not always as clear as presented here (Figure 4).
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Figure 4. Strategies to improve the amount of CFTR channels at the plasma membrane (PM).
CFTR correctors (red) interact directly with CFTR to improve its folding and subsequent trafficking.
Targeting CFTR interactors through proteostasis modulation (orange) allows mutant CFTR to escape
early degradation and traffic to the PM. Stabilizers (blue) prolong the duration of CFTR’s residence at
the PM by slowing down its turn-over and peripheral degradation. ERQC: Endoplasmic Reticulum
Quality Control; PQC: Peripheral Quality Control.

3.2.1. CFTR Correctors

Pharmacological chaperones are small molecules that, like the cellular chaperones
present in the ER, assist in the folding of proteins. CFTR correctors can be considered
pharmacological chaperones that, by direct interaction with the protein, improve the
folding of mutant CFTR to such extent that early degradation is at least partially averted
(Figure 5) [122,123]. Combinations of correctors can enhance the level of correction by
combining different MoA [123,124]. While many CFTR activators and potentiators were
rapidly identified, the discovery of CFTR correctors was off to a slower start, as the process
of folding and trafficking involves many more components than its gating (reviewed
in [125]). In addition, HTS assays have long relied mainly on functional CFTR read-outs
that are more readily scaled to allow screening of large libraries [89,126,127]. This strategy
assumed that CFTR, once rescued to the PM, is functional. F508del—and a number of
other processing mutations—however, are known to also suffer from gating defects [54].
To account for this, screening assays looking directly at the trafficking of mutant CFTR
proteins have since also been developed [128–132]. Recently, a fluorescence resonance
energy transfer (FRET) based HTS platform was developed to evaluate the folding of
nascent, ribosome-bound NBD1 mutants to specifically identify compounds able to restore
the conformation of NBD1 [133].
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defects, which alone or in combination (partially) rescue F508del to a more WT-like state.

Screening of 150,000 chemically diverse small molecules by Pedemonte and colleagues
identified the bisaminomethylbithiazole corr-4a as a corrector able to improve F508del, but
not N1303K, trafficking [126]. In addition, CFTR function was restored to a level similar to
that of low temperature rescue in both heterologous and primary epithelial cell models [126].
Corr-4a was found to bind directly to CFTR [122], but the exact binding site and MoA have
not been elucidated to date. Although initial studies suggested that corr-4a mainly stabilizes
NBD2 [123], it appears that MSD2 is essential for corr-4a mediated rescue [134]. More recent
studies also suggest its ability to stabilize MSD2 [135]. Corr-4a remains the archetypical
example of type II correctors (i.e., targeting NBD2-MSD2) [123]. Other correctors of this
type, such as the aminoarylthiazole derivative, FCG, were recently proposed to bind to
NBD2 [136,137]. The MoA of type II correctors is complementary to that of other corrector
types and hence allows to be added in conjunction (Figure 5) [120,123,138,139].

Another large screen of 164,000 synthetic compounds by Van Goor and colleagues
identified the quinazoline compound VRT-325 as a corrector of F508del [89]. VRT-325
promoted the interaction between NBD1 and both MSD1 and MSD2 [140], and addi-
tionally could rescue folding mutants of the P-glycoprotein (a close family member of
CFTR) [141]. At high concentrations, however, it was shown to inhibit CFTR function in
a similar manner as the CFTR inhibitor Inh172 [142]. Another hit from the same screen,
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VRT-768, was optimized by extensive medicinal chemistry and structure activity analy-
sis to VX-809 (lumacaftor) [143]. VX-809 was the first CFTR corrector that—together
with potentiator VX-770—obtained market approval (OrkambiTM), as it significantly,
though modestly, improved lung function in F508del homozygous PwCF [66]. Insights
into VX809’s MoA were obtained from mutagenesis studies, where the limited additivity
of VX-809 and revertant mutant R1070W suggested that both correct F508del folding
via a similar mechanism, i.e., by restoring the NBD1:ICL4 interface [120,123]. At around
the same time, it was shown that VX-809 is not able to correct the thermodynamic
instability of the NBD1 domain [144], but rather seemed to stabilize MSD1 [38,145].
On the one hand, several studies have indeed showed that VX-809 assisted in com-
pacting several transmembrane spans in MSD1 [146–148], although other studies have
suggested that VX-809 interacts with NBD1 [149], both NBD1 and cytosolic loop 1 [150],
or by stabilizing the protein once it is present at the PM [151]. By click-chemistry,
VX-809 was shown to directly bind to CFTR [152], although the exact binding site and
MoA of VX-809 were only recently elucidated by cryo-EM [34]. This method revealed
that VX-809 fills an internal cavity which is intrinsically thermodynamically instable,
formed by transmembrane spans 1, 2, 3 and 6 in MSD1. This finding is in line with
other recent studies suggesting that VX-809 exerts its effects early in the biogenesis
of CFTR [148], and might explain how VX-809 is also able to improve folding and
trafficking of the WT-CFTR [47].

While VX-809 used to be the prototypical example of type I correctors and is still
used in many experiments, it has now mainly been replaced in the clinic with VX-661
(tezacaftor), a molecule related to VX-809 which causes fewer side effects in PwCF
and has an improved overall safety profile [69–71,153]. It shares its binding site and
MoA with VX-809 [34]. Tezacaftor is market-approved in combination with poten-
tiator VX-770 (Symdeko™/Symkevi™) or VX-770 and corrector/potentiator VX-445
(Trikafta™/Kaftrio™). Other type I correctors, such as C18 (VRT-534; from the Cystic Fi-
brosis Foundation’s CFTR Compound Program), ABBV-2222 (formerly GLPG-2222; also
known as galicaftor), FDL-169 and trimethylangelicin (derivatives) rescue CFTR through
a similar MoA [123,138,154,155]. ABBV-2222 was tested in clinical trials and was shown
to be well-tolerated, but no change in lung function was observed ([156] & NCT03045523,
NCT03119649). New trials combining ABBV-2222 with the next generation potentiator
ABBV-3067 are currently ongoing (NCT03969888). More recently, a novel type I correc-
tor, ARN23765, was described with picomolar potency (EC50: 38 pM)—which showed
prolonged CFTR rescuing effects in vitro (>36 h) at concentrations 5000 times lower
compared to VX-809 [157].

As type I and II correctors or combinations were unable to rescue all aspects of the
F508del folding defect, in particular the thermodynamic instability of NBD1, the search
for novel corrector types continued. Screening of 600,000 compounds identified one of the
first type III correctors, 4172, which was proposed to bind and stabilize NBD1 [138,139].
It shares a corrector MoA with the next generation correctors VX-445 (elexacaftor; part of
the triple combination Trikafta™/Kaftrio™) [138,158] and VX-659 [159]. While the exact
binding site and corrector MoA of VX-445 remain unknown, several studies suggest a
binding site located at the NBD1 [138,160]. Importantly, VX-445 could at least partially
prevent thermal unfolding of NBD1, the hallmark of type III correctors [138].

Several other correctors, whose MoA are not covered in corrector types I-II-III or have
yet to be elucidated, have also been described. One of the first CFTR correctors to be
identified, the benzo(c)quinolizinium compounds (MPBs) were thought to bind NBD1 and
promote maturation as well as stimulate function [161–163]. Bis-phosphinic acid deriva-
tives c407 and G1, targeting the NBD1, were recently modeled to fill the cavity left by
the missing phenylalanine side chain in F508del, thereby restoring the NBD1:ICL4 inter-
face [164,165]. In cell models, additivity of c407 with VX-809 suggests these compounds
might represent a complementary MoA with existing CFTR corrector types. Other phar-
macological chaperones targeting NBD1 are phenylhydrazones [166], such as RDR-1 [130],
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which enhanced CFTR currents in differentiated human bronchial epithelial cell (HBE)
cultures synergistically with VX-809 and MCG1516A [167], and which, since then, have
been proposed to bind at the NBD1:NBD2 interface [168].

3.2.2. Proteostasis Modulators

Proteostasis modulation has long been considered for the causal treatment of CF as
a means of rescuing mutant trafficking to the PM (Figure 4). It is an umbrella term for a
diverse set of strategies that aim to indirectly rescue mutant CFTR to the PM, by interacting
with proteins involved in (mutant) CFTR degradation. One of the first compounds that
was found to improve the expression of F508del at the PM was 4PBA [169], shown to
increase the expression of pro-folding chaperones like Hsp90 and ERp29 [170,171]. Over-
expression of ERp29 rescued F508del to the PM in bronchial epithelial IB3-1 cells, while
knockdown decreased levels of PM WT-CFTR [170]. A pilot clinical trial showed partial
restoration of nasal epithelial CFTR function, but no reduction in the concentration of sweat
chloride [172]. It was later tested in combination with genistein as well (NCT00016744,
see Section 3.1.2. CFTR Potentiators). Currently, an optimized pro-drug variant of 4PBA,
glycerol phenylbutyrate (GPBA), is being tested in a phase I/II study (NCT02323100). Ad-
ditional ER chaperones were identified whose modulation could rescue F508del trafficking.
Proteomics and differential interactomics between WT-CFTR and F508del revealed inhibi-
tion of Hsp90 co-chaperones Aha1 [173] or PTPLAD1 [174] as potential novel therapeutic
strategies. Another way of altering the expression of ER chaperones is by inhibiting specific
histone deacetylases (HDACs). This was studied, for example, by inhibiting HDAC7 using
HDAC inhibitors (HDACi), such as suberoylanilide hydroxamic acid (SAHA, vorinostat)
or by siRNA knockdown, both of which improved the PM expression and activity of
F508del [175]. Other HDACi, such as the fungal metabolite apidicin, showed improved
F508del rescuing potential, although they were less potent at HDAC inhibition [176]. Sev-
eral HDACi have also been shown to rescue a panel of rare CFTR mutants, in particular
class II mutations P67L (c.200C>T) and E92K (c.274G>A) [177]. Their biggest caveat, it
seems, is that CFTR rescue by HDAC modulation appears highly cell-type-dependent. For
example, their rescuing effects in the immortalized CFBE41o- lung cell line, where F508del
overexpression is driven by a viral promoter, could not be confirmed in primary airway
cells [178,179]. Other primary cell types remain to be investigated though.

Besides modulating the expression of CFTR chaperones, another strategy consists
of disrupting the calnexin/calreticulin ERQC checkpoint. The α-1,2-glucosidase in-
hibitor miglustat (n-butyldeoxynojirimycin), which is used to treat type I Gaucher and
Niemann-Pick type C disease [180], increased F508del trafficking via the inhibition of the
deglycosylation of nascent proteins, which usually takes place at this checkpoint [181].
Although F508del function was rescued in airway epithelial cells and CF mice, no clinical
benefits were observed in a phase II trial of miglustat in F508del homozygous PwCF [182].
The small molecule thapsigargin has been shown to disrupt the interaction between
F508del and calnexin by depleting ER Ca2+, which rescued the nasal epithelial potential
defect in F508del mice [183]. Roscovitine (seliciclib) increased F508del trafficking by a
similar MoA, as well as by inhibiting proteasomal activity, thus preventing ERAD [184].
Moreover, it was shown to have additional favorable properties for PwCF, as it dis-
plays anti-inflammatory properties, such as enhanced neutrophil clearance and reduced
eosinophil degranulation, through its inhibition of cyclin-dependent kinases (CDKs)
([185]; reviewed in [186]). When tested in a Phase II trial (ROSCO-CF, NCT02649751),
unfortunately, no significant improvements were found in spirometry, inflammation,
infection or sweat chloride [187]. In the meantime, structural roscovitine-analogues have
been synthetized, which were recently found to also restore trafficking of other proteins
similar to CFTR, such as ABCB4, in cell models [188].

Curcumin is a natural product which was first described to correct F508del traf-
ficking via its interaction with the ER-located calcium pump (SERCA) [189]. However,
later studies could not confirm this rescue [190,191]. As it is structurally related to CFTR
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potentiator genistein, it was consequently hypothesized that, like genistein, it could
also bind directly to CFTR and increase its PO [192]. Recently, a small clinical study
investigated the combination of curcumin and genistein in PwCF carrying at least one
S1251N (c.3752G>A) gating mutation (NTR4585 & [193]). While some functional rescue
was measured in rectal organoids of the respective involved PwCF, it was low compared
to VX-770 treatment [193]. Clinically, no clear effect was observed, although it was
argued that the plasma concentrations measured for both compounds were much lower
than those typically used in in vitro studies.

Another investigated pathway to rescue trafficking of misfolded CFTR, is to inter-
fere with the unfolded protein response (UPR). As such, latonduine, a sponge alkaloid,
and related analogues identified by phenotypic screening, were reported to inhibit
the activity of poly-ADP ribose polymerases (PARP) 3 and 16 [194]. These regulate
UPR via ADP-ribosylation of IRE-1-α and PERK, two ER stress sensors that initiate
UPR. Inhibition of UPR by PARP3 and PARP16 rescued F508del trafficking in cell mod-
els [194–196]. Misfolded CFTR proteins are “flagged” for degradation by ubiquitination.
Preventing ubiquitination thus presents another means for enhancing ER escape and
trafficking. In that light, the E1 ubiquitin-activating enzyme could be inhibited by
PYR-41, a small molecule which synergistically with corrector C18 rescued F508del
trafficking and function, as by itself it only increased the amount of immature, ER-
localized protein [197]. This compound was further chemically optimized into “7134” in
order to reduce toxicity while maintaining its ability to augment F508del function when
co-treated with VX-809 [198]. Recently, Borgo and colleagues used the small molecule
inhibitor TAK-243 (also known as mln7243) of the ubiquitin-activating enzyme UBA1
to enhance the efficacy of Trikafta™/Kaftrio™ treatment in primary airway epithelial
cells [199]. This effect was not limited to F508del, but also translated towards other
processing mutations, including the difficult to rescue mutation N1303K. Alternatively,
preventing ubiquitination by inhibiting the ubiquitin ligase RNF5, rescued F508del in
a primary airway epithelial cell model [200]. As another approach, de-ubiquitination
targeting chimeras (DUBTAC) can be used to recruit de-ubiquitinases and reverse ubiq-
uitination of misfolded proteins [201]. For CF it was shown that F508del could be
stabilized in epithelial cells by linking the OTUB1 de-ubiquitinase recruiter EN523 to
VX-809—which conferred specificity to CFTR—and allowed trafficking to the PM and
subsequent potentiation by VX-770 [201]. Small Ubiquitin Like Modifier (SUMO) con-
jugation, SUMOylation, is a post-translational modification which can regulate a vast
number of cell processes, including protein degradation [202]. Prevention of SUMOyla-
tion through SUMO2/3 by overexpression of activated STAT isoform 4 (PIAS4), slowed
down the degradation of immature F508del-CFTR as well as several other processing
mutants [203,204]. Improved folding (i.e., increased mature/immature CFTR ratio
on Western blot analysis) was also obtained for a panel of rare mutations, including
N1303K, when PIAS4 overexpression was combined with the type I corrector C18 [203].
For a more extensive discussion of ubiquitination as a target for CFTR rescue, we refer
to [205], but in summary, any strategy interfering with this process is able to promote
the escape of misfolded CFTR, though predominantly in conjunction with correctors
does this lead to improved CFTR function.

Moving further in the biogenesis cycle of CFTR, enhancing autophagy is another
strategy proposed to enhance expression of mutant CFTR at the PM [206]. In that context,
cysteamine, approved for the treatment of cystinosis [207], was tested in CF mice, followed
by a small open-label clinical trial in PwCF, where it was shown to reduce sweat chloride
levels in F508del carrying PwCF, but not in a cohort which contained PwCF carrying
two non-F508del mutations not responsive to current CFTR modulators [208,209]. More
recently, however, functional rescue by cysteamine and thymosin α1—the rescue by the
latter also reported to occur through promoting autophagy [210]—could not be confirmed
by several other labs [211–213], dampening the enthusiasm to stimulate autophagy as a
way of reversing the CF phenotype.
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Phosphodiesterase type 5 (PDE5) inhibitors cause vasodilation via smooth muscle
relaxation by inhibiting cGMP degradation [214]. PDE5 inhibitor sildenafil and structural
analogues, such as vardenafil and KM11060, were reported to enhance CFTR maturation,
i.e., the fully glycosylated “band C” on Western blot, PM expression and function [215–217].
Although the MoA by which maturation and PM expression are rescued by these com-
pounds remains unclear, it is possible that its phosphodiesterase modulation also activates
CFTR channels [216,218]. Since sildenafil was already FDA approved for erectile dysfunc-
tion and pulmonary arterial hypertension [214], it could relatively easily be repurposed
to PwCF. Although the therapy was safe and well-tolerated, no clear clinical benefit was
observed (NCT00659529, NCT01132482, [219]). Similarly, the soluble guanylate cyclase
stimulator riociguat, which is also approved (as Adempas™) for the treatment of pul-
monary hypertension [220], modulates the same pathway as the above phosphodiesterase
inhibitors [221]. However, while CFTR processing and function was increased in vitro and
in vivo in F508del mice, it did not improve CFTR activity or lung function in the Rio-CF
study (NCT02170025), a small clinical trial in F508del PwCF [221,222].

A final example of proteostasis modulators is the non-steroidal anti-inflammatory drugs
(NSAIDs) such as ibuprofen and glafenine. These block the production of prostaglandins
and thromboxanes by inhibiting the cyclooxygenase (COX) enzymes that convert arachidonic
acid to prostaglandins [223]. They were also reported to rescue CFTR expression [132,224].
Recently, Carlile and colleagues showed that glafenine and analogues corrected misfolded
class II CFTR by preventing the stimulation of the prostaglandin E2 receptor PE4, which
was confirmed by siRNA mediated knockdown of PE4 [225]. It was further proposed that
targeting this metabolic pathway, rather than specific protein production/QC pathways, could
potentially rescue misfolded proteins other than CFTR as well [225].

In summary, the search for proteostasis modulators able to promote mutant CFTR
trafficking to the PM has been extensive. As evidenced by the numerous examples discussed
in this section, many different strategies have been investigated. However, none of them
have translated so far into a therapy for PwCF. The main reasons for this are the occurrence
of cell-type specific rescue, often not translating to rescue in primary cells, and the lack
of clinical benefit in PwCF in clinical trials. This highlights how the choice of cell model
greatly influences the degree of CFTR rescue, in particular when rescued via non-direct
mechanisms such as proteostasis modulation. Any potential strategy (including, but not
limited to, proteostasis modulation) should thus be tested in primary cell models with
good translational value as soon as possible, to prevent attrition at later stages.

3.2.3. Stabilizers

As CFTR has now reached the PM, with or without the help of CFTR correctors and
proteostasis modulators, the next important step is to make sure it stays there. Once at
the PM, CFTR is continuously endocytosed and recycled back to the PM [16]. During this
process, misfolded proteins, however, are recognized by the peripheral quality control
(PQC) and, rather than recycled, are instead ubiquitinated to prime them for lysosomal
degradation, reducing the number of available CFTR channels [16,23]. Stabilizers thus
aim to improve the amount of CFTR channels at the PM by stabilizing the CFTR protein
and slowing down its turn-over, a strategy which is complementary to CFTR correctors
or proteostasis modulation (Figure 4). As discussed earlier, it is not always possible to
discriminate between CFTR correctors, proteostasis modulators and stabilizers, especially
as not all the mechanisms of these compounds have been elucidated in detail yet. Compared
to correctors and proteostasis modulators, only a few compounds have been developed to
specifically target peripheral stability of the CFTR protein. The only CFTR stabilizer tested
in clinical trials to date is cavosonstat (N91115), an inhibitor of the S-nitrosoglutathione
reductase (SNGOR) ([226], NCT02275936, NCT02013388, NCT02500667). This compound
exerts its CFTR stabilizing function by decreasing the internalization rates of CFTR and thus
extending its half-life at the PM [227,228]. Specifically, this is achieved through interfering
with the PQC. Cavosonstat preserves S-nitrosothiols by inhibiting SNGOR, which results
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in the nitrosylation of Hsp70/Hsp90 organizing protein (HOP). This, in turn, lowers
the interaction of CFTR with CHIP (C-terminus of Hsp70 interacting protein), thereby
preventing its degradation. Although the Phase I trial was not powered to evaluate efficacy,
no effects were observed with mono-therapy of cavosonstat in F508del homozygous PwCF,
besides a small reduction in sweat chloride [226]. In a Phase II follow-up study where
cavosonstat was administered together with ivacaftor and lumacaftor, no clinical benefits
were observed [229].

In addition, CFTR modulators have been found to influence CFTR stability. As such,
the corrector VX-809 and other type I correctors were shown to not only correct folding
in the ER, but also improve stability once at the PM [151]. In contrast, potentiator VX-770
destabilizes corrector type I-rescued CFTR [97], even in the presence of VX-445 [230]. Other
potentiators with similar mechanisms as VX-770 do not destabilize the protein, so the
choice of combination of small molecules can affect protein stability [98,230]. Alternatively,
the destabilization could be prevented by co-treatment with the hepatocyte growth factor
(HGF) [231,232], which stabilizes CFTR by promoting its anchoring to the actin cytoskeleton
via the Rac1 GTPase [232,233]. The vaso-active intestinal peptide (VIP) has been shown to
increase the membrane localization by promoting interaction between CFTR and the N+/H+

exchanger regulatory factor 1 (NHERF1) and ezrin/radixin/moesin (ERM) complex, while
at the same time inhibiting interaction with the CFTR associated ligand (CAL) [234]. Activa-
tion of the cAMP sensor EPAC1 also promoted the interaction between CFTR and NHERF1,
stabilizing CFTR at the PM [235,236]. Inhibition of the protease calpain 1, on the other hand,
stabilized CFTR through promoting its interaction with ezrin [237]. Other strategies have
also focused on these interaction partners, by overexpressing NHERF1 [238], inhibiting
CAL [239], or by preventing endocytosis [240,241] and promoting recycling (reviewed
in [242]). CFTR PM levels have furthermore been shown to be regulated through phospho-
rylation of Y512 by the spleen tyrosine kinase SYK [243]. Consequently, inhibition of SYK
or the adaptor SHC1, which recognizes phosphorylated Y512-CFTR, increased the amount
of PM CFTR [244].

In conclusion, stabilizing CFTR at the PM is, in theory, an attractive way to increase
CFTR PM density. However, all specific stabilizing strategies are still in early pre-clinical
development. Therefore, on the short term, stabilization of CFTR is most likely to occur
from optimizing CFTR modulator combinations to avoid destabilization.

3.3. Improving the Amount of Immature CFTR Protein

So far, all strategies discussed have focused on modulating the mutated CFTR
protein to, at least, a certain level of CFTR function. However, these strategies assume
there is sufficient immature protein available to correct. In the next section, we will
focus on strategies that aim to enhance the amount of immature protein by interacting
with the CFTR mRNA and the process of translation rather than to modulate the mutant
protein itself. The new pool of available immature protein can then be rescued further by
combining it with CFTR correctors and potentiators as needed. In certain cases, however,
it might suffice to modulate the translation process in the ER to overcome CFTR defects.
By reducing ribosome velocity during translation for example through suppression of
the ribosomal protein L12 (RPL12), mutant CFTR trafficking and function has been
shown to be partially restored [245,246].

In the next paragraphs, we will discuss other means of increasing the amount of imma-
ture protein. First, we will detail the development of amplifiers and miRNA modulation,
which could be of use to rescue CFTR mutations where protein is still produced, i.e., class
II-VI. Second, we will focus on NMD suppression and TRIDs, potential therapies for PwCF
with pre-termination codon (PTC) mutations.

3.3.1. Amplifiers

An HTS of 54,000 compounds performed by Giuliano and colleagues identified a novel
CFTR modulator, which was neither a potentiator nor a corrector but showed synergism
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with both [247,248]. This modulator, PTI-CH, termed an amplifier, increased the amount
of immature CFTR by stabilizing the mRNA, which resulted in a 1.5-2-fold increase in
available CFTR mRNA transcripts [248]. This strategy could be of particular interest for
Class II mutations, as it would increase the pool of immature protein available for corrector
rescue, as well as for Class V mutations, where, due to cryptic splice sites only a fraction
of the CFTR mRNA is correctly spliced (Figure 6). PTI-CH was, furthermore, found to
act co-translationally by promoting translation and insertion of the first transmembrane
spans into the ER, a process which is inherently inefficient [249]. PTI-CH was shown
to bind directly to the poly(RC) binding protein 1 (PCBP1), whose interaction increased
CFTR mRNA in the ER. This interaction appeared specific for the CFTR mRNA [249],
though in a mutation-agnostic manner, as it was shown to stabilize both F508del, I1234V
and WT mRNA [248,250]. Based on these promising results, the optimized amplifier
PTI-428 (nesolicaftor), was tested together with potentiator PTI-808 and corrector PTI-
801, in a phase 1/2 clinical trial in PwCF carrying F508del alleles (NCT03500263). On
average, an improvement in lung function of 8% was observed [251]. While the absolute
improvement was lower compared to that of Trikafta™/Kaftrio™, rescue was highest in
subgroups with the highest disease burden (+10–12%) or with poor response to previous
CFTR modulators (+12%). Recently, these compounds (including the amplifier) were
licensed so that development may continue [252].
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Figure 6. Amplifiers stabilize the CFTR mRNA and thereby increase translation, enlarging the pool
of immature CFTR protein. Amplifiers (red) are of particular interest for the treatment of Class II and
V mutations. Top: Class II mutations are misfolded and only a fraction reaches the plasma membrane,
even in the presence of CFTR correctors (blue). Amplifiers provide more immature protein that
can subsequently be rescued with CFTR modulators. Bottom: Class V mutations introduce cryptic
splice sites, resulting in a mix of normal and alternatively spliced (yellow) CFTR mRNA. The fraction
of normal mRNA gives rise to wild-type CFTR, but the number of channels is severely reduced.
Enhancing the number of correct mRNA transcripts results in more CFTR protein at the PM.
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3.3.2. miRNA Modulation

Post-transcriptional regulation of CFTR mRNA by microRNAs (miRNAs) may
affect the number of available transcripts, as exemplified in the CF airway epithelium
(reviewed in [253,254]). Among the miRNAs upregulated in PwCF, several were found
to negatively regulate CFTR expression by interacting with the 3′ untranslated region
(UTR) of the CFTR mRNA, including miR-145-5p and miR-509-3p [255,256]. Inhibition
of these miRNAs with peptide nucleic acids (PNA) directed against them resulted in
increased expression of WT or F508del CFTR [257–259]. However, these strategies do
not only inhibit the interaction between the miRNA and CFTR template, but also its
interaction with other targets, potentially causing unwanted side-effects. To overcome
this issue, De Santi and colleagues focused on the development of a CFTR-specific
approach by blocking specific miRNA binding sites in the CFTR 3′UTR, the so-called
target site blockers (TSBs) [260]. They showed that treatment with TSBs significantly
enhanced rescue of F508del by VX-770 and VX-809/VX-661 in a CF bronchial epithelial
cell line.

3.3.3. Nonsense Mediated mRNA Decay (NMD) Suppression

The majority of PwCF who are currently not eligible for causal CF therapies have
one or two nonsense CFTR mutations. Approximately 5% of all CF alleles in the CFTR2
database are nonsense mutations, which create PTCs, giving rise to truncated proteins but
also, in many cases, which prime the CFTR mRNA for NMD (Figure 7; left panel). For a
review on NMD in health and disease, we refer to [261]. A PTC can trigger NMD when it
generates long 3′UTRs or when exon junction complexes (EJC) are formed downstream
of the PTC. NMD reduces the amount of mutant CFTR mRNA and hampers subsequent
rescue of the CFTR protein by other means, such as by TRIDs (discussed next) and by CFTR
modulators [262,263]. The level of NMD differs not only between cell-types, but also
depends on the specific PTC mutation. In addition to this, individual variation is at play,
as seen between PwCF with the same genotype [46,262,264,265]. Clarke and colleagues
reported that in primary nasal epithelial cells from 10 PwCF carrying the G542X/F508del
genotype, mRNA expression of the G542X alleles was reduced by ~60% [264]. Differences
in the abundance of the 3′ and 5′ of the CFTR mRNA suggest that some of the mRNA
is partially degraded and not a suitable substrate for full-length protein translation [46].
Making sure that a sufficient amount of suitable CFTR mRNA is available is therefore
the first important step towards effective treatments for PTC-induced CF (Figure 7; right
panel). Several strategies have been proposed in pre-clinical models to prevent NMD
and enhance mRNA expression of PTC CFTR (reviewed in [266,267]). Inhibition of the
NMD activator serine/threonine-protein kinase SMG1, via the small molecule inhibitor
SMG1i, resulted in increased levels of G542X, W1282X and other PTC containing mRNAs
in various models, including airway epithelial cells, primary rectal organoids and several
CF animal models [58,268–274]. As SMG1 is active in other cellular processes besides NMD,
its inhibition causes considerable toxicity, which likely precludes it from translation into
a therapy [272,275]. Similarly, siRNA mediated knockdown of the regulator of nonsense
transcripts, UPF1—which gets phosphorylated by SMG1 [276]—increased mRNA levels
of exon 22 PTC mutations, increasing their overall response to other therapies [277]. In
addition, inhibition of the interaction between UPF1 and SMG7 by small molecule NMDI-
14, suppressed NMD and stabilized W1282X mRNA [263]. Some compounds, like the
clinically approved drugs amlexanox and escin were suggested to provide dual NMD
and PTC suppression [272,278,279]. All of these treatments, however, inhibit the NMD
machinery in a non-CFTR specific manner, thereby posing potential unwanted side-effects
related to unspecific NMD suppression.

A more targeted approach can therefore be achieved by designing antisense oligonu-
cleotides (ASO) that bind the CFTR mRNA and prevent EJC deposition downstream of
the PTC [280]. Alternatively, removal of the PTC from the mRNA allows the prevention
of NMD. Both strategies were shown to rescue the W1282X mutation either by removing
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the gene downstream of the W1282X mutation (and thus removing the remaining EJCs) by
means of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene
editing [281] or by inducing skipping of exon 23 (CFTRex23del), in which W1282X is lo-
cated, using ASOs [282–284]. Exon 23 is an in-frame exon [284], meaning that no additional
mutations or frameshifts are introduced by the deletion of this exon. While CFTRex23del is
hardly functional on its own, it can be rescued by CFTR modulators [282–284]. Whether
this exon skipping strategy can also be applied to other PTC mutations outside of exon 23,
remains to be investigated. In general, suppression of NMD will need to be paired with
other strategies, such as TRIDs (see next section) and CFTR modulators, to reach sufficient
levels of CFTR function (Figure 7, right panel).
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3.3.4. Translational Readthrough Inducing Drugs (TRIDs)

Saving the PTC mRNA molecules from degradation, however, is only the first
hurdle to restoring the function of most PTC CFTR mutants. The PTC will still give
rise to a truncated protein, which, in most cases, is not functional or responsive to
CFTR modulators. Suppressing this premature translation termination would there-
fore be highly favorable. Aminoglycoside antibiotics such as gentamicin and G418
(geneticin) have been shown to promote translational read-through via near-cognate
mispairing of an aminoacyl-tRNA with the PTC for several CFTR mutations in cell
models and a G542X mouse model [285–287]. Trials in PwCF showed variable responses
to treatment with aminoglycosides without prolonged clinical benefit [288–290]. In
G542X mice, the aminoglycoside amikacin was more effective at suppressing prema-
ture translation termination compared to gentamicin [291]. However, rescue by to-
bramycin, another aminoglycoside antibiotic commonly prescribed in CF, was much
more modest [287,292].

The oxadiazole PTC124 (ataluren) was developed as a non-aminoglycoside alternative
with TRID properties that promotes ribosomal readthrough of PTCs, but not normal
termination codons [293]. This molecule was discovered in a generic HTS using a PTC-
containing luciferase reporter. Currently, it is EMA approved to treat nonsense forms
of Duchenne muscular dystrophy [294], but it was quickly also tested for treatment of
PTC mutations causing CF [295]. While early clinical studies suggested a beneficial effect
of PTC124 ([296–298] and NCT00237380, NCT00351078, NCT00458341), ultimately no
significant effect on lung function was observed in a Phase III trial ([299] and NCT00803205).
Interestingly, in rectal organoids of human or mouse origin, PTC124 also failed to rescue
CFTR function [300,301]. Other oxadiazoles were shown to be more efficient than PTC124
in a Fisher rat thyroid (FRT) cell model [302,303], but for now, none have yet reached
clinical testing.

Novel, synthetic aminoglycosides, such as NB54 and NB124 (ELX-02), had a more
favorable toxicity and bio-availability profile compared to first generation aminoglycoside
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TRIDs [304–306]. The most promising TRID currently in clinical evaluation is ELX-02 [307].
Phase I trials have shown its safety ([308] and NCT0280796, NCT03292302), and currently,
Phase II trials are ongoing to evaluate its efficacy (NCT04126473 and NCT04135495). In
contrast to PTC124, ELX-02 has been shown to restore CFTR function in G542X human rectal
organoids [309]. Moreover, it was able to rescue several other PTC mutations in isogenic
human bronchial cell lines (16HBEge) [268]. Here, ELX-02 was combined with several other
treatments, including NMD suppressors, amplifiers, correctors and potentiators, to reach
maximum functional rescue.

Indeed, preventing premature translation termination does not necessarily fix the
resulting protein. Instead, it will often alter the nonsense mutation into a missense mu-
tation, in the case that a non-native amino-acid is incorporated [310]. Which amino-acid
is incorporated depends not only on the identity of the PTC, but also on the sequence
context in which it resides. For example, while G542X and W1282X are both UGA PTCs,
different amino-acids were found to be incorporated after treatment with TRIDs [310].
Similarly, G542X appears to be more responsive to TRIDS than W1282X due to differences
in the respective sequence contexts [311]. To rescue the resulting missense mutations, many
pre-clinical studies now focus on combining TRIDs with other classes of compounds, which
in most cases synergistically improves functional rescue [58,263,268–274,277].

Recently, a HTS of >750,000 compounds identified SRI-37240 and its more potent
derivative SRI-4131 as novel TRIDs with a mechanism that is complementary to that of
aminoglycosides and oxadiazoles [312]. These compounds prolong the translational pause
at the PTC position in the transcript by reducing the abundance of translation termination
factor eRF1, thereby promoting readthrough. Additionally, another HTS 1536-well platform
to phenotypically screen specifically for G542X readthrough and subsequent rescue by
CFTR modulators was recently published [313]. Other novel strategies have focused in
particular on restoring native amino-acid incorporation. Using anticodon engineered
(ACE)-tRNAs, this could indeed be achieved for G542X, R1162X (c.3484C>T) and W1282X
without disrupting physiological termination codons [314,315].

3.4. Producing Correct CFTR

The previously discussed strategies have focused on enhancing CFTR production,
trafficking, function and stabilization. Alternatively, rather than repairing an “impaired”
CFTR protein, one might circumvent this by providing either a new “blueprint” to generate
WT-CFTR or by repairing the mutation on the mRNA or DNA level (Figure 8). The final
strategies we will discuss in this review will focus on restoring the production of WT-CFTR
as a causal treatment for CF.
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3.5. mRNA Repair

Two decades ago, it was shown in a minigene model and in F508del bronchial epithe-
lial cells that the CFTR pre-mRNA could be repaired by the use of spliceosome-mediated
RNA trans-splicing (SMaRT) with a super-exon for exons 11–27 (10–24 in the old nomencla-
ture) [316,317]. The super-exon contains multiple exons and replaces the sequence down-
stream of the trans-splice site on the mRNA, inserting the CUU that is missing in F508del.
While this repair was aimed at F508del, it could be extrapolated to other mutations located
in exons 11–27. A duplex of two short single complementary-strand oligonucleotides that
were constructed to repair the F508del mutation also led to phenotypic recovery of channel
currents in F508del overexpressing cells [318]. One of these oligos was further developed
into eluforsen (QR-010), a 33 nt ASO, which restored F508del-CFTR function in a differenti-
ated airway epithelium and in F508del mice [319]. The mechanism by which the antisense
oligo corrected the F508del mRNA remains unknown. Eluforsen was administered via in-
halation in two small trials to F508del homozygous PwCF (NCT02532764 & NCT02564354).
While treatment was well tolerated and the respiratory symptom score (CFQ-R RSS) and
CFTR currents, as measured by nasal potential difference (NPD), improved, no significant
change in lung function was obtained four weeks after treatment [320,321], leading to a
halt in further clinical development to date.

mRNA repair strategies have not solely focused on F508del, though. Using an engi-
neered site-directed RNA editase, the W496X (c.1487G>A) mRNA expressed in Xenopus
oocytes, could be corrected [322]. More recently, Melfi and colleagues edited the W1282X
mRNA in cell lines using “REPAIRv2” (RNA Editing for Programmable A to I Replace-
ment, version 2), a CRISPR/dCas13b-based molecular tool which allows mRNA editing of
adenosines to inosines, which are read as guanosines [323]. However, the editing efficiency
would need to be further optimized in order to reach sufficient rescue.

Class V CFTR mutations cause cryptic splice sites, which lead to the insertion of additional
nucleotides into the mRNA. Although a fraction of the CFTR mRNA is correctly spliced and
creates WT-CFTR channels, this is usually not enough to ameliorate CF symptoms. Restoring
the correct splicing of these mutations would therefore be a promising therapeutic approach
as well. Splice altering ASOs are already used in the clinic, for example to treat spinal
muscle atrophy (nusinersen/Spinraza™) [324]. In CF, splice altering ASOs were shown to
correct the 2789+5G>A (c.2657+5G>A) [325] and 3849+10kbC>T [326–328] mutations. The
clinical candidate ASO SPL84-23 was able to rescue CFTR expression and function in primary
bronchial and nasal epithelial cells to ~40% of WT [328], received orphan drug designation
recently by both the FDA and EMA, and a first clinical trial is planned for the end of 2022 [329].

3.6. mRNA Therapy

One alternative to mRNA editing is to bypass the mutated mRNA altogether and
provide a WT-transcript instead. In this way, by producing WT-CFTR, the CF phenotype
can be reversed. As this approach is mutation agnostic, e.g., not dependent on the CFTR
genotype, it can potentially be used for all PwCF. Delivery of the mRNA molecules to the
right cells, however, is one of the major challenges for mRNA replacement therapy in CF
and in general [330]. Besides the need to be safe, reliable and efficient, the mRNA should
be stable enough to allow sufficient translation [331]. For an in-depth discussion on mRNA
delivery we refer to [330,331]. The use of mRNA in medicine has taken a tremendous
flight with the implementation of mRNA vaccines against SARS-CoV-2 (reviewed in [332]).
For CF, the first-in-man therapeutic mRNA trial (RESTORE-CF) is currently underway
(NCT03375047). MRT5005 is a WT, modified CFTR mRNA that is provided to airway cells
via nebulization [333,334]. The most recent interim results suggest that multiple doses of
the mRNA treatment are safe and well tolerated, although at this stage no change in lung
function was observed [333]. The mRNA sequence and lipid nanoparticle delivery vehicle
have received further optimization and are planned to be tested in a clinical trial in the
near future as a next generation mRNA therapeutic [333]. ARCT-032 (LUNAR-CF), another
nebulized mRNA replacement therapy, is also in preparation for clinical testing [335].
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Recent preclinical work showed that chitosan nanoparticles, loaded with both the WT-
CFTR mRNA and capsaicin, the latter blocking the epithelial sodium channel ENaC that is
hyperactive in CF, could normalize both CFTR and ENaC function [336]. The novelty of
this strategy lies in its ability to target two CF-related defects simultaneously.

3.7. Targeting the DNA—Towards a Cure for CF

Up to now, we have discussed strategies targeting either the CFTR protein or its
mRNA. However, none of these therapies will be able to cure CF. As long as the underlying
defect, e.g., the mutation within the CFTR gene, remains present, so will the disease. If
protein or mRNA therapies are suspended, the disease will return in full force. In fact,
VX-770 withdrawal syndrome has been described in PwCF with the G551D mutation
after cessation of Kalydeco™ treatment [337]. In addition, the currently available CFTR
modulator treatments have not been able to fully halt disease progression. Long term follow-
up studies of Kalydeco™—which has been on the market the longest, since 2012—have
shown that lung function continues to decline, although at a slower pace compared to
the control group [108]. Gene therapy thus holds potential to cure PwCF. Ever since the
discovery of the CFTR gene in 1989, this has somewhat been the holy grail of causal CF
therapies. Recently, the Cystic Fibrosis Foundation announced its “Path to a Cure”, which
aims to find a curative treatment for all PwCF [338].

Early DNA targeting efforts focused on the delivery of a WT-CFTR cDNA to airway cells.
Unfortunately, clinical trials with these gene addition therapies were not able to substantially
improve lung function in PwCF (reviewed in [339–341]). This disappointment resulted in a
shift away from gene therapy approaches for a while, but more recently, interest has been
revived. Using optimized constructs and delivery methods, effective gene therapy has been
shown in a number of CF models [342–345]. The most recent gene therapy clinical trial by
Alton et al. demonstrated that liposome delivery of CFTR cDNA stabilized lung function in
treated patients, whereas a further decline was observed in the placebo group [346]. As the
clinical effect was considered modest, current efforts are focused on a F/HN-pseudotyped
lentiviral vector to deliver CFTR cDNA to patients’ airways (BI 3720931, [344]). The first clinical
trial for this viral vector-based gene addition therapy as well as several more developed by
other groups are currently being planned [347–349].

Besides gene addition, gene editing, e.g., “rewriting” the mutation in the genome to
the WT sequence, has gained a lot of traction over the last couple of years. The Nobel
Prize for Chemistry in 2020 was awarded to Jennifer Doudna and Emmanuelle Charpentier
for their discovery of the CRISPR/Cas9 system—the most versatile and commonly used
gene editing technique [350,351]. It has been successfully employed in correcting CFTR
mutations in translational cell models, such as rectal organoids [352–354] and airway
epithelial progenitor (basal) cells [355,356]. We recently reviewed gene editing in CF and
its potential for therapeutic approaches and model generation in detail. Therefore, we refer
to [267,357] for an extensive discussion on the subject.

4. Towards the Future: Personalizing Therapies for PwCF

In the previous section, we have provided an overview on the past and ongoing efforts
in the development of novel causal therapies for CF. The majority of these efforts has focused
on providing an effective therapy for F508del. This is not surprising, as such a therapy
is able to treat ~85% of all PwCF. On top of that, the first market approval of a highly
effective therapeutic strategy only became available as recent as 2019 (2020 in Europe)
with the FDA and EMA approval of Trikafta™/Kaftrio™ for PwCF with one F508del
allele. Previously, Orkambi™ and Symdeko™/Symkevi™ had already been approved for
F508del homozygous PwCF, but with modest effects compared to Trikafta™/Kaftrio™.
While the main focus for causal treatments has mostly been directed towards F508del,
G551D became the first CFTR mutation for which a causal treatment (Kalydeco™) was
market approved [61]. After additional clinical trials, treatment was extended for 9 more
mutations both in the USA and Europe: R117H (c.350G>A; 3rd most common mutation in
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the United States), G1244E (c.3731G>A), G1349D (c.4046G>A), G178R (c.532G>A), G551S
(c.1651G>A), S1251N (c.3752G>A), S1255P (c.3763T>C), S549N (c.1646G>A) and S549R
(c.1645A>C) [63,358]. G970R (c.2908G>C) was also evaluated, but no improvements were
observed for this mutation [63]. It was later shown that this particular mutant causes a
previously undetected splicing defect rather than a gating defect, which precludes efficient
rescue by CFTR potentiators [359]. Nevertheless, of importance was the fact that pre-clinical
models, and more particularly, Fischer rat thyroid (FRT) cells overexpressing the respective
mutations from a cDNA copy, were able to predict the outcomes for eight out of nine
gating CFTR mutations tested [63,109]. These first label extensions were limited to CFTR
mutations that were still (relatively) frequent in the sense that they allowed at least two
PwCF per genotype to be included in the clinical study, and that their defects—at least to
some extent—had been studied preclinically first.

4.1. Theratyping & Expanding the Label for Existing Therapies

There are hundreds of CFTR mutations which are present only in a handful of
PwCF and which have not or minimally been characterized. This poses two problems.
First, as these mutations remain uncharacterized, how can the right therapeutic strategy
be selected? On the one hand, the CFTR2 project aims to confirm and determine which
of the >2100 mutations described to date in the CFTR gene are disease-causing or rather,
polymorphisms or disease modifiers [360]. Full characterization via in-depth study of
the folding, trafficking, function and stability of each mutation (a summary of these
efforts is provided in [54]), would of course provide the best understanding of each
mutation’s molecular defect, but might not be feasible to perform on thousands of
mutations. Moreover, in order to be able to treat PwCF, it is more important to know
whether particular mutations respond to certain treatments. Therefore, CFTR modula-
tor therapy is now often tested directly on patient-derived material, a strategy called
theratyping [361]. It allows us to (1) predict individual responsiveness to treatment
(personalized medicine) and (2) gain insight into molecular mechanisms of rare muta-
tions based on modulator responses [361]. One example of the use of theratyping is the
ongoing European H2020 HIT-CF project (https://www.hitcf.org/ (accessed on 10 May
2022)), in which novel CFTR modulators are tested in human rectal organoids with rare
genotypes and in vitro responders are selected for specific clinical trials, with hopes of
bringing causal therapies to small, specific PwCF populations with rare mutations [362].
CFTR modulator responses are measured in the so-called forskolin induced swelling
(FIS) assay [363]. Application of forskolin to these 3D, self-organizing organoid struc-
tures results in the rapid increase in organoid area, in the case that CFTR is functional.
This process is dependent solely on CFTR, which is located at the apical membrane
facing the organoid lumen and regulates paracellular water transport that causes the
swelling of organoids. FIS responses have been shown to correlate well with clinical pa-
rameters such as the FEV1 (forced expiratory volume in one second, a measure for lung
function) [364,365]. FIS can also be performed on organoids of airway origin, but due
to the presence of other ion channels in the airways, the swelling is less CFTR specific
and thus less straightforward to interpret [366]. Rectal organoids can be obtained via
minimally invasive rectum biopsies and can be expanded rapidly and near infinitely,
as such providing an advantage over other state of the art cell models, such as HBE
(from explant lungs) or human nasal epithelial cells (HNE; from nasal brushings). The
former are, when grown at air liquid interface (ALI), considered the golden standard for
pre-clinical evaluation of CFTR function via short circuit current (ISC) measurements in
Ussing chambers before moving towards clinical trials (for example [90]). Clancy and
colleagues remarked that HBE analysis was missing for therapies that ultimately failed
in clinical trials such as PTC124 and cavosonstat (see Section 3.3.4. TRIDs & Section 3.2.3.
Stabilizers [361]). HBE, however, typically originate from end-stage disease tissue and
are therefore not easily available for rarer genotypes [367]. HNE, on the other hand, do
not have the above limitations and also have been shown to predict CFTR modulator

https://www.hitcf.org/
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responses [368], although the culturing is technically more challenging, requiring an
important expansion step prior to testing [361]. The RARE project is an ongoing clinical
trial which aims to collect intestinal and nasal cells of PwCF with rare mutations for
future theratyping efforts (NCT03161808). Finally, also iPSC-derived airway models
can be applied for theratyping [369].

The second question is: how can the efficacy of a treatment for rare genotypes be
proven? The many rare to ultra-rare CF-causing mutations do not allow for classical clinical
trial designs due to the small number of PwCF for each mutation. Alternative strategies
are thus needed for label extension or novel therapies targeted towards the rare CFTR
genotypes. For Kalydeco™, Symdeko™, and Trikafta™ label extension, the FDA therefore
based itself on pre-clinical data from FRT cells overexpressing CFTR variants to guide its
decision [62,64]. As a result, 97 mutations are now eligible for Kalydeco™ [65], 155 for
Symdeko™ [370] and 178 for Trikafta™ [371]. In total, 184 CFTR mutations thus have
modulator therapy approved (there is overlap between the mutations approved for each
treatment), but it is important to note that not all the mutations listed are considered
CF-causing according to the CFTR2 database. To date, label extension based on pre-clinical
data has not yet been followed by the EMA.

4.2. What Is in the Pipeline for the Last 15% of PwCF without Causal Treatment?

Now that highly effective CFTR modulator therapy is available for the majority of
PwCF, the focus has shifted towards the ~15% of PwCF who carry two alleles still without
causal treatments, e.g., non-F508del, non-gating, non-residual function and non-rescuable
by Trikafta™/Kaftrio™. While this group encompasses many, many rare and ultra-rare
mutations, it is noticeable that of the top five most common CFTR mutations, only F508del
(1st) and G551D (3rd) have an approved causal therapy to date.

N1303K (4th) and I507del (c.1519-1521delATC; 11th) are two processing mutations with
allele frequencies >0.5% that are not yet approved for modulator therapy [59,119,371,372]. In
particular, N1303K has been investigated extensively [373]. In recent years, modest rescue
was observed by modulator combinations in multiple cell models [114,119,138,374,375]. A
case study reported a clinical benefit in one N1303K carrying PwCF with Trikafta™/Kaftrio™
treatment after 10 months, without a clear reduction in sweat chloride [375]. A clinical trial is
currently ongoing to test its efficacy in 20 PwCF with the N1303K mutation (NCT03506061).
R334W is a Class IV conductance mutation that is associated with some residual function and
a milder form of CF. Nevertheless, it is currently not approved for modulator therapy as its
in vitro rescue by Kalydeco™ was below the set threshold of >10% of WT in order to allow
label extension [65,109]. Based on positive results in rectal organoids, a small clinical trial will
test CFTR modulator therapy for this mutation (NCT04254705).

PTC mutations G542X (2nd) and W1282X (5th) have become major targets for the
development of CF causal strategies. Novel therapies are currently in pre-clinical and
clinical development to tackle the specific defects associated with PTCs, i.e., NMD inhibition
and TRIDs (see Section 3.3.3. NMD Inhibition & Section 3.3.4. TRIDs). As it is unlikely that
NMD inhibition and TRIDs will fully be able to rescue nonsense CFTR, they will likely be
combined with modulator therapy already on the market, such as Trikafta™/Kaftrio™.
Pre-clinical studies so far suggest that TRIDs are also able to rescue rarer mutations such as
Y122X (c.336T>A), R553X (c.1657C>T) and R1162X [268].

What remains are the “unrescuable” mutations. On the one hand, this comprises
canonical splice mutations such as 621+1G->T and 1717-1G->A, the 7th and 8th most
common CFTR mutations, respectively. In contrast to cryptic splice mutations with various
degrees of alternative splicing, thereby retaining a proportion of correctly spliced mRNA,
this fraction is almost non-existent with canonical splice mutations. Exons get alternatively
spliced or skipped altogether, and the “blueprint” for the CFTR protein is gone [376]. In
addition, in contrast to cryptic splice mutations, which are located further away from
exon boundaries and therefore allow splice site modulation more easily, little progress has
been made in repairing canonical splice mutations. As discussed above, splice-altering
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ASOs are expected to enter clinical trials soon [329,377], but for canonical splice mutations,
it is more likely that precision gene editing will be needed to re-write the mutation to
its WT sequence. To date, cryptic splice sites have been removed by knocking-out the
mutation and surrounding sequence using CRISPR/Cas9 and Cas12a approaches [352,378].
These Cas-induced targeted, double stranded DNA breaks and subsequent DNA repair by
non-homologous end-joining lead to effective knockout (KO) of the cryptic splice site by
indel (insertion-deletion) formation, which is possible due to their location sufficiently deep
inside an intron. Since canonical splice mutations reside right at exon-intron boundaries,
KO by indel formation is not precise enough and hence not an option. Base or prime editing,
both CRISPR-derived gene editing technologies (reviewed in [267,357]), allow to make
precise, targeted edits in the genome, and are more likely able to correct these mutations. In
that regard, successful adenine base editing has already been already reported for correcting
nonsense mutations in CFTR [354,379]. In addition, frameshift mutations caused by small
indels might be rescued by base or prime editing approaches in the future. Collectively,
these CRISPR/Cas technologies have, to date, mainly focused on the repair of F508del,
PTC mutations and 3849+10kbC>T [353,354,379], and can be further expanded to study
the repair of most CFTR mutations (reviewed in [267]). Larger deletions, however, such
as the 21kb deletion mutation CFTRdele2,3 cannot be targeted by this type of strategy
and will require other corrective means such as gene addition (reviewed in [339]), super-
exon insertion (see [356,380] for examples, although neither super-exon designs include
the region deleted in CFTRdele2,3), stimulation of alternative chloride channels or ENaC
inhibition (reviewed in [381,382]). While gene editing has reached the clinic for several
diseases (for an overview of its clinical development we refer to [383,384]), this is not yet
the case for CF.

5. Conclusions

In this review, we have aimed to cover the diversity of CFTR mutations and the
different therapeutic approaches that have been, and are currently being, developed to
rescue all mutations. The driving force behind the dedicated CF community is to find
a treatment and eventually a cure for all PwCF. Tremendous progress has been made
since the first description of the CFTR gene in 1989, which has led to the approval of four
CFTR modulator therapies in the last decade. With these, PwCF carrying one F508del
allele, or one of the additional 183 approved mutations can be treated. The focus has now
shifted to providing causal treatment for the remaining 15% of PwCF. For PwCF carrying
PTC mutations, a novel TRID is currently being clinically evaluated. NMD inhibition
strategies have taken flight, although they have not yet reached the clinical stage yet. Rapid
advances in the field of gene editing might, for the first time, provide a way to treat the
underlying gene defect in mutations previously considered unrescuable. New gene and
mRNA replacement clinical trials are planned that could provide a mutation agnostic
approach for all PwCF. Novel CFTR modulators are being developed to improve CFTR
rescue and reduce side effects, as well as proteostasis modulators, stabilizers and amplifiers.
All in all, exciting times remain ahead for the causal treatment of CF.
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