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Abstract: p66Shc is a widely expressed protein that governs a variety of cardiovascular pathologies
by generating, and exacerbating, pro-apoptotic ROS signals. Here, we review p66Shc’s connections
to reactive oxygen species, expression, localization, and discuss p66Shc signaling and mitochondrial
functions. Emphasis is placed on recent p66Shc mitochondrial function discoveries including struc-
ture/function relationships, ROS identity and regulation, mechanistic insights, and how p66Shc-cyt
¢ interactions can influence p66Shc mitochondrial function. Based on recent findings, a new p66Shc
mitochondrial function model is also put forth wherein p66Shc acts as a rheostat that can promote
or antagonize apoptosis. A discussion of how the revised p66Shc model fits previous findings in
p66Shc-mediated cardiovascular pathology follows.

Keywords: mitochondrial dysfunction; p66Shc; apoptosis; ischemia/reperfusion;
myocardial infarction; ROS; ShcA

1. Introduction

The p66Shc adaptor protein is a broadly expressed canonical scaffold protein in-
volved in modulating intracellular signal response [1-3]. In addition to adaptor function,
p66Shc is an oxidoreductase that produces reactive oxygen species (ROS) in a mitochon-
dria-dependent manner [4-7]. p66Shc governs outcomes for many pathologies, including
endothelial dysfunction, coronary artery disease (CAD), and ischemia/reperfusion inju-
ries (IRI) [8-10]. During cardiovascular insults, p66Shc exacerbates ROS accumulation,
which increases pro-apoptotic responses and worsens clinical outcomes. IRI clinical se-
verity is closely tied to p66Shc expression and activity, such that p66Shc acts as a bi-
omarker for CAD and IRIs [11-13]. Since ROS accumulation is the primary cause of
p66Shc-mediated cardiovascular effects, its inhibition has high therapeutic potential in
cardiovascular pathology. In this article we discuss, and review, the role that p66Shc plays
in cardiovascular pathology.

2. Reactive Oxygen Species, Aging, and Oxidative Stress

p66Shc mitochondrial function is coupled to ROS and ROS-mediated conditions such
as aging and cardiovascular disease [14,15]. Free radical aging and oxidative stress theo-
ries posit that accumulated ROS-induced oxidative damage is central to aging and its as-
sociated pathologies [16,17]. Free radical aging and oxidative stress processes are charac-
terized by consistent fitness loss as cellular processes become incrementally less efficient,
leading to protein expression and functional alterations that cause cellular dysregulation
[18]. However, this view of aging, and pathology etiology, was adapted because of the
role ROS plays as a signaling molecule in routine cell functions [19]. Thus, excessive ROS
or ROS dysregulation is key to free radical aging and oxidative stress.

In general, ROS are molecules that contain oxygen with higher reactivity profiles
than O2 and are generated within cells by partial oxygen reduction [20]. ROS can exist as
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radicals (superoxide anion, hydroxyl radical) or as non-radical high-energy molecules ca-
pable of forming radicals (H202, organic peroxides). Radicals have unpaired/incomplete
electron orbitals that increase their reactivity until stabilized by abstracting an electron
from another molecule [21]. The distinction between radical and non-radical ROS is im-
portant as radicals are generally too reactive to travel outside of their production site, but
non-radical ROS can [22-24]. Mobility differences between ROS forms can therefore affect
and regulate subcellular redox signaling [25,26].

However, non-radical ROS can also generate radical ROS, which can affect intercom-
partmental signaling. A common example is known as Fenton chemistry, where H20: re-
acts with transition metal ions to produce hydroxyl radicals [27]. Excessive radicals cause
damage by destabilizing or mismatching DNA, forming lipid peroxides or peroxyradi-
cals, and oxidizing sulfur residues or carbonylating proteins [21,28-30]. These reactions
can result in genomic, membrane, and protein instability that accumulate with age, which
makes them aging biomarkers [31-37].

Within cells, there are several ROS sources. ROS are created by myeloperoxidase and
NADPH oxidase (NOX) which form hypochlorous acid and superoxide anion, respec-
tively. These proteins are associated with immune cells and have high activity in respira-
tory bursts that target pathogens [38,39]. However, non-immune cells have NOX homo-
logues involved in ROS-mediated survival, growth, and apoptosis signaling [40]. Other
ROS-generating proteins include: xanthine oxidoreductase (purine base breakdown), cy-
tochrome p450 proteins (xenobiotic detoxification), and monoamine oxidase (dopamine
breakdown) [41-43]. Peroxisomal fatty acid [3-oxidation also produces H202, which enters
the cytoplasm and may contribute to NF-kB and mTORC1 regulation [39,44]. Other com-
mon ROS generation sites include peroxisomes, lysosomes, endoplasmic reticulum, and
the plasma membrane [45]. However, the primary cellular ROS source is mitochondrial
respiration. This occurs when electrons leak between electron transport chain (ETC) com-
plexes I and II or complexes II and III, reacting with oxygen to form superoxide anion [46—
49]. Lastly, p66Shc is an oxidoreductase that directly contributes to pro-apoptotic mito-
chondrial ROS activity and indirectly to cytoplasmic ROS levels, which will be discussed
in detail below [7]. p66hc-mediated ROS activity plays a central role in cardiovascular
pathology through a variety of interacting pathways and is still emerging as a research
field and potential therapeutic target in cardiovascular pathology, making it the focus of
this review.

3. Reactive Oxygen Species — Neutralization, Necessity, and Pathology

Proper ROS function requires homeostatic balance. Excess ROS is damaging and pro-
motes apoptosis, while deficiency prevents normal cell signaling required for growth and
survival [50]. Although Excess ROS is pro-apoptotic, it is balanced by antioxidants which
can be enzymes or small molecules. Known enzyme antioxidants can work independent
of regenerating molecules but often require reducing equivalents from interacting pro-
teins. Enzyme antioxidants that work independently include: catalase (reduces H202), glu-
tathione S-transferases (reduce hydroperoxides), superoxide dismutases (reduce superox-
ide anion to H202), and peroxidase-active cytochrome c (oxidizes superoxide anion to Oz).
Enzyme antioxidants that work with interacting proteins include: glutaredoxins with glu-
tathione (reduce disulfide bonds), thioredoxins with thioredoxin reductase (reduce disul-
fide bonds), peroxiredoxins with glutathione or thioredoxins (reduce peroxides), and glu-
tathione peroxidases with glutathione/glutathione reductase (reduce H>O: and peroxides)
[51-65]. Most enzyme antioxidants have subcellular location-dependent isozymes with at
least one form present in mitochondria [57,59,64,66—69].

Small molecules that contribute to redox homeostasis include vitamin C, vitamin E,
and N-acetyl cysteine (NAC). Vitamin C is a water-soluble antioxidant that protects
against cholesterol oxidation, scavenges dissolved Oz, and neutralizes radical ROS, while
vitamin E is a lipid soluble radical scavenger that can be regenerated by vitamin C [68,70-



Cells 2022, 11, 1855

3 of 43

72]. NAC is a glutathione precursor with a redox active thiol that neutralizes ROS and can
reverse deleterious disulfide formations [73].

Although ROS overproduction plays an important role in many pathologies, moder-
ate ROS levels are required for optimal cell function. Technical limitations have prevented
precise quantification of beneficial and detrimental ROS concentrations but it is widely
accepted that ROS effects exist as a spectrum. Beneficial levels lie at an intermediate posi-
tion in the spectrum but can fluctuate based on cell type and ROS activating stimuli, while
excessive decreases and increases in ROS are harmful [20,24].

ROS play an important role in transducing environmental signals that dictate cell fate
[19]. These redox signals are often transferred to downstream effectors via reversible pro-
tein modifications such as cysteine residue oxidation, affecting an array of proteins in-
cluding phosphatases, kinases, transcription factors, and others [74]. Although, in theory,
protein oxidation signaling reactions could be random, kinetics and solvent accessibility
cause specific oxidation patterns in target proteins [50]. Since free radicals are restricted
to their origination sites, H2O2 performs the majority of ROS signaling between cell com-
partments, often using peroxiporins to facilitate transfers [22,23,25,75-79]. However, it
should be noted that ROS dysregulation (radical or non-radical) in a single compartment
can affect whole-cell health, emphasizing the importance of subcellular compartmental
ROS regulation [80,81].

ROS-activated pathways include nuclear factor-kB (NF-«B), phosphoinositide 3-ki-
nase/AKT (PI3K/AKT), nuclear factor-erythroid factor 2-related factor 2/Kelch-like ECH-
associated protein 1 (NRF2/KEAP1), and mitogen-activated protein kinase (MAPK)
[25,82-87]. These pathways demonstrate the diverse effects of ROS signaling and provide
insight into how ROS dysregulation can affect cells as these pathways regulate responses
in inflammation, immunity, growth, survival, and apoptosis. In addition, downstream
ROS effects differ by ROS concentration and stimulus source with low, moderate, and
high ROS levels respectively favoring proliferation, differentiation, and cell death
[19,88,89]. However, these are generalized trends and must be taken within the context of
upstream signaling and local area or compartmental concentrations [80].

These pathways dictate many cell- and tissue-specific roles in pathology, making
ROS-targeting therapies central to treatment strategies for many conditions. Some exam-
ples include neurodegenerative disease, aging, diabetes, organ failure, cancer, chronic ob-
structive pulmonary disease (COPD), endothelial dysfunction, sepsis, wound healing,
and ischemia/reperfusion (I/R) injuries [8,14,18,31,90-101]. However, most treatments
have not been directed towards location- or protein-specific ROS sources but rather
whole-cell redox status and have been met with recurrent clinical failure. In fact, some
treatments were harmful in cardiovascular pathologies [102]. Clinical failure of non-spe-
cific antioxidant administration is considered a result of neutralizing both physiological
and pathological ROS [80,81,103-105]. Thus, emerging treatments to ROS-mediated pa-
thology have shifted toward selective modulation of ROS sources dysregulated during
pathology [16,81]. One of the proteins associated with dysregulated ROS in pathology is
p665hc, which was discovered as a longevity modifying protein that can promote apop-
tosis by generating ROS within mitochondria while also acting as a signal adapter at cell
membranes.

4. p66Shc Discovery — Aging Research

Interest in how Src homology 2 (SH2) domains mediate tyrosine receptor signaling
led to the ShcA family’s discovery, which contains an SH2 domain in all family members
(Figure 1) [106]. Tyrosine kinase receptors utilize adaptor proteins with SH2 domains at
their cytoplasmic tails near receptor phosphorylation sites. SH2 domains can then recruit
Grb2, another adaptor protein that promotes cell differentiation and growth via mitogen
activated protein kinase (MAPK). ShcA transgene overexpression increased tumor inci-
dence in mice, suggesting that ShcA proteins may activate MAPK. Although MAPK acti-
vation was later observed in response to p46Shc and p52Shc, p66Shc decreased mitogen
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signaling and was associated with increased ROS, separating p66Shc from p46Shc and
p56Shc as a redox protein [107]. Further investigation identified that p46Shc and p52Shc
share a transcript, while p66Shc has a unique transcript and N-terminal CH2 domain ca-
pable of replicating many p66Shc functions absent of its remaining domains [108].

When tested against UV and oxidative stress or increased tyrosine kinase signaling
in mouse embryonic fibroblasts (MEFs), p66Shc was associated with cell death and altered
electrophoretic movement, indicating that a post-translational modification (PTM), Ser36
phosphorylation, was associated with cell death [4]. Mouse p66Shc knockout (KO) studies
corroborated p66Shc’s role as a redox protein that governs apoptosis and cell fate as
p66Shc genetic removal increased mouse lifespan and tolerance to oxidative damage in
stressed or pathological settings but had the opposite effect in unstressed settings [4,109—
112]. These dichotomous effects may be explained by p66Shc ROS dysregulation since
increased p66Shc-mediated ROS is consistent with worsened outcomes for many pathol-
ogies, but complete ShcA KO is embryonic lethal and moderate ROS is required for nor-
mal cell activity [19,113]. Promising results in lifespan and ROS attenuation have since led
to many discoveries regarding p66Shc adaptor and oxidoreductase functions.

The original p66Shc KO mice experiments showed an around 30% increase in
lifespan over WT mice and oxidative stress resistance, with no apparent negative effects
[4]. Lifespan effects also appeared to be dose dependent as p66Shc*- mice live longer than
WT but not as long as KO mice [4,111]. Upon further characterization, p66Shc KO mice
also had decreased adipocyte triglyceride accumulation, increased metabolism, improved
behavioral plasticity as adults, and have improved health at older ages [114,115]. These
mice also show increased resistance to obesity, diabetes, ischemic insults, and atheroscle-
rosis [115-122]. However, when p66Shc KO mice were moved to natural conditions, sub-
jected to winter weather and food competition for one year, p66Shc KO mice had short-
ened lifespans [111]. This observation was consistent when low temperature and starva-
tion conditions were mimicked within a controlled laboratory environment, killing 50%
of the KO mice, and no WT mice. These results were accompanied with findings indicat-
ing adipose dysfunction [111]. Thus, p66Shc plays an important role in cardiovascular
health, energy metabolism, and gerontology.
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Figure 1. ShcA family modular structure and CH2 domain post-translational modifications affecting
ROS output. All ShcA proteins have SH2, CH1, and PTB domains but differ by CH2 domain length.
p66Shc has a unique set of promoters and is tied to oxidative stress or Ras inhibition. p52/46Shc
share a set of promoters, do not have documented ROS activity, and promote cell cycle progression
and differentiation. Important ROS-related PTMs include Ser36 phosphorylation (mitochondrial
translocation), Ser54 phosphorylation (decreased proteasome degradation), Cys59 sulfhydration
(decreased Ser36 phosphorylation), and Lys81 acetylation (increased Ser36 phosphorylation).
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5. The ShcA Family

The ShcA family consists of three members: p46Shc, p52Shc, and p66Shc. ShcA mem-
bers are named by their approximate mass (~63 kDa, ~52 kDa, ~46 kDa) and domain com-
position, as well as Src Homology (SH) and Collagen homology (CH) domains. Despite
their namesake only indicating SH and CH domains, all ShcA proteins also contain a
phosphotyrosine binding (PTB) domain (Figure 1). P66Shc is the longest family member
(583 residues), has its own set of promoters, and is primarily associated with oxidative
stress and RAS inhibition while p52Shc (474 residues) and p46Shc (429 residues) share a
set of promoters and are primarily associated with cell cycle progression and differentia-
tion [3,108,123,124]. The family shares a single locus (1q21), producing different family
members from 13 exons via alternative splicing and different start codons [125]. This re-
sults in ShcA proteins that share a single sequence, only differing by N-terminal amino
acid length. The ShcA N-terminal domain is known as the CH2 (collagen homology 2)
domain. P66Shc contains a full CH2 domain, p52Shc has a truncated CH2 domain, and
p46Shc has no CH2 domain [125]. Functional differences between ShcA proteins are there-
fore CH2-mediated. All ShcA proteins function as signal adapters and undergo post-
translational modifications (PTMs) that alter function, but p66Shc is the only protein
member shown to produce reactive oxygen species (ROS), potentially explaining the di-
vergent gene structure within the family and making p66Shc the most studied family
member [7].

6. p66Shc Expression and Localization

p66Shc is expressed differentially throughout organs, but is expressed in adipocytes,
lymphocytes, spleen, kidney, liver, lung, brain, and heart [114,115,126-129]. p66Shc’s dif-
ferential expression led to p66Shc transcription and post-translation investigations that
could explain expression patterns. Expressing p66Shc in cell lines not natively expressing
p66Shc revealed that demethylating agents and deacetylases cause dose-dependent in-
creases in p66Shc expression, suggesting that p66Shc’s promoter could be regulated via
cysteine methylation or histone deacetylation [130]. Later studies revealed that low-den-
sity lipoprotein (LDL) could also increase p66Shc transcription via p66Shc promoter meth-
ylation at a CpG site [131]. p53, a transcriptional regulator and tumor repressor whose
apoptotic function requires p66Shc, is associated with vascular disorders and increases
p66Shc expression by binding p66Shc’s promoter region [132-134].

SIRT1 (histone deacetylase) also binds p66Shc’s promoter, decreasing p66Shc tran-
scription via histone H3 Lys9 deacetylation. Similarly, SIRT1 overexpression in mice de-
creased p66Shc transcript and protein levels. However, SIRT1-mediated repression
caused by SIRT1 overexpression can be overcome with high glucose and oxidized LDL in
cell lines [135]. Further investigation indicated that prolonged high glucose causes a
memory effect (sustained hypomethylation) on p66Shc’s promoter. This results in in-
creased p66Shc and histone acetyl transferase (GCN5) expression, even after the original
high glucose stimulus is normalized, while worsening diabetic endothelial dysfunction
[136].

p66Shc’s expression is also affected by obesity-induced SUV39H1 (methyltransfer-
ase) downregulation. In these conditions acetyl transferase SRC-1 and demethylase
JMJD2C are upregulated, resulting in decreased p66Shc promoter methylation and in-
creased acetylation that increases p66Shc expression [137]. Of note, SIRT1 also protects
SUV39H1 from ubiquitin-mediated degradation and may affect p66Shc expression
through this interaction [138]. Thus, p66Shc expression is governed by transcriptional reg-
ulators and diet-inducible epigenetic factors.

In cancerous cells, nuclear erythroid 2-related factor 2 (Nrf2) can bind demethylated
p66Shc promoter, increasing p66Shc transcription [4,139,140]. This finding is interesting
because Nrf2 normally increases antioxidant responses and p66Shc’s traditional mito-
chondrial role is ROS production that leads to apoptosis; however, in this report, Ser36
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phosphorylation did not increase mitochondrial trafficking as it has in other reported cell
types [141]. These results suggest that p66Shc transcription and signaling may be cell de-
pendent and that Ser36 phosphorylation may not be an exclusive signal for p66Shc mito-
chondrial translocation.

PTMs also affect p66Shc expression. Oxidative stress can cause Racl-mediated
p66Shc phosphorylation at Ser54 and Thr386, increasing p66Shc stability by decreasing
proteasome degradation [142]. Since adapter proteins function primarily in cytosol,
p66Shc cellular localization may have been limited to cytoplasm; however, p66Shc was
found unevenly distributed between mitochondria, cytoplasm, and endoplasmic reticu-
lum [143,144]. The other ShcA members are found in the cytosol and either the endoplas-
mic reticulum (p52Shc) or mitochondrial matrix (p46Shc) [143,145]. In non-stressed cells
that express p66Shc, p66Shc localizes throughout cellular compartments with the follow-
ing subcellular pattern: endoplasmic reticulum (24%), cytoplasmic complex with Perox-
iredoxin 1 (Prx1, 32%), and mitochondria (44%) [146,147]. However, a stressed cellular
environment causes CH2 phosphorylation and increased mitochondrial trafficking (dis-
cussed in the following sections).

7. p66Shc Signaling Overview

As an adaptor family, ShcA proteins are associated with signal transduction from
varied stimuli (e.g., integrins, cytokines, and growth factors) and regulate downstream
signaling for both physiological and pathological responses [148]. These observations sup-
port previous suggestions that p66Shc may provide a dual regulatory role as it can func-
tion as a proto-oncogene via growth factor signaling, or as an apoptosis regulator through
pro-apoptotic mitochondrial ROS production (reviewed in detail in subsequent sections)
[149]. Activated receptor tyrosine kinases recruit ShcA members with their cytoplasmic
tails. When p52Shc or p46Shc bind receptor tails, they recruit the growth factor receptor-
bound protein 2 and son of sevenless 1 (Grb2-Sos1) complex at p52Shc’s or p46Shc’s SH2
domain, activating Ras/MAPK mitogenic signaling [108,125]. However, p66Shc fails to in-
duce mitogenic signaling and competes against the other ShcA members for Grb2, inhib-
iting potential MAPK signals [108,150,151]. p66Shc also inhibits extracellular-signal regu-
lated kinase (ERK) signaling from insulin growth factor (IGF-1) and p52Shc is required
for polyoma middle T antigen-induced hemangioma transformation in rats by promoting
PI3K activation [143,152]. p66Shc Ser36 phosphorylation causes Grb2-Sosl complex dis-
solution that leads to p66Shc/RACI-mediated NADPH oxidase activation (via a
Sos1/Eps8/E3b1 complex) and terminates Ras-MAPK and Ras-ERK signaling
[108,153,154].

In addition, p66Shc increases the guanine exchange factor activity of Sos1 by com-
petitively inhibiting Sos1-Grb2 interactions and increasing Sos1/Eps8/E3b1 complex for-
mation to selectively promote Racl activity [155]. This action is primarily mediated by
interactions between a PPLP motif in p66Shc’s CH2 domain and Grb2's COOH-terminal
src homology 3 domain [155]. In vitro assays did not directly assess other residues or PTM
effects, but they may further promote Racl activation. p66Shc-mediated Racl activation
is also associated with increased intracellular H2O: production, likely via NADPH oxi-
dase, and showed CH2 domain PPLP dependency [155]. These findings suggest that
p66Shc may modulate many cellular functions regulated by Sos1 and Grb2, including cy-
tosolic ROS production. Racl overexpression in PC-12 lines increased p66Shc expression,
phosphorylation, and protein stability (half-life increased from 4.5 to 8 hours) while de-
creasing ubiquitination [156]. These effects were reversed when p38MAPK was inhibited
in PC-12 cells with SB203580 or SP600125, indicating that Racl-mediated overexpression
is governed by p38MAPK [156]. p38MAPK-dependent p66Shc overexpression was de-
pendent on S54 (CH2 domain) and, to a lesser extent, T386 (CH1 domain) phosphorylation
[156]. Intracellular Racl-mediated ROS activity and oxidative stress-mediated apoptosis
were also dependent on 554 and T386 hydroxyl group chemistry as cell lines coexpressing
WT p66Shc and a p66Shc S54A/T386A double mutant generated less ROS than those
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overproducing p66Shc. Racl overexpression appeared to only affect p665Shc, not p52Shc
or p46Shc [156]. However, Racl overexpression increased cellular ROS independent of
p66Shc expression, suggesting that p66Shc serves as a non-essential adaptor protein that
governs NADPH oxidase activity in these tests [156]. These functions are important in
p66Shc cardiovascular pathology because overactive NADPH oxidase is associated with
worsened IRI outcomes, decreased post-MI heart function, and heart failure [157].

Since phosphorylation patterns have ShcA signaling effects, phosphatase effects
were also examined and showed that PTP-PEST interacts with p66Shc’s and p52Shc’s PTB
domain, reducing MAPK activation under conditions that stimulate insulin signaling and
antigen receptor stimulated lymphocyte activation [142,158]. Phosphatase and tensin
homologue deleted at chromosome 10 (PTEN) is another phosphatase and tumor sup-
pressor that dephosphorylates ShcA members and prevents ShcA-Grb2 binding, decreas-
ing MAPK signaling and ShcA-mediated cell migration [159,160]. Protein phosphatase 2A
(PP2A) and protein tyrosine phosphatase € (PTP¢) can also cause ShcA dephosphorylation
and inhibit MAPK signaling [160]. Thus, p66Shc can inhibit mitogenic signaling or pro-
mote NADPH ROS-mediated apoptosis via its roles at the cell membrane.

Yet, ROS also regulates Wnt signaling and the Wnt3a ligand causes p66Shc phos-
phorylation in endothelial cells and {3-catenin dephosphorylation [161]. In these cells,
p66Shc KD caused decreased [-catenin-dependent transcription but p66Shc overexpres-
sion decreased [3-catenin dephosphorylation while increasing (3-catenin-dependent tran-
scription. Exogenous H202 also showed increased dephosphorylation and was inhibited
by the non-specific antioxidant N-acetyl cysteine or catalase, collectively suggesting that
p66Shc has an important role in ROS-Wnt signal integration [161].

Given the connection between oxidative stress and aging, p66Shc-mediated ROS pro-
duction likely contributes to aging, but p665Shc’s ROS production is strongly associated
with many other pathologies, particularly cardiovascular and ischemia/reperfusion pa-
thology [162]. While the CH1 domain governs adaptor protein function, CH2 Ser36 (only
present in p66Shc) phosphorylation is associated with p66Shc-mediated mitochondrial
ROS generation [4]. Ser36 phosphorylation is primarily regulated by protein kinase {3 or
protein kinase C (PKC-{3, PKC), other proteins such as lectin-like oxidized LDL receptor 1
and PKC-{32, c-Jun N-terminal kinase (JNK) can also phosphorylate p66Shc’s Ser36 resi-
due [153,163,164].

After p66Shc is phosphorylated at Ser36, the prolyl isomerase peptidyl-prolyl cis-
trans isomerase NIMA-interacting 1 (PIN1) induces a p66Shc conformational change and,
after a dephosphorylation event (potentially mediated by PP2a or PTP¢), p66Shc enters
the intermitochondrial space and can form complexes with the heat shock protein HSPA9
(mtHSP70, mortalin) [146,159,160]. The mortalin-p66Shc complex dissociates under high
stress conditions, resulting in cyt c release, caspase 3 activation, and apoptosis [146].

Investigating p66Shc-mediated apoptosis revealed that p66Shc utilizes its unique
CH2 domain to produce ROS, governed by possible dimer/tetramer formation that in-
volves thiol-disulfide exchanges at Cys59 and cyt c interactions [5,124]. Tests with H25
supplementation or overexpression of proteins involved in HzS synthesis also showed that
Cys59 S-sulfhydration can decrease p66Shc-PKCPII interactions, decreasing downstream
ROS production, and indicated that sulfur-based therapeutics may affect p66Shc function
via thiol-disulfide manipulations [165]. Surprisingly, the CH2 domain was able to induce
ROS and cause mitochondrial swelling, independent of p66Shc’s other domains [124].

Since p66Shc increased mitochondrial ROS in an oxidative stress dependent manner,
p66Shc’s definition expanded to include redox sensitive oxidoreductase apart from its
adaptor protein role. Investigating SIRT1’s potential direct effects on p66Shc found that
Lys81 acetylation (CH2 domain), which is increased in diabetic conditions or with SIRT1
knockdown (KD), is also required for p66Shc’s oxidoreductase function in hyperglycemic
endothelium [166]. However, human umbilical vein endothelial cells (HUVECS) stimu-
lated with vascular endothelial growth factor (VEGF) were still able to cause Ser36 phos-
phorylation, indicating that Lys81 acetylation effects are stimulus dependent. Preventing
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Lys81 acetylation via p66Shc Lys81Arg mutations inhibited Ser36 phosphorylation and
mitochondrial ROS production, improving endothelial dysfunction and linking p66Shc
PTMs to endothelial health.

Apart from linking Ras to receptor stimuli and oxidoreductase function, the ShcA
family also plays an important role in transducing mechanical stimuli. Complete ShcA
KO is embryonic lethal (E11.5) and promotes severe cardiovascular tissue dysfunction
with decreased contacts between neighboring cells and with extracellular matrix (ECM)
[113]. This corroborates additional localization studies that identified p52Shc and p66Shc
recruit focal adhesion kinase (FAK) at focal adhesion sites via their PTB domain [167,168].
Complete ShcA KO also causes decreased ability to spread on fibronectin, a sign of dys-
functional mechanotransduction [113].

Within endothelial cells, p52Shc interacts with a variety of integrins that increase
ERK and Racl activity which promotes adhesion-dependent survival and all ShcA mem-
bers respond to endothelial shear stress by interacting with avf3s and 1 integrins [169,170].
Mouse models show that increased aortic arch shear stress leads to ShcA phosphorylation
via EGFR?2 signaling and interactions with the mechanosensory complex PECAM-1/VE-
Cadherin/VEGFR?2, leading to inflammatory responses [2]. Myocardial-specific ShcA KO
in mice further explored ShcA’s role in mechanical coupling. Myocardial ShcA KO im-
pairs systolic function while increasing myocardial contractility and causes ECM and col-
lagen alterations, which was replicated by selectively inhibiting myocardial ShcA PTB do-
main [171]. Further evidence of ShcA’s involvement in mechanosensory functions was
provided when investigators performed knock-in mouse studies that demonstrated that
muscle spindles, which govern motor behavior, require phosphorylated ShcA CH1 do-
mains to form [172].

p66Shc also contributes to ShcA mechanosensory function. p66Shc antisense block-
ing prevents the myoblast-myotube transition, a process that requires distinct cellular
mechanical changes. The same researchers also observed decreased stress fiber structure
and cell rounding in their study, indicative of severe internal tension loss [173]. In other
studies, p66Shc KD showed decreased epithelial differentiation and increased prolifera-
tion, but decreased functions governed by mechanical stimuli, such as morphogenesis and
mitosis arrest [174,175]. These findings suggested that p66Shc governs anoikis, which was
later confirmed as a p66Shc-dependent process that is regulated by RhoA signaling
[168,176]. On the contrary, anchorage-independent growth has been observed with RhoA
suppression [177]. Tumor metastasis and cell line transformations resistant to anoikis are
associated with decreased p66Shc expression, with ectopic p66Shc expression returning
the cells to normal anoikis levels but only if focal adhesion targeting is restored [176].
Meanwhile, cells with high dependence on anoikis and mechanosensory information for
normal function, such as endothelium and bronchial epithelium, also require p66Shc for
sustained anoikis but lose anoikis function with p66Shc KD [176].

Both anoikis and cell proliferation after adhesion loss are mediated by the
p66Shc/FAK/RhoGEF complex and are governed by matrix stiffness [167,178]. Similar to
tyrosine kinase signaling, p52Shc and p66Shc have different effects in their mechanosen-
sory roles. The p66Shc-FAK complex recruits Rho GEFs, while the p52Shc-FAK complex
recruits Ras GEFs, altering Rho and Ras downstream signaling, respectively [179]. This
provides context for how decreased p66Shc in test conditions or metastatic cancers can
cause both increased cell survival and decreased anoikis. Despite p66Shc’s role in cell-cell
adhesion and cytoskeletal signaling, which could influence cardiovascular pathologies
such as angina perctoris or cardiac arrest, this aspect of p66Shc research is limited in the
context of cardiovascular disease. However, it is plausible that p66Shc’s mechanosensory
function contributes to atherosceloris, MI, and other pathologies as p66Shc KO improves
their outcomes, but these outcomes are also associated with decreased p66Shc-mediated
ROS activity and deconvoluting the interactions between p66Shc mechanical and ROS-
activating stimuli is difficult [118,121,180-182]. p66Shc signaling pathways are summa-
rized in Figure 2.
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Figure 2. ShcA signaling summary. (A) ShcA responses to tyrosine kinase growth factor (GF) and
hormone signals. P52/46Shc causes Ras-dependent MAPK/ERK signaling that promotes survival,
migration, and proliferation; left panel. p66Shc inhibits Ras signaling by competitively increasing
Racl-mediated ROS generation via NADPH oxidase activation; right panel. (B) ShcA-mediated in-
tegrin and VEGFR2-Cadherin-PECAM responses to shear force or tension signals. Integrin shear or
tension signals result in p52/46Shc pro-survival signaling via FAK-Sos1 while p66Shc leads to anoi-
kis via RhoGEF-RhoA signaling; left panel. Endothelial VEGFR2-VE-Cadherin-PECAM-1 com-
plexes respond to shear by increasing p66Shc-mediated inflammation via Gab2-PI3K signaling;
right panel.

8. Classical p66Shc Mitochondrial ROS Activity Pathway

In response to cellular stress, p66Shc translocates into mitochondria. Once inside,
p66Shc contributes to pro-apoptotic ROS accumulation causing caspase activation and
apoptosis. However, several proteins influence p66Shc ROS activity by regulating
p66Shc’s mitochondrial translocation [7]. In this section, we describe the classical pro-
apoptotic p66Shc pathway and background on p66Shc ROS activity influencers (Figure
3).
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Figure 3. Classical p66Shc mitochondrial ROS activity pathway. (1) Until stressors are present,
p66Shc remains inactive via Prx1-mediated cytosol sequestration. (2) Once stressed, Prx1 releases
p66Shc as a dimer. (3) Free p66Shc dimers are phosphorylated by JNK1 or PKC, resulting in phos-
phorylated p66Shc monomers. (4) p66Shc monomers are isomerized and dephosphorylated via Pinl
and PP2a, respectively. (5) p66Shc isomers are granted IMS access via TOM interactions that cause
copper to associate with p66Shc. (6) p66Shc oxidizes cyt ¢ to produce H20z. Oligomerization status
is unclear during ROS generation, but purified mouse CH2 experiments and mouse embryonic fi-
broblast studies implicate monomers, dimers, and tetramers.

8.1. Absent of Cell Stress, Peroxiredoxin 1 Prevents p66Shc Mitochondrial Translocation via
Cytoplasmic Sequestration

Prx1's role in p66Shc mitochondrial function is to sequester p66Shc within cytoplasm
via direct binding interactions, mediated by p66Shc’s Cys59 residue. This prevents mito-
chondrial translocation until cell stress signals lead to p66Shc-Prx1 complex dissolution
[147]. Peroxiredoxins are ubiquitous ROS regulators with location-dependent functions
and are major contributors to metastasis progression. Peroxiredoxin 1 (Prx1) primarily
resides in the cytoplasm and contributes to antioxidant processes via thiol-disulfide ex-
change where Prx1's Cys52 and Cys173 become oxidized, producing an intermolecular
disulfide bond and detoxified peroxides [183,184]. Reduced Prx1 can then be regenerated
through various mechanisms [183,185]. In a common route for Prx1-mediated peroxide
detoxification, thioredoxin (Trx) provides reducing equivalents to Prx1 that allows Prx1
to suppress ROS-mediated apoptosis driven by various proteins, including p66Shc
[147,186-188]. However, oxidized Prx1 replaces peroxidase with other functions, includ-
ing: chaperone, oncogene suppressing, immune enhancement, and ROS-dependent sig-
naling [189-200].

In addition, Prx1 acts as a c-Abl tyrosine kinase inhibitor, an important cell death
regulator that modulates p53 signaling and responds to oxidative stress, increasing JNK
and MAPK pathway activation [192,194,201,202]. Prx1 also contributes to pro-apoptotic
signaling by preventing PTEN inactivation caused by oxidation [183]. Furthermore, Prx1
associates with transcription factors important in cell death and growth such as NF-kB,
androgen receptors, and p53 [203,204]. p53 is a key regulator of oxidative stress-induced
apoptosis. Once activated, p53 increases pro-apoptotic protein expression, including
p665Shc, causing caspase activation and mitochondrial apoptosis signals [205]. Prx1 medi-
ates p53-regulated ROS-induced apoptosis, downstream of mammalian Ste20-like kinase-
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1 (MST1), which is phosphorylated during oxidative stress and causes increased proapop-
totic signaling via MST1-forkhead box O3 (MST-FOXO3) interactions [206,207]. Thus, Prx1
contributes to the balance between pro-apoptotic and physiological ROS levels by direct
ROS neutralization, inhibition of pro-apoptotic proteins that produce ROS (e.g., p66Shc),
and transcriptional regulation over ROS pathways.

8.2. Cell Stress Causes Peroxiredoxin 1-p66Shc Dissociation, Allowing Protein Kinase c Family
Members to Transduce Cell Stress Signals by Phosphorylating p66Shc at Ser36

The PKC family regulates p66Shc mitochondrial translocation and its activity is con-
sidered necessary for p66Shc to become ROS-active. In general, PKCs prime p66Shc for
mitochondrial translocation via phosphorylation of p66Shc’s Ser36 in the CH2 domain.
The PKC family has ten members that transduce many signals across a variety of path-
ways, including energy homeostasis and ROS production [208,209]. PKCs are categorized
by their response to diacylglycerol (DAG) and other ligands downstream of GPCR-medi-
ated phospholipase C activation. Their categories are conventional (requiring DAG, cal-
cium, and phosphatidylserine), novel (requiring DAG and phosphatidylserine), and atyp-
ical PKCs (not affected by phosphatidyl serine or DAG) [208,210,211].

PKC is the PKC member most closely governing p66Shc’s ROS activity. PKCf is a
conventional PKC that is unique from other PKC family members as two isoforms are
generated from a single locus via c-terminal exon alternative splicing, and each isoform
(PKCBI and PKCPII) specializes in different roles [212]. PKCPI and PKCRII have similar
primary structures but have differing C-terminal domains. PKC{’s C-terminal domain is
a catalytic center that is inactivated when its regulatory N-terminal domain binds the cat-
alytic domain (resting state). When DAG binds PKCp, these interactions are lost and
PKCf3 becomes active [213,214]. Once activated, PKC3 moves from cytosol to cell particu-
late fractions, which are mediated by lipid binding interactions that favor PKCf's active
conformation [212,215-217].

Apart from DAG, PKCR is also activated by PTMs including cysteine oxidation and
tyrosine phosphorylation [218,219]. PKCp has three constitutive phosphorylation sites.
Their phosphorylation mechanisms are dependent on upstream kinase regulators,
mTORC2, and PDK-1 [220,221]. After phosphorylation, PKC[ can interact with secondary
messenger lipids but sustained activity results in PKC[ ubiquitination and degradation
[222,223]. In addition, oxidative stress can activate PKC[3 and may alter PKCp cysteine
chemistry, independent of calcium and DAG [224-228].

Since nutrient excess and obesity cause mitochondrial dysfunction, and because mi-
tochondrial dysfunction causes ROS formation that activates PKC(3 and increases p66Shc
mitochondrial activity, obesity and p66Shc mitochondrial functions are linked
[164,209,229-234]. PKCp and p66Shc KO mice have increased metabolism, less insulin re-
sistance, and heightened obesity resistance [114,115,120]. Along with causing p66Shc mi-
tochondrial translocation, PKCf activation inhibits autophagy and PKC[3 KO or inhibition
increases autophagy, a process that mitigates inflammation and must occur at low levels
to maintain homeostasis [235-239]. Interestingly, exercise studies showed that exercise
does not mitigate high fat diet-induced mitochondrial dysfunction, fat deposition, and
insulin resistance in PKC{3 KO mice while it does in WT mice [240]. Other reports suggest
that PKCf3 is downregulated with exercise, which decreases insulin resistance [241,242].
Since PKCf3 and p66Shc function are coupled, it is not surprising that p66Shc also contrib-
utes to diabetic conditions [243].

Another PKC isoform, PKCD, alters p66Shc mitochondrial activity. PKC? is primarily
located, in an inactive form, within cytoplasm, but a portion of PKC? translocates to mi-
tochondrial intermembrane spaces (IMS) where it can associate with p66Shc [143,244].
PKCb is classified as a novel PKC isoform that binds p66Shc’s SH2 domain via a phos-
phorylated Tyr [245]. p66Shc-cyt ¢ interactions activate PKCd by facilitating site-specific
PKCd cysteine oxidation, independent of DAG [5,244]. Of note, this reaction causes
p66Shc-mediated cyt ¢ reduction and PKCd oxidation. The reaction is catalyzed by
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vitamin A, which can bind PKC? and cyt c in an orientation that facilitates this electron
transfer [246-250]. However, PKCb redox activation requires ferric cyt c, as respiration
was only restored when ferric, but not ferrous, cyt c and retinol were added to isolated
mitoplasts. Furthermore, respiration was not restored if p66Shc mutations preventing cyt
¢ binding were present [246]. p66Shc KO MEFs also show lower glycolytic flux than con-
trols, suggesting that p66Shc may alter metabolic pathways and contribute to ETC activity
via cyt c reduction [122].

Further PKCd experiments suggested a link between in vivo oxygen consumption
and ATP synthesis upregulation via pyruvate dehydrogenase complex (PDHC) activation
[246]. Although PKCe causes PDHC inhibition and localizes to mitochondrial matrices, it
does not appear to directly interact with p66Shc [246,251]. p66Shc-mediated PKCd redox-
dependent activation may be reversible and would provide logical regulatory conditions
for PKCD? activation via respiration activity [244]. High respiration increases ferrous cyt ¢
pools while low respiration increases ferric cyt c pools, causing decreased or increased
P66Shc-mediated PKCd redox-dependent activation, respectively. Disrupting the p66Shc-
vitamin A-PKCd complex by decreasing p66Shc-cyt ¢ or p66Shc-PKC interactions atten-
uates downstream signaling [245]. PKC? also binds Raf near its DAG binding site and, as
with its redox activation, requires vitamin A for Raf function [249,252-254]. Although
other retinoids can bind in the same manner as vitamin A, vitamin A appears to the pri-
mary modulator of PKCd function, with sustained activation from other retinoids causing
cytotoxicity [249,251,255]. PKCd KO and overexpression models are consistent with
p66Shc KO models, where PKCd overexpression caused insulin resistance and obesity
while PKCd KO mice were lean and had decreased insulin resistance [256,257]. This indi-
cates that p66Shc ROS activity may govern PKCd-related phenotypes.

8.3. Prolyl Isomerase 1 Interacts with p66Shc, Causing Conformational Changes that Prime
p66Shc for Mitochondrial Translocation

After p66Shc’s Ser36 is phosphorylated, it can interact with prolyl isomerase 1 (Pin1),
which induces phosphorylation-dependent cis—trans isomerization [164,258]. This step is
a prerequisite to interactions with proteins that permit p66Shc IMS translocation. Pin1 is
found in cytoplasm and nuclei but does not have a nuclear localization signal [259-262].
Pinl expression correlates with increasing cell division but its regulation is not clear
[259,261,263]. Pinl-induced transformational changes have strong biochemical effects on
many proteins which may play an important role regulating cell growth and ROS-medi-
ated diseases, such as Alzheimer’s and cancer [263]. Disrupting p66Shc-Pinl interactions
via Pin1 KO in MEFs decreases p66Shc translocation and shows increased resistance to-
ward oxidative stress [164]. Similarly, Pinl inhibition attenuates p66Shc ROS-mediated
ischemia/reperfusion injuries in rat intestines [264].

Pin1 is also linked to mitosis regulation, with genetic constructs that decrease Pinl
function demonstrating mitotic arrest, cell cycle effects, or apoptosis [265-271]. These Pin1
depletion effects may be due to decreased phosphoprotein interactions, as Pinl normally
interacts with many pro-mitotic phosphoproteins, contributing to disorders like Alz-
heimer’s disease and cancer [263]. Protein phosphatase 2A (PP2A) specifically
dephosphorylates the trans motif induced by Pin1 isomerization and has reciprocal effects
to those observed by Pinl in yeast studies [263,272,273].

8.4. p66Shc is Dephosphorylated by Protein Phosphatase 2A to allow Mitochondrial Transloca-
tion

In canonical p66Shc oxidoreductase mitochondrial function, Pinl-mediated isomer-
ization is followed by dephosphorylation via PP2A interactions [7]. This set of reactions
prepares p66Shc for mitochondrial entry by providing the required geometry for subse-
quent transport protein interactions. Although localization varies, in general, PP2A is dy-
namically localized between nuclei and cytoplasm. PP2A is a trimeric holoenzyme that
can also function as dimer, with isoforms of each monomer determining localization and
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activity [274-276]. PP2A regulates oxidative stress, with increased PP2A activity improv-
ing oxidative stress-related outcomes in cardiovascular pathology, inflammation, and
cancer [275]. PP2A is ubiquitously expressed and, in conjunction with PP1, represents ~
90% of heart phosphatase activity [277,278]. It is also a therapeutic target for various dis-
eases, including cardiovascular disease [279].

Decreased PP2A activity activates the ERK 1/2 signaling pathway (via increased
ERK1/2, Akt, and glycogen synthase kinase 3(3 phosphorylation), an important predictor
of IRI outcomes [280,281]. Yet, some IRI models have also demonstrated that these path-
ways are associated with increased PP2A activity [282-284]. One interpretation of these
results is that PP2A activity fluctuates with time, as models collecting samples within 1
hour and 6 hours suggested that PP2A inhibition increases with time [285]. Potentially in
agreement, PP2A therapeutic inhibition improved cardiac function when administered
during reperfusion, but worsened outcomes if given during preconditioning [286].

Several reports suggest that PP2A activity is regulated by ROS, but they conflict in
whether PP2A activity is upregulated or downregulated by ROS. An emerging view on
these findings is that PP2A activity has tissue-dependent differential responses that vary
in response to ROS concentration and time [275]. Data regarding PP2A during IRI is rep-
resentative of this view as PP2A activity can be increased or decreased in IRIs, which may
be caused by ROS fluctuations [275,287-291]. Furthermore, antioxidants and anti-inflam-
matory agents preserved PP2A expression in brain IRI models, improving outcomes and
re-emphasizing ROS’s role in PP2A regulation [292]. In addition, PP2A inhibitors decrease
infarct size more than preconditioning in rabbit ischemic heart models [293].

Since p66Shc produces ROS downstream of p66Shc-PP2A interactions, p66Shc mito-
chondrial translocation and ROS activity may have a causal link to PP2A activity, acting
as a regulatory feedback loop that responds to cellular environments. PP2A activity and
abundance decreases with increasing apoptosis, and excessive p66Shc mitochondrial ac-
tivation causes ROS-mediated apoptosis.

8.5. p66Shc Enters the Intermembrane Space via Interactions with Mitochondrial Translocase of
the outer Membrane

The final step in p66Shc mitochondrial translocation is an interaction with the outer
membrane translocase (TOM). p66Shc-TOM interactions place p66Shc in the IMS. Mito-
chondria have four distinct areas to which proteins can associate: mitochondrial matrix,
inner mitochondrial membrane (IMM), intermembrane space (IMS), and outer mitochon-
drial membrane (OMM). Accurate protein targeting to each area can require specific ma-
chinery [294]. p66Shc utilizes TOM to reach p66Shc’s primary destination, the IMS, but a
small portion of p66Shc interacts with the inner membrane translocase (TIM) to enter mi-
tochondrial matrices where p66Shc forms complexes with mortalin that are destabilized
by stress [146,295]. Although p66Shc reaches matrices, its matrix function(s) are not well-
studied, and its ROS functions are tied to IMS localization.

TOM is a complex of seven subunits and two associated receptor subunits that form
a channel in the OMM [296]. Of these subunits, p66Shc binds to Tom22 and Tom20 [295].
Tom?22 and Tom?20 play important roles in mitochondrial homeostasis, apoptosis, and mi-
tochondrial health [297-303]. In general, proteins imported via TOM are recognized by
Tom?20, before interacting with Tom?22, which permits IMS access [294]. Although IRI ef-
fects on TOM are not well-studied, researchers have shown that ischemia decreases
Tom?20 expression and that expression is rescued with ischemic preconditioning [304].

8.6. p66Shc Interacts with Cytochrome c, Causing H:O2 Accumulation, Permeability Transition
Pore Formation, and Apoptosis

Once inside mitochondria, p66Shc traditional mitochondria function involves redox
chemistry with cyt ¢, causing pro-apoptotic H2O2 accumulation. However, an alternative
method for H202accumulation mediated by p66Shc-cyt c interactions is discussed later in
this review. Cyt cis a small, water soluble, heme c-containing protein that associates with
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the IMM outer leaflet and transports single electrons between complex III and complex IV
of the ETC. This action promotes electron flux, ATP generation, and homeostasis [305]. In
addition, cyt c can promote cell survival by decreasing mitochondrial ROS via superoxide
anion scavenging or peroxidase activity, which is gained after interactions with cardi-
olipin (CL, an IMM lipid component comprising ~ 20-25 % of the IMM) cause cyt ¢ con-
formational changes that permit peroxide breakdown [51-56,306,307].

However, cyt c can also have pro-apoptotic functions. Under severe pro-apoptotic
stress (e.g., ROS dysregulation) the IMM reorganizes, and endogenous reductant concen-
trations drop which causes cyt c to act as a CL-specific oxygenase [308-311]. This illus-
trates that CL-interactions govern cyt ¢’s dichotomous activity profile. CL oxidation is a
critical step in pro-apoptotic signaling that produces various cell fate deciding saturated
fatty acids, contributing to permeability transition pore (PTP) formation and cyt c release
[311-314]. Released cyt c activates apoptotic protease activating factor — 1 (APAF-1) and
associates with pro-caspase 9 to form the apoptosome, which activates caspase 3 and
causes cell degradation [305,315,316].

According to one report, using overexpressed mouse CH2 domain, p66Shc exists pri-
marily as a dimer that becomes pro-apoptotic after stress-induced Cys59-mediated dimer-
tetramer transitions within mitochondria [124]. However, other studies suggest that a
monomeric state is favored [146,295]. Regardless, stressed conditions lead to p66Shc pro-
apoptotic H202 accumulation and permeability transition pore (PTP) formation, which is
followed by cyt ¢ outflow and caspase-mediated apoptosis [4,5,124,317]. Stressed condi-
tions that increase p66Shc-derived ROS also increase p53 expression. In this state, PKCf3
and JNK are activated to further increase p66Shc pro-apoptotic mitochondrial activity and
glucose transport/actin polymerization is altered [5,318-325].

p66Shc also drives apoptosis by inhibiting antioxidant defenses, including superox-
ide dismutase (MnSOD, CuSOD, and ZnSOD), REF-1, and glutathione peroxidase via
FOXO3a transcription factor downregulation [115,326-330]. Continued p53-mediated up-
regulation during high stress events may increase previously reported
B1Pix/p66Shc/FOXO3a complex formation, sequestering FOXO3a to further promote
apoptosis [331]. Although p66Shc-mediated apoptosis is associated with decreased anti-
oxidant levels, decreases are not always observed [5,146,332,333]. Despite traditional
p66Shc mitochondrial function being associated with H202 accumulation, some reports
suggest that p66Shc produces superoxide anion, not H20:2 [90,334,335].

In total, previous studies suggest that p66Shc is a cell stress sensor that governs apop-
tosis, with Cys59 and Prx1 interactions inhibiting ROS activity in low-stress environments
that are overcome by high stress which causes adverse effects in a variety of pathologies.
Beyond potential Cys59 mediated interactions and cyt c effects, little was known about
p665Shc’s ROS-generating mechanism or how parameters (e.g., pH) influence p66Shc ROS
activity until recently (below).

9. Recent Advances in p66Shc Mitochondrial Function
9.1. p66Shc Oligomerization Status and Structure

p66Shc ROS activity models were previously built around the observation that over-
expressed mouse-derived CH2 domains oligomerize [124]. It was suggested that a ROS-
inactive cytoplasmic p66Shc dimer population was complexed with Prx1, which are mon-
omerized and conformationally altered through several protein-mediated reactions be-
fore p66Shc monomers enter mitochondria. Once inside mitochondria, p66Shc was hy-
pothesized to re-oligomerize via Cys59 interactions, and produce ROS, in a copper-de-
pendent manner [7,124]. In this model, p66Shc could switch between dimer (reduced
form) and tetramer (oxidized form), with normal conditions maintaining reduced dimeric
p66Shc. Stress-associated antioxidant loss would then trigger tetramerization and subse-
quent ROS generation. However, these studies were performed with isolated CH2 do-
main, not full-length p66Shc (FLp66Shc). Furthermore, in vivo studies have not
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consistently reported p66Shc dimers or tetramers in their Western blot analyses, but mon-
omers have been reported.

Although p66Shc’s primary sequence and modular domain identities have long been
known, little structural data has been collected on FLp66Shc despite its importance in un-
derstanding p66Shc activity. A recent study used analytical ultracentrifugation on a vari-
ety of human FLp66Shc and CH2 constructs, as opposed to mouse-derived CH2 domain.
All constructs were monomeric and reducing agents did not alter oligomer status. How-
ever, sedimentation coefficient differences were observed between reducing and non-re-
ducing conditions, indicating disulfide bond presence. Mass spectroscopy experiments
identified that although Cys59 does not mediate intermolecular disulfide bonding, it plays
a central role within an interdomain thiol-disulfide exchange network that governs
p66Shc ROS production (below). Interestingly, CH2 (amino acids 1-110) was aggregation-
prone and polydisperse, but including distal cyt ¢ binding domain residues reversed this
trend. These results suggest that FLp66Shc conformational dynamics could be regulated
by distal CH2 amino acids. Molecular dynamics simulations and in silico structural mod-
els supported these findings, indicating that p66Shc has high conformational variability
and is intrinsically disordered with interspersed regions of organization [182].

9.2. p66Shc ROS Identity and Regulation

Despite the traditional model that p66Shc produces H20:, studies have also associ-
ated p66Shc with increased superoxide anion levels [90,334,335]. As discussed above, rad-
ical and non-radical ROS have different reactivity and signaling profiles, with radical ROS
primarily functioning at its origination site and non-radical ROS responsible for inter-or-
ganelle signaling [21-23]. ROS composition differences can therefore govern compart-
mental and inter-compartmental redox signaling, altering cell fate [25,26]. A variety of
functional assays have shown that p66Shc does not directly produce H20z, but rather su-
peroxide anion [182]. Further investigation determined that neither metal cations, nor cyt
¢, were needed for superoxide anion activity, even though both were previously consid-
ered requirements [5,90]. Purified CH2 domain did not bind copper of either valency.
However, an alternative route for p66Shc-cyt ¢ mediated H202 accumulation was identi-
fied that resolves discrepancies in observed ROS forms generated by p66Shc mitochon-
drial activity (below).

ROS therapy is undergoing paradigmatic shifts from increasing cellular reductant
concentrations that change whole-cell redox state to targeted approaches focusing on
compartmental ROS dysregulation [80,81,103,104]. Since p66Shc is dysregulated with in-
creased ROS activity during several pathologies, understanding how p66Shc ROS activity
is regulated could improve outcomes for p66Shc ROS-mediated pathology. Several envi-
ronmental factors regulate p66Shc superoxide anion production during in vitro assays,
such as: pH, temperature, shear, and cardiolipin presence. p66Shc ROS production is
highest in acidic, warm, cardiolipin-rich environments but is also increased with direct
shear (indirect shear on cell membranes also increases p66Shc mitochondrial transloca-
tion) [2,182]. Of note, CL is essential for normal electron transport and promotes respira-
tory complex assembly and could therefore affect structural characteristics of other pro-
teins [336-338].

Conditions increasing superoxide anion activity were associated with increased o-
helical secondary structure and the CH2 domain shows a larger increase in structure than
FLp66Shc under high-activity conditions. Since conditions with optimal p66Shc pro-apop-
totic ROS activity are commonly found in pathology (e.g., IRI), these observations sug-
gested that p66Shc acts as a stress biosensor whose activity is upregulated by pathological
environmental effects. Furthermore, p665Shc’s mitochondrial-specific ROS activity may be
a result of non-IMS conditions having a relative inhibitory effect.

The first p66shc-selective ROS inhibitors have also been identified: idebenone and
carvedilol. Carvedilol is a non-selective adrenergic blocker that is prescribed for heart fail-
ure and is a World Health Organization essential medicine that improves post-myocardial
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infarction (post-MI) remodeling; however, how carvedilol improves remodeling is not
well-understood [80,339-343]. Carvedilol binds and inhibits p66Shc at nM concentrations
(Ka ~ 48 nM, ICs0 ~ 118 nM), which agrees with previous carvedilol-mediated lipid perox-
idation inhibition values [344,345]. Of note, carvedilol is thought to provide added benefit
over other adrenergic blockers because of its ability to inhibit ROS [344,346,347]. With the
understanding that non-specific ROS inhibition fails to improve or worsens cardiovascu-
lar outcomes and that targeted ROS inhibition can improve outcomes, carvedilol-medi-
ated p66Shc ROS inhibition may play a role in observed cardiovascular clinical outcomes
[80,81,103,104]. On the other hand, idebenone has antioxidant properties and acts as a co-
enzyme QQ mimetic. It is prescribed in Europe for mitochondrial diseases with p66Shc as-
sociations [348,349]. At high concentrations (40-80 uM), idebenone sensitizes PTP opening
and inhibits ETC complex I, but p66Shc-idebenone affinity has a reported Kd of ~ 229 nM
(ICs0 ~ 328 nM) and idebenone’s low concentration mitochondrial mechanism of action
has not previously been characterized [182]. Idebenone has also been shown to improve
insulin sensitivity via p52Shc signaling activity [350]. These compounds were tested in a
fish p66Shc KD cryoinjury MI model, and show promising p66Shc-mediated improve-
ments in many parameters [182].

p66Shc superoxide anion activity is also modified by protein binding partners. Mor-
talin forms complexes with p66Shc, which is released as a monomer in a stress-dependent
manner and is upregulated with oxidative stress. Therefore, mortalin may prevent
p66Shc-mediated apoptosis via p66Shc binding and inhibition [146,351-353]. Mortalin-
p66Shc binding affinity (Ka ~ 858 nM) and ROS inhibition was recently confirmed, corrob-
orating previous findings where p66Shc release from its mortalin complex increases PTP
formation, ROS, and cyt c release [146]. These findings also support reports where mor-
talin overexpression reduces ROS and provides IRI protection [354]. Although originally
viewed as a mitochondrial-specific protein, mortalin localization studies demonstrate that
mortalin is found throughout cells, including within cytoplasm [355]. In addition, mor-
talin inhibits p53 transcription, decreasing p66Shc expression via cytoplasmic p53 seques-
tration [132-134,356,357]. Since Prx1 governs p66Shc via cytoplasmic sequestration, and
mortalin regulates p66Shc activity via p53 sequestration (decreasing p66Shc transcrip-
tion), it follows that mortalin could have a second regulatory level over p66Shc involving
cytoplasmic sequestration, such that mortalin works with Prx1 to prevent dysregulated
p66Shc mitochondrial translocation [147].

9.3. p66Shc Superoxide Anion Mechanism

Although p66Shc’s superoxide anion production mechanism is not fully character-
ized, recent insights into p66Shc function have been published. Cys59-mediated thiol-di-
sulfide interactions were previously implicated in p66Shc’s oxidoreductase activity as a
potential ROS inhibiting interaction (p66Shc-Prx1 translocation inhibitory complex), but
were also associated with intermolecular disulfide bond formation between purified
mouse CH2 domains [124,147]. However, human FLp66Shc mass spectrometry studies
indicate that Cys59 is the center of an intramolecular interdomain thiol-disulfide exchange
network [182]. Both reports indicate that Cys59 is critical to conformational alterations
that affect ROS production.

In FLp66Shc, Cys59 (CH2 domain) interacts with either Cys287 or Cys292 (PTB do-
main). Cys287 can also interact with Cys196 (PTB domain) while Cys292 also interacts
with Cys574 (SH2 domain). Mutating any single Cys residue was less effective at inhibit-
ing ROS production than a combination of C287/C292S mutation. This double mutant pre-
vents Cys59 from interacting with either of its partners and shows precipitous p66Shc
ROS inhibition. These findings are consistent with earlier Cys59 investigations that iden-
tified Cys59 as a sulfhydration site that decreases p66Shc-derived ROS upon sulfhydra-
tion. Cys59 sulthydration was observed with H2S administration or when overexpressing
proteins  contributing to H2S synthesis [165]. The previously reported
Cys59S/E132Q/E133Q mutant with decreased pro-apoptotic activity also showed stark
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ROS inhibition in these FLp66Shc constructs [5,182]. Since shear increases thiol-disulfide
interchange, shear may increase superoxide anion production via enhanced intermolecu-
lar thiol recycling [358,359]. Furthermore, increased p66Shc superoxide anion production
in acidic conditions suggests that thiol-disulfide interchanges may be a rate limiting step
in ROS generation and regulated by electrophilic strength of leaving groups during inter-
change [360].

Cys59S/E132Q/E133Q mutations did not appear to prevent ROS activity based on
lost thiol-disulfide interaction partners alone as molecular dynamics simulations using
the triple mutant found that the EEW motif in the CH2 domain, or cyt c binding domain,
form salt bridges and cation-n interactions with Argl77, Arg285, and Lys279. These inter-
actions cause partial folding that alters the PTB’s N-terminal orientation, which also af-
fects CH2 orientation. Since these salt bridges could be affected by environmental effects
that alter p66Shc activity, they may regulate environmental effects on superoxide anion
production [182]. Consistent with this notion, ShcA constructs showed increased alpha
helical secondary structure when exposed to CL, which increased p66Shc superoxide an-
ion production. CL also protected p66Shc from thermal denaturation and increased post-
thermal melt secondary structure recovery, relative to controls.

The same study also identified a crucial amino acid for p66Shc-mediated superoxide
anion generation, Tyr10. When CH2 constructs were reversibly acetylated at Tyr10 or if
FLp66Shc constructs were point mutated to FLp66Shc Tyr10Ala, superoxide anion pro-
duction was abrogated. Acetyl group removal restored ROS activity. Thus, Tyr10 may
participate in an electron relay, which is further supported by molecular dynamics simu-
lations that indicate close proximity between the CH2 domain and a putative electron sink
in the PTB that is governed by interdomain interactions [361]. Of note, hypoxic conditions
terminated ROS production, which may provide insight into why hypoxic conditions are
beneficial in pathology associated with p66Shc ROS overproduction, such as MI and Leigh
syndrome [362-364].

As Tyr radicals are important in many redox enzymatic reactions (e.g., cyt c oxidase)
and because ROS-active ShcA constructs also displayed a 410 nm absorption peak (asso-
ciated with Tyr radicals), p66Shc superoxide generation may be radical-mediated [365—
367]. This hypothesis was supported by in vitro fluorescence assays conducted under con-
ditions that increase radical formation, which showed increased p66Shc superoxide anion
production.

9.4. p66Shc-Cytochrome c Interactions

p66Shc-cyt c reaction descriptions were originally limited and suggested that p66Shc
produced H20: via copper-dependent cyt c oxidation, mediated by Cys59 oligomerization
[4,5,124]. However, reported p66Shc and cyt ¢ reduction potentials do not support spon-
taneous p66Shc-mediated cyt c oxidation and there are no known pathways energetically
coupled to support this reaction [5,368]. In addition, p66Shc has been shown to reduce cyt
c as part of the PKCd/retinol signalosome. In PKCd/retinol signalosomes, PKC? is acti-
vated by p66Shc-mediated cyt c reduction that causes PKCd oxidation, which is catalyzed
by vitamin A. Testing oxidized or reduced cyt c addition, combined with vitamin A,
showed that respiration was restored with oxidized but not reduced cyt ¢ in a signal-
osome-dependent manner [244]. Similar tests, performed with only p66Shc and cyt c,
demonstrated that p66Shc reduces, not oxidizes, cyt c. In these in vitro experiments, hu-
man FLp66Shc or CH2 is capable of reducing but not oxidizing cyt ¢, independent of other
proteins [182]. Since oxidized cyt c is required for normal cytoplasm-mitochondria
transport via the mitochondrial disulfide relay function, p66Shc’s cyt c reductase function
may also play a role in regulating mitochondrial protein import [369-371].

Several findings suggest that ShcA cyt c reductase function is independent of super-
oxide anion activity. p66Shc-mediated cyt c reduction was not inhibited by SOD’s pres-
ence nor by hypoxia, which abrogates superoxide anion fluorescent signals in superoxide
anion production assays. p46Shc, which does not have reported ROS activity, also showed
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some reductase activity, though it was lower than p66Shc. In addition, when idebenone
or carvedilol (p66Shc ROS inhibitors) are added to p66Shc-cyt c redox assays, cyt c reduc-
tion is increased [182].

Corroborating the above report where mitoplast respiration was dependent on
PKCd/retinol signalosome-mediated cyt ¢ reduction, recent experiments demonstrated
that p66Shc alone can increase complex IV and complex V activity when added to mito-
plasts [182,244]. WT (ROS-active), Tyrl0Ala (ROS-inactive), and Cys59Ser FLp66Shc mu-
tants all increased Complex IV and Complex V ETC activity, corroborating a recent study
that showed increased ETC activity with p66Shc activation in CNS cells [97]. Thus, p66Shc
can increase ETC activity, independent of p66Shc’s superoxide anion activity. Although
data suggest that Complex IV/V enhancement occurs through cyt c recycling, it is not clear
whether enhancement occurs by direct p66Shc-mediated ETC redox chemistry or if elec-
trons are passed from reduced cyt c to the ETC.

Yet, p66Shc-cyt ¢ interactions have a well-documented H20: accumulation effect,
which was thought to occur via cyt c oxidation [5,372]. If p66Shc reduces cyt ¢, there must
be an alternative mechanism for p66Shc-mediated H202 accumulation. An alternative
mechanism was described where human FLp66Shc is able to non-competitively inhibit
WT cyt c peroxidase function (Ki~1.43 uM), resulting in decreased H20: degradation. Con-
stitutively peroxidase active His26Tyr mutant cyt c was also inhibited by FLp66Shc (Ki
~3.54 uM) and shows inhibition values similar to minocycline-mediated cyt ¢ His26Tyr
peroxidase inhibition (Ki~1.0 uM) [373]. In addition, purified human CH2 domain also
caused a decrease in H20: breakdown (~48.9% signal decrease). Yet, p66Shc-cyt c binding
experiments demonstrate that FLp66Shc has a ~7.7-fold higher binding affinity for WT cyt
c than its peroxidase active His26Tyr mutant, suggesting that non-stressed conditions may
favor an interaction that prevents cyt c peroxidase transformation and pro-apoptotic H2O2
accumulation [182].

p66Shc was also found to have another function that may influence apoptosis,
caspase inhibition. p66Shc-mediated ROS overproduction leads to PTP formation and mi-
tochondrial cyt c release, which ultimately causes caspase cascade activation and cellular
destruction [5,151,372]. p66Shc-mediated caspase inhibition was tested in three cell lines:
HS27, PCS-201, and WI-38. P66Shc significantly inhibited caspase 3/7 activity (~3-fold)
and caspase 9 activity (~5-fold) but did not inhibit purified caspase 3 activity [182]. How-
ever, since p66Shc upregulation is associated with apoptosis these results suggest that
caspase inhibition may be a cytoprotective effect against transient stress spikes and
caspase leakage rather than a function that occurs during apoptosis.

In summary, p66Shc directly contributes to mitochondrial ROS accumulation via su-
peroxide anion production, superoxide anion spontaneous dismutation to H20», and cyt
¢ peroxidase inhibition. It should be noted that pro-apoptotic p66Shc ROS production is
associated with stressed or pathological conditions, but not physiological conditions.
P66Shc also performs mitochondrial functions associated with cell survival: ETC enhance-
ment, caspase inhibition, and cyt c reduction. Thus, p66Shc appears to act as a biosensor
promoting cell survival until stress thresholds are met, leading to pro-apoptotic signaling.

9.5. Revised p66Shc Mitochondrial Function Model

Given the above insights into p66Shc mitochondrial function, a new stress-depend-
ent p66Shc model has been proposed that unifies previous and current findings (Figure
4). In the new model, during low-stress or physiological conditions, p66Shc favored func-
tions are correlated with cell survival. Low-stress cytoplasmic p66Shc pools are ROS-in-
activated by environmental factors and mortalin or Prx1 complexes. Meanwhile, mito-
chondrial p66Shc pools produce physiologic superoxide anion signals, prevent cyt c-me-
diated lipid peroxidation by stabilizing peroxidase-inactive cyt ¢ conformations, and pro-
mote Complex IV/V activity in the ETC.

However, high-stress conditions favor p66Shc’s pro-apoptotic functions. High-stress
releases p66Shc from Prx1 and mortalin complexes, leading to increased mitochondrial
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translocation. Translocation activates p66Shc superoxide anion production by introducing
favorable environmental conditions for ROS production. Increased ROS-active mitochon-
drial p66Shc concentrations cause increased mitochondrial ROS accumulation. This con-
tributes to antioxidant depletion, cyt ¢ peroxidase formation, and CL oxidation. If the
stress stimulus is not corrected, heightened CL oxidation causes cyt c IMM disassociation
and CL depletion that disrupts ETC function while p53 mediates p66Shc upregulation.
p66Shc upregulation propagates pro-apoptotic signals by inhibiting FOXO3a-mediated
antioxidant transcription. In these conditions, p66Shc strictly promotes apoptosis, as on-
going processes associated with stress stimuli, such as acidosis in IRI, further enhance
p66Shc ROS activity and decrease availability to pro-survival pathways as PTP formation
begins (e.g., depleted IMM cyt c availability and cyt c-ETC interactions), leading to cellu-
lar degradation [182].

p66Shc has both pro-apoptotic and pro-survival functions linked to mitochondrial
ROS activity. P66Shc pro-apoptotic functions are apparent in high-stress or pathological
models but not in unstressed models. This matches general cellular ROS trends, where
high stress is correlated with ROS dysregulation and pathology but moderate ROS levels
are required for healthy cells. The coordination between cell stress, ROS, and p66Shc are
better exemplified by the revised p66Shc mitochondrial function model than the previous
model. This model also unites and resolves paradoxical p66Shc findings such as those
demonstrating that decreased p66Shc expression or ROS production improves IRIs and
increases mouse lifespan in non-stressed environments, but p66Shc KOt models decrease
ischemic preconditioning benefits, increase short-term myocardial injuries, and decrease
mouse lifespan in natural environments [4,13,90,109-111,374,375].

In addition, this model is supported by a set of experiments testing whether the bal-
ance between p66Shc’s pro-survival related functions and pro-apoptotic functions could
be tipped to increase pro-survival functions in zebrafish cryoinjury MI models. The ex-
periments utilized p66Shc WT fish that were given p66Shc selective ROS inhibitors and
compared them to p66Shc KD fish. p66Shc KD and ROS inhibitor groups showed im-
provements in many parameters with a concomitant decrease in myocardial ROS produc-
tion. Some improvements include increases in post-MI body mass and physical activity
while demonstrating decreases in inflammatory cell recruitment, fibrotic tissue area,
platelet aggregation, and injury area. Furthermore, proteome analysis was consistent with
caspase cascade inhibition and energy metabolism alterations contributing to improved
MI outcomes. Lastly, non-selective ROS inhibition via NAC administration proved detri-
mental, corroborating the proposed benefits of targeted ROS inhibition
[80,81,103,104,182]. In addition, the revised p66Shc model is also under clinical investiga-
tion as a cancer treatment (NCT04928508). However, in this instance, p66Shc’s balance is
pushed toward pro-apoptotic functions by disrupting the p66Shc—mortalin complex via
SHetA2 administration [376-378].
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Figure 4. Revised p66Shc mitochondrial function model. (A) Basal p66Shc mitochondrial function.
Within cytoplasm, p66Shc is ROS-inactivated by environmental effects and complexes that se-
quester p66Shc by preventing Ser36 phosphorylation (mortalin-p66Shc, 31Pix-FOXO3a-p66Shc, and
Prx1-p66Shc complexes). Free cytoplasmic p66Shc can also inhibit caspase 3/7 and caspase 9 activity,
promoting survival against transient caspase leaks from short-term stress. Meanwhile, p66Shc re-
duces cyt c and enhances ETC activity, potentially via redox cycling. In addition, p66Shc is ROS-
activated by the IMS environment, producing basal superoxide anion levels that are required for
normal cell survival and proliferation functions. (B) p66Shc in stressed cytoplasm and mitochon-
drial matrix is released from sequestration complexes and enters the IMS at increased amounts
through p66Shc’s classical translocation pathway (as illustrated in Figure 3), as a monomer, until
p66Shc reaches the IMS. Increased p66Shc translocation causes excess superoxide anion production,
which is increased when p66Shc undergoes conformational changes (increased a-helix) by interact-
ing with cardiolipin. Accumulating ROS leads to increased cyt ¢ peroxidase levels, which p66Shc
inhibits, causing further H20O2 accumulation that is exacerbated by superoxide anion spontaneous
dismutation. Once a threshold is reached, PTP formation occurs, leading to cyt c release and
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apoptosis. Overall cell antioxidant pools are also exhausted during this process as p66Shc prevents
FOXO3a antioxidant transcription by retaining FOXO3a outside of nuclei.

10. p66Shc’s Mitochondrial ROS Activity Role in Cardiovascular Pathology

As noted above, p66Shc ROS production is negatively associated with many patho-
logical states, indicating that inhibiting p66Shc ROS activity may improve their outcomes
[118,119,379,380]. Some examples include neurodegenerative disease, aging, diabetes, or-
gan failure, cancer, chronic obstructive pulmonary disease (COPD), endothelial dysfunc-
tion, sepsis, wound healing, and ischemia/reperfusion (I/R) injuries [31,90-93,96-
98,100,101]. In this section, we review p66Shc-ROS mediated effects on cardiovascular pa-
thology. Although p66Shc also plays an important role in metabolism, cytoskeleton/mech-
anosensory, and inflammatory functions, a detailed discussion of p66Shc’s role in these
functions in cardiovascular pathology is beyond the scope of this review [113-
115,120,169,170,174-179,182,350]. However, previous sections do include key interactions
between p66Shc and these aspects of cardiovascular disease.

10.1. p66Shc in Ischemia/Reperfusion Injuries

Heart disease is a substantial global healthcare and financial burden. In the U.S.
alone, heart disease is diagnosed in 10.6% of adults, attributed to 23.1% of deaths, costs
USD 351.2 billion annually (2014-2015), and reports suggest that heart disease burdens
are rising [381,382]. The most common heart disease is coronary artery disease (CAD)
which narrows arterial diameter, decreasing blood flow beyond plaques. If poorly man-
aged, CAD transitions into myocardial infarction (MI). MI pathology is characterized by
dysfunctional mitochondria that reverse their ATP generating activity with ATP expendi-
ture and that pump protons into the IMS under ischemic conditions [383]. Mitochondrial
dysfunction can be reversed if myocardium is reperfused within ~20 minutes, but ex-
tended ischemic episodes cause permanent damage that is exacerbated by reperfusion
and linked to ROS dysregulation, PTP formation, and apoptosis [162,383-388].

p66Shc’s role in ischemia reperfusion injuries (IRIs) varies depending on ischemia
and reperfusion duration but has been traditionally viewed as pro-apoptotic independent
of IRI location, and has almost exclusively been studied in p66Shc genetic KO models as
no p66Shc-selective therapeutics had been described until recently. However, some stud-
ies analyze p66Shc in PKC-3 inhibition or KO models. p66Shc deletion improved IRIs in
hind limb ischemia models, showing improvements in tissue viability and capillary den-
sity via decreased p66Shc-mediated ROS accumulation [118]. Other hind limb ischemia
models revealed that p66Shc KO improved wound healing in a ROS-dependent manner,
indicating that p66Shc ROS balance may regulate ischemic wound healing [389].

In mouse cardiomyocytes, p66Shc KO increased resistance to angiotensin II-medi-
ated apoptosis and showed decreases in IRI-induced oxidative stress which were not fur-
ther decreased by antioxidant administration, indicating p66Shc ROS dysregulation in is-
chemic cardiac tissue [119,121]. Cardiac IRI models showed that p66Shc mitochondrial
translocation did not increase with short-term ischemia alone or with short-term ischemia
and reperfusion, but did increase with long-duration ischemia followed by reperfusion
[380]. In addition, p66Shc ROS inhibition via pharmaceutical Complex I or PKC-f3 inhibi-
tion decreased p66Shc Ser36 phosphorylation and improved outcomes [380]. However,
others found that short-term ischemia was worsened by p66Shc deletion, underscoring
p66Shc’s dual role in cardiac IRI [110]. p66Shc’s protective role in short-duration ischemia,
which could be viewed as a transient cell stress spike, is further supported by studies
reporting reduced ERK/Akt-mediated growth factor signaling in p66Shc KO fibroblast
lines that decreased normal fibroblast activity [390]. Furthermore, p66Shc IRI cytoprotec-
tive effects were also observed when p66Shc KO decreased survivor activating factor en-
hancement and reperfusion injury salvage kinase pathways, with concomitant increases
in mitochondrial swelling and caspase-3 mediated apoptosis in mouse cardiac IRIs, indi-
cating that p66Shc had a pro-survival role in these conditions [110].
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Interestingly, mouse cardiac specific p66Shc KO studies revealed that p66Shc KO
does not notably affect heart rate, heart mass, or blood pressure, but cardiomyocyte counts
were increased despite having a similar ventricular wall size [121]. This may reflect
p66Shc’s neonatal role in heart development, since neonatal p66Shc KO cardiac tissue has
increased SOD activity and decreased ROS-mediated apoptosis that could manifest as in-
creased cells in the adult heart [391].

p66Shc IRI has also been studied in stroke models and shows similar trends to cardiac
IRIs. For example, p66Shc KD after ischemic insult in mice preserved vessel integrity at
the blood-brain barrier and increased survival rates while decreasing ROS levels, neuro-
logical loss, and lesions [13]. The same study showed that acute ischemic stroke patients
had increased p66Shc expression in peripheral blood monocytes that correlated with neu-
rological outcomes. Yet, p66Shc is required for ischemic preconditioning neuroprotective
effects [392].

p66Shc’s role in post-MI effects is less studied than initial infarct effects. However,
p66Shc KO has shown improved post-MI healing with decreases in fibrosis measurements
and cardiac rupture [374]. The same report demonstrated that these effects were mediated
by increased collagen formation and decreased matrix metallopeptidase 2 (MMP2) acti-
vation. MMP2 expression has also been shown to increase or decrease with p66Shc over-
expression or deletion, respectively [393]. Since MMP2 activates TGFf3, and because its
activity also correlates with p66Shc expression, p66Shc may regulate TGFf3 activation
[394]. This potential connection is strengthened by TGFf3 activation mechanisms including
ROS exposure, ionizing radiation, shear, and acidic pH, which also increase p66Shc su-
peroxide anion production and pro-apoptotic signaling [182,395,396]. Thus, improved
post-MI remodeling effects from p66Shc KO may be secondary to decreased TGF[ activa-
tion, which is strongly activated in MI and regulates post-MI remodeling [397].

Due to its high morbidity and mortality, pharmaceutical treatments that can mitigate
initial MI and post-infarct remodeling have been frequently researched. Yet, few drugs
with pre-clinical effectiveness are beneficial in MI patients and none were previously de-
scribed as a p66Shc ROS inhibitor [398,399]. Of the promising therapeutics, most are re-
lated to p66Shc’s functions. For example, Coenzyme Q (CoQ) and mitoquinone (mitoQ),
a CoQ variant with increased mitochondrial localization, both target the respiratory chain
and attenuate ATP loss during I/R while scavenging excess ROS. These treatments are
associated with improvements in: post-MI contractility, cardiac function, oxidative dam-
age, cell death, and I/R mitigation during cardiac grafts, potentially via decreased lipid
peroxidation. CoQ and mitoQ treatment also decrease pro-apoptotic cyt c release [400-
405]. In fact, mitoQ completed clinical trials that showed cardiovascular benefits and is
undergoing clinical trials for a variety of ROS-related conditions, including heart failure
and kidney disease. A functionally similar drug, mito-TEMPO, scavenges mitochondrial
superoxide and shows improvements in heart failure and diabetic cardiomyopathy mod-
els by increasing contractility and decreasing heart dilation, cell death, and oxidative
stress [406-409].

Bendavia (also known as MTP-131 or S5-31), is a tetra-peptide that binds CL, pre-
venting ROS-induced CL oxidation and cyt ¢ peroxidase formation [410,411]. Bendavia
decreases oxidative stress, infarct expansion, apoptosis, and detrimental heart remodeling
while increasing ETC Complex I/IV (other ETC complexes were not tested) activity and
decreasing infarct sizes in sheep and guinea pig models [412-414]. Lastly, resveratrol
treatment activates SIRT1/SIRT3 and reduces post I/R infarct size [415]. Since SIRT1 acti-
vation decreases p66Shc expression, these results suggest that decreased p66Shc expres-
sion is beneficial in IRI [90,135,416].

Thus, promising IRI therapeutics are tied to increasing p66Shc pro-survival signaling
or decreasing p66Shc pro-apoptotic ROS activity. As noted above, the first-described
p66Shc selective ROS inhibitors have already been tested in zebrafish MI models and
show improvements in a variety of clinically translatable parameters [182]. Although con-
sistency in mammals remains to be seen, these represent a novel approach to p66Shc ROS-
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mediated pathology, including MI treatment, that decreases initial infarct damage in MI
models and may improve recurrent MI as fibrosis measurements were substantially de-
creased in treated fish.

In addition, targeted superoxide anion inhibition could improve post-MI heart fail-
ure because post-MI heart failure is accompanied by a significant increase in free radical-
mediated lipid peroxidation and plasma superoxide anion levels, but decreased catalase,
glutathione, and SOD plasma levels [417,418]. These trends are further enhanced with
heart failure severity, which also correlate with decreased antioxidant pools and heart
function in heart failure patients [417,419,420].

10.2. p66Shc in Endothelial Dysfunction

Age-induced endothelial dysfunction is characterized by decreased NO production
and decreased ability to increase lumen diameter, which corresponds with oxidative
stress; however, aged p66Shc KO mice do not exhibit these impairments [107,333,421—
425]. p66Shc KO mice in this study also had decreased age-related superoxide anion and
nitrotyrosine (formed when NO and superoxide anion react) levels. p66Shc also inhibits
NO generation as p66Shc KD led to increased markers of endothelial NO synthase activity
and aged p66Shc KO mice showed similar results [426,427]. Thus, p66Shc governs endo-
thelial ROS and NO production, which can affect many other pathologies.

Diabetes increases p66Shc expression (see expression and localization section). This
links p66Shc to many diabetes-related conditions, including diabetes-induced endothelial
dysfunction. p66Shc KO mice exhibit protection against diabetic endothelial dysfunction,
oxidative stress, cardiomyopathy, and glomerulopathy [116,332,428]. Although p66Shc
did not protect against diabetes induction or hemoglobin glycosylation, KO mice had
lower nitrotyrosine and lipid peroxidation levels than their WT counterparts. Diabetes
also causes advanced glycation end product accumulation, which promotes inflammation
and ROS production via p66Shc ser36 phosphorylation. p66Shc KO mice also have de-
creased renal damage, circulating oxidative stress markers, and oxidative stress associated
with glycation products [429-431]. In addition, glycation products increased p66Shc Ser36
phosphorylation in HEK-293 cells, depleting antioxidants and suppressing FOXO tran-
scription. Furthermore, hyperglycemia increases p66Shc expression and decreases signal-
ing from IGF1-stimulated phosphoinositide-3 kinase, AKT, which decreased cell survival
in smooth muscle cells [432]. Thus, hyperglycemic p66Shc upregulation may upregulate
p66Shc beyond its beneficial basal activity such that decreasing p66Shc is beneficial at rest
for some cells.

Hyperlipidemia promotes coronary artery disease (CAD), a condition that promotes
endothelial dysfunction, and increases oxidative damage in vasculature [433—439]. p66Shc
KO mice on an apoliprotein E KO background showed that p66Shc also contributes to
atherosclerosis, a common MI risk factor and CAD precursor [180,181]. Dyslipidemia can
further exacerbate p66Shc ROS-mediated endothelial dysfunction and other pathologies
as LDL increases p66Shc transcription via p66Shc promoter hypomethylation in endothe-
lial cells [131].

Interestingly, CAD severity correlates with peripheral blood monocyte p66Shc
mRNA concentrations and oxidative stress in humans, and p66Shc expression is therefore
a CAD biomarker [11,12]. CAD patients also have thicker carotids that are less able to
dilate in response to blood flow and the severity of dilatation resistance increases with
increasing p66Shc mRNA [440]. Although p66Shc KO did not alter lipid concentrations in
mice fed a high fat diet, KO mice showed improvements in lesion area, with decreases in
systemic ROS, tissue ROS, and apoptosis [120]. Of note, all ShcA proteins are phosphory-
lated by shear stress, which is perpetually higher in CAD, which leads to inflammatory
signaling [2,441]. Thus, p66Shc KO models are also causing increased p52/46Shc shear
signaling that promotes survival and growth that is no longer balanced by pro-apoptotic
p66Shc shear signaling (Figure 2). Therefore, observed improvements in p66Shc KO CAD
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models cannot be viewed exclusively as results from decreased p66Shc mitochondrial
ROS production.

11. Future Perspectives and Summary

Although p66Shc’s full mechanism for superoxide anion production remains unan-
swered, recent advances have provided critical insight that can be utilized to further in-
vestigate p66Shc mechanistic details. An important mechanistic detail requiring further
investigation is identification of upstream p66Shc electron donors in cyt ¢ reduction. Since
p66Shc binds the ubiquinone mimetic, idebenone, ubiquinone is a potential electron do-
nor. However, many potential electron donors with reduction potentials favoring cyt ¢
reduction exist within cells and, given p66Shc’s binding promiscuity, this reaction may
occur through a variety of donors.

Furthermore, there are questions concerning how p66Shc modulates Complex IV/V
activity of the ETC. Although the data infer that ETC activity is enhanced via cyt c recy-
cling, direct electron donation to Complex IV has not been negated. Detailed structure—
function experiments are also missing that could explain the step-wise process for super-
oxide anion production and whether the cysteine network directly contributes to electron
flow or just conformational dynamics that permit superoxide anion production. Despite
correlations between metabolism and p66Shc inhibition, targeted metabolism studies and
mitochondrial oxygen consumption studies are also required to determine their mecha-
nistic impacts on pathology. Lastly, p66Shc-CL effects are similar to those seen with cyt ¢
and CL because both promote ROS production, but this correlation may have broader
impacts that could be revealed with detailed analysis.

Once elucidated, these details could provide the information required to inhibit mi-
tochondrial pro-apoptotic p66Shc functions while keeping pro-survival functions intact.
Current data suggest that specifically preventing cyt c peroxidase inhibition and superox-
ide anion production could provide substantial benefit to p66Shc-mediated cardiovascu-
lar disease. As indicated in previous sections, p66Shc-selective ROS inhibitors have been
described and improve outcomes in zebrafish cryoinjury-induced MI. However, concom-
itant inhibition of p66Shc-mediated superoxide production and H2O2accumulation, if ad-
ministered at the proper time and concentration to avoid potential side effects, could pro-
vide greater cardioprotection than observed with p66Shc-selective ROS inhibition alone.
On the contrary, increasing these functions can also provide benefits to many cancers. In
addition, specifically increasing pro-survival functions in cardiovascular pathology may
have similar benefits to p66Shc-selective ROS inhibition. The opposite approach can be
taken with pro-survival functions as well, as decreasing p66Shc pro-survival signals could
have a substantial impact on p66Shc-mediated cancers.

The potential health benefits of modulating both sides of p66Shc’s cell fate functions
(pro-survival and pro-apoptotic) are substantial but many obstacles have prevented such
innovation. For example, until carvedilol and idebenone were described as selective
p66Shc inhibitors, the primary method of studying p66Shc effects was genetic ablation,
(despite being a drug target since 1999), which removes both p66Shc signaling and mito-
chondrial functions and makes data interpretation difficult. The newly discovered
p66Shc-selecitve ROS inhibitors also have potential convoluting effects. Although binding
and inhibition constants indicate that these newly described inhibitors are selective for
p66Shc, they may have other targets influencing their results. For example, carvedilol also
acts as a non-selective adrenergic blocker that may overlap with p66Shc inhibition. Idebe-
none is less likely to have overlap with other functions (e.g., Complex I inhibition) as they
require concentrations ~170-340-fold higher than required for p66Shc binding and inhibi-
tion, respectively. However, second-generation inhibitors could be designed around ide-
benone and carvedilol to provide greater specificity for p66Shc. A complete p66Shc crystal
structure is critical to produce second-generation p66Shc ROS inhibitors, as well as first-
generation p66Shc pro-survival activators, but p66Shc’s inherent conformational variation
and intrinsically disordered regions present a significant hurdle to crystallization.
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Furthermore, complete characterization of p66Shc’s superoxide and ETC-enhancing
mechanisms will require intensive physical biochemistry experiments whose design, exe-
cution, and analysis will be difficult. Lastly, p66Shc largely behaves like a membrane pro-
tein during purification and overexpression, increasing the difficulty of performing high-
throughput methods.

Defining p66Shc activity is a complex process, given its broad range of functions,
localization dynamics, location/environment effects on activity, and multiple isoforms.
Yet, this complexity provides p66Shc with the flexibility required to act as a molecular
rheostat of apoptosis. The refined p66Shc molecular rheostat model resolves previous dis-
crepancies between research groups by uniting findings in a singular model that is sup-
ported by in vivo MI models and is under active clinical investigation for cancer studies.
The revised model also provides new therapeutic targets with the potential to modulate a
variety of pathological conditions by adjusting p66Shc’s rheostatic setpoint.
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