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Abstract

:

Cellular senescence represents a state of irreversible cell cycle arrest occurring naturally or in response to exogenous stressors. Following the initial arrest, progressive phenotypic changes define conditions of cellular senescence. Understanding molecular mechanisms that drive senescence can help to recognize the importance of such pathways in lung health and disease. There is increasing interest in the role of cellular senescence in conditions such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) in the context of understanding pathophysiology and identification of novel therapies. Herein, we discuss the current knowledge of molecular mechanisms and mitochondrial dysfunction regulating different aspects of cellular senescence-related to chronic lung diseases to develop rational strategies for modulating the senescent cell phenotype in the lung for therapeutic benefit.
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1. Introduction


Cellular senescence is characterized by a permanent cell-cycle arrest triggered by various stimuli, including DNA damage to telomere shortening, genomic instability, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction (Figure 1) [1]. Despite being in cell-cycle arrest, senescent cells are resistant to apoptosis due to activation of anti-apoptotic signaling. Senescent cells remain metabolically active, secreting inflammatory cytokines, growth factors, chemokines (CXCs), and extracellular matrix (ECM) proteins, collectively known as senescence-associated secretory phenotype (SASP) [2,3].



Senescent cells are thought to have beneficial effects on repairing injured tissue and maintaining organismal integrity. The role of senescent cells in tumor suppression is also recognized. Under normal conditions, senescent cell burden is limited by removing excessive senescent cells via the immune system. However, with aging, impairment of the immune response results in accumulation of senescent cells that can exacerbate their effects leading to detrimental consequences, i.e., diseases of aging. Furthermore, there is now increasing evidence for different senescent cell phenotypes such that a shift towards detrimental, pro-inflammatory, pro-fibrotic senescent cells and SASP can occur with aging, contributing to disease.



Compared to other organ systems where senescence, SASP and contributions to aging and diseases of aging have been substantially explored, there is relatively less data on the aging lung, and senescent cells in aging-associated lung diseases such as COPD, pulmonary fibrosis, and even asthma. Senescent cells do accumulate in aging lungs and can exacerbate lung diseases [4,5,6] (Figure 1). However, the mechanisms by which senescent cells, via their SASP, can induce paracrine signaling to activate neighboring naïve cells to induce remodeling (altered ECM deposition and/or cell proliferation) or modulate cell–cell interactions to promote disease are still under investigation.



One factor relevant to cellular senescence and aging that may be of importance to the lung is cellular stress, which promotes mitochondrial dysfunction, including mitochondrial oxidative stress, mitochondrial DNA (mtDNA) mutation, imbalance in mitochondrial fission and fusion, and alterations in mitochondrial respiration [7]. Mitochondrial oxidative stress has been thought to be involved in accelerating aging effects. Separately, mitochondrial oxidative stress has been associated with lung diseases such as COPD and IPF and could thus play a role in stimulating as well as maintaining cellular senescence towards impaired lung function [8,9,10].



In this review, we discuss mechanisms of cellular senescence relevant to different aspects of the structure and function of aging lungs and to lung diseases, focusing on COPD and IPF. We review the influence of mitochondrial dysfunction in the context of cellular senescence and lung diseases. Finally, we summarize promising methods currently used to target senescent cells as a potential therapy to improve healthspan in the context of normal aging lung, and counteract lung diseases associated with aging. We appreciate that cellular senescence and SASP signaling is complex, and likely cell- and context-dependent. Accordingly, a review of these topics is necessarily brief and perhaps simple, but is relevant to the specific topic of aging lung and associated diseases.




2. Overview of Cellular Senescence


Cellular senescence was originally described by Hayflick and Moorhead [11], where they demonstrated that human fetal fibroblasts lose their ability to divide after a certain number of subcultures (i.e., replicative senescence), associated with changes in cellular morphology such as flattening and increased cell size. Several studies have since described a similar phenomenon of replicative senescence in other cell types from different organs [12,13]. It is also now clear that other factors can accelerate cells towards losing their ability to proliferate in vitro, including the age and donor health condition [14], as well as environmental and genotoxic stresses. Examples include telomere shortening, inflammatory signaling, mitochondrial dysfunction and oxidative stress, oncogene-induced senescence (OIS), cell differentiation [15,16], chemotherapeutic drugs such as etoposide [17,18], exposure to UV radiation, and DNA damage stress.



Among cellular stressors, telomere shortening is now recognized as a hallmark of aging and senescence. Telomeres contain a repetitive nucleotide sequence of complementary double-strand DNA (5′-AGGGT-3′ and 3′-TCCCA-5) and wind up with a tail of a single-stranded DNA (5′-TTAGGG-3′) [19,20,21]. Telomeres protect chromosomal ends from recombination and fusion, and maintain DNA stability. Without telomeres, the DNA damage response is initiated [21]. In replicative senescence, the telomere shortens due to the inability of DNA polymerase to complete DNA replication. When a short length of telomeres is reached, a damage signal is initiated in the coiled DNA [22,23]. Therefore, telomere shortening has been used as a hallmark of aged and senescent cells [23,24,25].



Senescent cells are thought to support physiological functions during embryonic and postnatal development, tissue regeneration, and wound healing [26,27,28,29]. For instance, upon wound closure, activated myofibroblasts limit excessive fibrosis at the injury site [26,27,28,29]. The effects of senescent cells are kept in check by immune monitoring and clearance of senescent cells. Indeed, it is thought that during development, senescent cells avoid elimination from their microenvironment by altering their SASP components to avoid the immune system [26,27,28,29]. However, with aging, the efficiency of the immune system to clear senescent cells is impaired [30]. Consequently, senescent cells accumulate, secreting SASP factors that may become detrimental to naïve/neighboring cells by virtue of the quantity of such factors or an altered phenotype involved in more inflammatory and fibrotic elements [29,30,31,32,33].




3. Cellular Senescence Signaling Pathways


Cellular senescence is regulated by two signaling pathways that interact but are also independent: p53-p21CIP1 and p16Ink4a-Rb [18]. Permanent arrest of cell cycle occurs at the G1/S transitional phase distinguishing it from the quiescent phase, G0 [24,34,35,36]. The DNA damage response (DDR) regulates tumor suppressor of transcriptional factor p53 and downstream signaling p21CIP1, to result in permanent arrest in the cell cycle [18,24,34,35,36].



In the nuclei, DDR foci originate in response to DNA double-strand breaks (DSB). A subnuclear focus and accumulation of DDR proteins such as p53-binding protein 1 (53BP1), histone variant H2AX phosphorylated at serine-139 residue (γ-H2AX), and Ataxia Telangiectasia Mutated (ATM) in the vicinity of chromosomal DNA double-strand reflect early molecular events of cellular responses to DSB [34,37,38]. DDR then initiates a series of molecular events to repair DSB and to prevent potential DNA mutations. Phosphorylated at serine-139 in H2AX is mediated by ATM and Ataxia Telangiectasia and Rad3 related protein (ATR) kinases, which lead to visible DNA damage foci within the chromatin [18]. p53 binding protein is a key modulator rapidly localized to DNA damage foci after, for instance, ionizing radiation that causes DSB [37,38,39,40,41]. Although the key functions of p53 have not been fully understood, accumulated evidence suggests that the roles of p53 binding protein are engaging DSB proteins, such as interferon regulatory factor 4 (also known as MUM1) [35,38] and RAP1-interacting factor 1 (RIF1) [38,42], amplifying ATM activity, and promoting checkpoint signaling in response to low levels of DNA damage signals [38,39,40,43,44,45].



ATM and ATR stabilize p53 by activating cyclin-dependent kinase inhibitor p21CIP1, which in turn inhibits cyclin-dependent kinases-2 (CDK2) [33,39,40,43,46]. CDK2 triggers family members of tumor suppressors, retinoblastoma proteins (Rb), stopping the cell cycle in the S phase, and subsequently preventing DNA replication [29,31,43,47]. The signaling pathway of ATM-p53-p21CIP1/Rb results in a permanent arrest in the cell cycle [29,31,35,43].



Another tumor suppressor that influences key roles during cessation of cell division is the INK4a-ARF-INK4b locus [29,41,45,46,48,49]. The INK4a and INK4b locus encode for two cyclin-dependent kinase inhibitors, p16ink4a and p15ink4b, while ARF is associated with p14ARF in humans (p19ARF in mice) [32,45,46,48,49]. INK4/ARF activates cyclin-dependent kinase inhibitor p16ink4a that selectively inhibits cyclin-dependent kinases-4 (CDK4) and cyclin-dependent kinases-6 (CDK6) [29,31,32,43]. Upon activation, CDK4/6 phosphorylates retinoblastoma protein (Rb). As a result, transcriptional factor E2F3 is upregulated and leads to cell cycle arrest in the S phase [29,31,32,43,50,51]. Although upregulation of p16ink4a is meditated by the downstream signaling of p53-p21CIP1 [29,31,32,43,52], it is believed that the transcriptional factor p21CIP1 upregulates earlier than p16 ink4a [47], giving a chance for cultured cells to go for another division cycle before making it to a complete cell cycle arrest [29,31,32,43,51,53]. Thus, the expressions of p53-p21 and p16 ink4a appear to demonstrate a non-linear functional relationship.




4. Biomarkers of Cellular Senescence


Accumulation of senescent cells can be recognized by utilizing various methods in vitro and in vivo. For instance, upregulation of the transcriptional factors p53, p21, and p16, and SASP elements such as IL-6 and IL-8, are well-validated markers [31,32,33,41]. Senescence-associated β-galactosidase (SA-βgal) is another technique that is widely used to identify senescent cells in vitro and in vivo [28,50], where due to increased levels of lysosomal enzyme, the enzymatic activity of SA-βgal results in blue color at a pH of 6.0 [50,52,54]. However, SA-βgal is not the most sensitive or specific marker of senescence. Fluorescence in situ hybridization (FISH) of telomerase combined with immunofluorescence staining of γ-H2AX results in localization of telomere-associated foci (TAF) and has more recently been used to identify senescent cells [22,24,28,55]. SASP and SASP regulators are also used to characterize senescent cells, including (1) proinflammatory factors such as IL-1α, and IL1ß, IL-6 and IL-8; (2) signaling pathway such as Akt and MAPK; (3) NF-kB [51]; (4) growth factors such as TGF-β1 and matrix-degrading enzymes, metalloproteinases; (5) extracellular matrix proteins such as fibronectin [47]. However, it should be noted that the SASP profile is highly cell and context dependent, and it is not unusual for the profile to change with time, making it difficult to identify a unique, stable, and broadly applicable set of senescence markers. In this regard, while RNA sequencing and whole-genome analysis have been widely utilized to identify senescence-associated genes [47,53,56,57,58], there is substantial interest in the use of fluorescence-activated cell sorting (FACS) and particularly cytometry by time of flight (CyTOF) using antibodies that recognize antigens selectively expressed in senescent cells and can distinguish between detrimental and beneficial phenotypes based on expression of p16 and p21 (generalized markers) and that of NF-kB (detrimental) [55,59].




5. Senescence Signaling in Lung Diseases


Given the clinical impact of aging per se, and that of aging-associated lung diseases, it is important to identify biomarkers and signaling pathways in the context of senescence and its contributions to COPD [24] and IPF [60,61], and even asthma [18,62]. The importance of this area is reflected by the increasing number of research and review papers published on samples from human COPD and IPF patients and in animal models (Figure 2).



Lung tissues from patients with COPD and IPF show hallmarks of senescent cells [24,35,63,64]. Key biomarkers of senescence in aging adults are upregulation of p53, p21CIP1, p16ink4a, a robust release of SASP, positive staining for SA-βgal, TAF, and upregulation of anti-apoptotic signaling networks [24,25,35,63,65,66,67,68,69]. Increased expression of proinflammatory cytokines such as MCP-1, KC, MIP-1α, IL-12p40, and G-CSF have been observed in a mouse model of COPD [64,70]. In ROS-induced human senescent fibroblasts, IL-6 and IL-8 are increased following 14 and 25 days in culture [24,26].




6. Cellular Senescence in COPD


COPD is a major healthcare issue with a high morbidity and mortality rate [71]. COPD is characterized by obstruction in small airways (bronchiolitis), alveolar emphysema, and airway remodeling. Although tobacco smoke is the leading cause of COPD [63,72], air pollution, genetic disorders (alpha-1 deficiency), and respiratory infections are also risks for COPD. While there is no known cure, COPD is managed via lifestyle changes and medications, but these therapies have limitations, necessitating exploration of novel therapies.



Studies have shown that endothelial colony-forming cells (ECFC) derived from COPD patients have increased expression of SA-βgal, p16, p21, and γ-H2AX compared to ECFC isolated from control group patients [73]. In addition, lung fibroblasts derived from COPD patients show greater release of IL-6 and IL-8 and a higher percentage of SA-βGal staining [74]. Increased p21 and p16-positive epithelial cells have also been reported in COPD lung tissues compared to control groups [75]. More recently, COPD lung fibroblasts have been found to show senescence and 42 SASP secretome elements, which are implicated in chronic inflammation of COPD [76].



Tobacco smoke can trigger cellular senescence via oxidative stress-mediated DNA damage. Conversely, targeting p16-positive cells can inhibit tobacco smoke-induced emphysema in mouse models [63]. Furthermore, tobacco smoke accelerates telomere erosion and causes oxidative damage in cells [77]. Increased production of ROS associated with oxidative stress and changes in mitochondrial complex II, III, and V expression enhance cellular senescence [20]. Increased senescence in airway epithelial cells of severe COPD patients along with increased SASP has also been observed [3,78,79], and is relevant given the role of inflammation in COPD.



Multiple senescence signaling pathways may be involved in COPD, and activated in patients with a history of tobacco smoking and/or E-cigarette vaping [9,24,63,80,81]. For example, in older COPD patients, phosphoinositide-3-kinase (PI3K)-Akt and p38 MAPK cascades are activated [82,83]. Oxidative stress in COPD inhibits PTEN phosphatase activity, which in turn activates downstream signaling of PI3K-Akt and of mammalian target rapamycin complex 1 (mTORC1) protein kinase, which is a key player in cellular senescence. mTORC1 can also be activated by AMP-activated protein kinase (AMPK), an energy sensor that responds to an imbalance between AMP:ATP and ADP:ATP ratios [84,85,86,87,88]. Although AMPK is best known for its roles in cellular metabolism [78], its signaling is also important in the regulation of mitochondrial biogenesis and mitophagy [79,85,86,87,88]. Sirtuins, proteins involved in metabolic activity, have been implicated in aging and COPD lungs [80]. For instance, activation of mTOR upregulates microRNA-34a (miR-34a), and in return inhibits sirtuin-1 (SIRT1) and sirtuin-6 (SIRT6) activities [81,89,90]. Inhibition of SIRT1 dysregulates oxidative energy metabolism and influences NF-kB activity [91]. Activation of NF-kB stimulates SASP expressions found in many age-related diseases.



Another signaling pathway that plays a role in cellular senescence and COPD is p38 MAPK [92,93]. Increased p38 MAPK phosphorylation has been found in bronchial epithelial cells of COPD and asthmatic patients [92,93,94,95]. p38 MAPK signaling is known to enhance senescence burden in the lung [82,93]. SASP secretomes and oxidative stress stimuli such as tobacco smoke as well as respiratory pathogens can drive p38 MAPK phosphorylation in COPD lungs [90,93]. Increased p38 MAPK upregulates c-Jun proteins and activator protein-1 (AP-1), resulting in upregulation of microRNA-570 (miR-570), which inhibits SIRT1 and enhances NF-kB activity, leading to downstream activation of p53 and enhanced SASP expression [20,84].



Overall, these data provide evidence of senescence in COPD, and the potential involvement of multiple signaling pathways that could contribute to at least the inflammatory aspects of this disease. Of note, these signaling pathways are also well known to contribute to cell proliferation and remodeling and may thus be relevant to these aspects of COPD as well.




7. Cellular Senescence in IPF


IPF is a life-threatening chronic lung disease with poor prognosis and survival. IPF is characterized by scarred lungs associated with hyperproduction of ECM proteins [96,97]. In the past decade, there has been increasing interest in understanding the contributions of senescence to IPF (Figure 2). Several studies have shown that higher senescence markers are detected in IPF-derived cells and IPF tissues harvested from humans or in animal models. For example, upregulation of senescence-related pathways in alveolar type 2 (AT2) cells has been noted in a mouse model of IPF where AT2 Sin3a has been knocked out to induce senescence [61]. Conversely, targeting p53 signaling in alveoli reduces fibrosis [61]. p21 and p16-positive cells have also been shown to accumulate in IPF lung tissues [61,75]. Furthermore, SASP, such as matrix metalloproteinases MMP2 and MMP9 and collagen type I alpha 1 (COL1A1), show higher expression in IPF lungs [60]. Increased expression of p16 along with increased pro-fibrotic SASP has been reported in bleomycin-induced pulmonary fibrosis mouse models [60]. Sirtuins also play an important role during IPF as shown in fibroblast–myofibroblast differentiation (FMD), a process often triggered by TGF-β1. Reduced expression of SIRT-3 has been observed in IPF lung tissue, and inhibiting SIRT-3 has been associated with increased FMD in a murine IPF model after exposure to TGF-β1 [98]. Overexpression of SIRT-3 prevents TGF-β1-mediated FMD [98]. Thus, these limited data highlight the importance of senescence and associated signaling pathways in IPF.




8. Mitochondria in Senescence and Aging


Mitochondria are essential in eukaryotic cells for maintaining cellular homeostasis and function. Mitochondria regulate numerous cellular activities such as metabolism, replication, differentiation, senescence, and apoptosis [99]. Mitochondria produce energy for cells to perform essential functions by metabolized sources of macromolecules, such as glucose, amino acids, monosaccharides, and monoacylglycerols [99]. Several enzymes participate in the mitochondrial respiratory chain, a multistep process required to convert macronutrients into high-level energy. Mitochondrial respiration of glycolysis and the electron transport chain has been discussed in the literature extensively [100,101]. Herein, we will discuss mitochondrial roles in the context of senescence, aging lungs, and lung-related diseases.



Mitochondrial dysfunction can contribute to cellular senescence. For instance, gradual alterations of mitochondrial DNA (mtDNA mutations), variations in mitochondrial fission and fusion, elevated mitochondrial ROS production, and changes related to mitochondrial morphology (increased mitochondrial mass and elongation) can all play a role [35,102,103,104]. Senescent fibroblasts (replicative senescence) show dynamic changes in mitochondrial mass [26,28], while other studies show a dynamic feedback loop between damaged DNA and mitochondria [26,28,105,106].



Induction of senescence via disruption of mitochondrial function results in a distinctive SASP portfolio compared to senescence induced by genotoxic stress [107]. This mitochondrial dysfunction-associated senescence has been termed MiDAS and has been further shown to be a low NAD+/NADH ratio that drives it through AMPK-mediated p53 activation. Specifically, MiDAS secretomes are distinguished by higher levels of IL-10, CCL27, and TNF-α than core components of SASP such as IL-6 and IL-8 [107].



Overproduction of mitochondrial ROS is also an important player that causes DNA damage and results in DDR. The circle of ROS-DNA damage involves phosphorylation of DDR kinase ATM and Akt [108]. ATM activation initiates a series of phosphorylation events through ATM, NEMO, and IKK, ultimately activating nuclear transcription factor NF-kB, which enhances inflammation [108,109]. However, it is important to note that NF-kB activity is also affected by several factors, including metabolic activity and ROS production. For instance, reduced NAD+ and an alteration in AMP:ATP and ADP:ATP ratios affect SASP through NF-kB regulation [108]. Furthermore, activation of sirtuins such as SIRT1 and SIRT6 has been shown to inhibit NF-kB activity, affecting multiple SASP genes [100,110,111]. Activation of inhibitor sirtuins requires cofactor NAD+ [107,112]. Therefore, a reduction in the sirtuin cofactor NAD+ can increase NF-kB activity, and ultimately SASP responses.



Patients with COPD show changes in proteins that influence oxidative stress. PTEN-induced protein kinase-1 (PINK1), a mitochondrial stress protein marker that accumulates on the outer membrane of damaged mitochondria, is found to be elevated in COPD [72,113]. On the other hand, excessive production of mitochondrial catalase, an enzyme that protects cells from oxidative damage catalyzing hydrogen peroxide to oxygen and water, extends lifespan in the mouse [114]. Conversely, a reduction in prohibitin genes, such as PHB1 in the inner mitochondrial membrane that maintain mitochondrial function, has been observed in COPD and in smokers with no history of COPD [115,116]. Hydrogen peroxide can promote mitochondrial dysfunction in airway smooth muscle (ASM) cells [117,118,119,120]. ASM cells from patients with COPD show higher ROS associated with (1) increased IL-8 release, (2) decreased mitochondrial complex enzyme expression, and (3) reduced mitochondrial membrane potential [18,119].




9. Mitochondrial DNA Mutation in Aging Lungs and Diseases


Unlike the nuclear genome, the mitochondrial genome is a ~16.6 kb circular DNA molecule encoding subunits of polypeptides [99,105,106,121]. Diseases associated with mitochondria are driven by a variety of genetic mutations encoded by either the mitochondrial genome or nuclear genome [110,122,123]. Mammalian cells have multiple mitochondria, each having ~10 copies of DNA [106,121]. Mutation in mtDNA can be heteroplasmic or homoplasmic [106,121]. mtDNA is maternally inherited during embryonic development [111,124,125]. However, mtDNA mutations often occur during aging [82,126,127], where mutation rates are much higher in mtDNA than in nuclear DNA (nDNA) [111,128].



Emerging evidence illustrates that alterations of mtDNA are associated with electron transport efficiency. These changes are due to mutations in encoded subunits of polypeptides making up mitochondrial respiratory complexes that serve as primary sources of ROS. Depletion of mtDNA has been associated with premature aging and multiple chronic diseases [129]. Using a murine model, inducing mutation in mtDNA (by depletion) diminishes mitochondrial respiratory complexes I, III, and IV and ATP synthase [129]. These changes are associated with accelerated aging, skin hair loss, and increased inflammation [129]. Furthermore, introducing a deficiency in proofreading of mitochondrial DNA polymerase (POLG) (involved in mtDNA replication) results in premature aging in mice [71,130]. Studies show that introducing an error-prone version of mtDNA polymerase causes increased mtDNA mutation load [131] and a deficiency in mitochondrial respiratory complexes [131], and accelerates a premature aging phenotype in different mouse organs [71,131]. Other studies have reported that mutations in mtDNA are associated with aging and several chronic diseases [132,133,134,135]. For instance, much higher mtDNA mutation rates have been shown in Parkinson’s, Alzheimer’s, and cardiovascular diseases [128,136,137,138]. Furthermore, alteration in mtDNA reduces resistance to oxidative stress and increases risk of COPD, asthma, and other lung diseases [104,139,140]. More homoplasmic variants that lead to constant changes in electronic transport chain proteins have been observed in asthmatic patients [106]. Additionally, other studies have shown an imbalance between mtDNA and nDNA in asthma, COPD, and asthma–COPD overlap [141,142].




10. Cellular Senescence as a Therapeutic Target


Demonstrating that suppressing the accumulation of p16Ink4a positive cells extends lifespan by decreasing growth hormone signals has helped to excite the field regarding the therapeutic potential of targeting senescent cells [126]. Subsequently, efforts to develop drugs that eliminate senescent cells (senolytics) without affecting normal cells have become a major focus in the field [68]. The idea is that senescent cells depend on their anti-apoptotic pathways to survive [68,132]. Senolytic cocktails of small molecules target the anti-apoptotic network [31,68,132]. Much work has focused on the use of dasatinib (D; a tyrosine kinase inhibitor) and quercetin (Q; a plant based flavonoid) [68,132]. D + Q were initially shown to effectively induce apoptosis in senescent cells of primary adipocyte progenitor cells and human umbilical vein endothelial cells but not in quiescent, proliferating, or differentiated cells [68,132]. In a mouse model, D + Q promotes physical function and reduces mortality in aged mice [143]. Human trials for D + Q in IPF suggest improvement in respiratory and physical function [62]. Recently, mice infected with SARS-CoV-2-related virus and treated with a senolytic showed reduced senescent cell burden and mortality while increasing antiviral antibodies [144].



Another approach to eliminating senescent cells is targeting the higher mitochondrial potential in senescent cells [145]. Mitochondria-targeted tamoxifen (MitoTam) is an anticancer agent that has been proven to inhibit oxidative phosphorylation and induce cell death in senescent cells [145]. MitoTam can selectively eliminate senescent cells in aging adults and premature or acute senescent cells at young ages [145].



Besides senolytics, strategies to develop drugs that target signaling pathways critical to senescent cells have investigated using senostatic (senomorphic) drugs [69,127]. Unlike senolytics, senostatics (senomorphics) can block paracrine signaling that activates nearby naïve cells (Figure 3) [69,127]. While senolytics induce apoptosis and eliminate senescent cells, senostatics (senomorphics) are geared towards inhibiting SASP release and signaling and/or cell-specific SASP factor expression (Figure 3). Studies show polyphenols, flavonoids, and phytochemicals are effective senostatic drugs inhibiting signals and suppressing SASP factors [69,127]. Diminishing PI3K-Akt signaling via a prodrug pan-PI3K inhibitor CL27c in aging lungs decreases inflammation and improves life expectancy in murine animal models of acute or glucocorticoid-resistant neutrophilic asthma [133,146]. Additionally, activation of AMPK by reducing cellular metabolic activity and increasing ATP synthesis blocks mTOR activation. Consequently, the signaling cascade that enhances proinflammatory cytokine secretions and p53 activation is terminated. NF-kB antioxidants and inhibitors are effective senostatics, suppressing SASP factors [134,147]. Using rapamycin or torin to inhibit the mTORC1 signaling pathway has been shown to rescue mitochondrial dysfunction [135,148]. Similarly, the antioxidant drug MitoQ is effective at targeting TNF-α-induced CXCL8 [72,119].



Furthermore, the widely prescribed and FDA-approved anti-diabetic drug metformin shows promise in the context of senescence [149,150,151,152]. Metformin can activate AMPK by blocking complex I, which drives ATP synthesis in the mitochondrial respiratory chain, and thus improving the AMP: ATP balance [78]. These emerging data provide substantial promise to the idea of modulating senescent cell burden and/or SASP portfolios or downstream signaling towards alleviating lung diseases associated with aging.




11. Conclusions and Future Insights


Cellular senescence is a hallmark of aging lungs and aging-associated lung diseases. While senescent cells have beneficial roles, with aging, an enhanced senescent cell burden and a pro-inflammatory and pro-fibrotic SASP can contribute to pathophysiology of diseases such as COPD, IPF, and even asthma. Senescence can be activated by multiple upstream mechanisms, and conversely can involve multiple, interactive downstream pathways. SASP effects on naïve cells can be cell and context dependent with multiple effects on remodeling relevant to lung disease. Thus, there is substantial enthusiasm in exploring the use of senolytics and senostatics in eliminating senescent cells or modulating SASP effects towards therapy for lung diseases. Here, what remains to be understood is the differences in senescent cell and SASP phenotypes in different diseases, further complicated by likely cell-type differences in senescence in the lung. Appreciating that aging may differentially influence different cell types in the lung, the contribution of senescence remains to be understood in a cell-specific fashion. Thus, understanding the relative roles of resident cells such as bronchial and alveolar epithelium, smooth muscle and fibroblasts in senescence and its downstream impact is critical. In this regard, the relative roles of different senescence pathways may also show cell dependent variability that remains to be understood. Thus, modulation of senescence as therapy may be a reality for multiple aging-associated lung diseases; the potential for future research is high.







Author Contributions


Conceive review, first draft preparation, and writing—A.A.; designing Figure 1, Figure 2, Figure 3 and figure legends—A.A.; shortening the first draft, editing, writing, and modifying sections—A.A. and M.L.K.N.; organizing references, re-editing, and re-writing sections—A.A.; editing and writing to final draft—Y.S.P.; final editing, reviewing, and approval, A.A., M.L.K.N., Y.S.P. and C.M.P. All authors have read and agreed to the published version of the manuscript.




Funding


This review is supported by the NIH grants T32 HL105355 (Aghali), R01 HL088029 (Prakash), R01 HL14602 (Pabelick), and Abel Tasman Talent Program Fellowship, in association with the Healthy Aging Alliance, provided by the University Medical Center Groningen (Netherlands) and the Mayo Clinic (Rochester, MN, USA) (Koloko Ngassie).




Institutional Review Board Statement


Not applicable.




Informed Consent Statement


Not applicable.




Data availability Statement


Links for data-generating Figure 2: Cellular Senescence Chronic Obstructive Pulmonary Disease https://pubmed.ncbi.nlm.nih.gov/?term=Cellular+Senescence+chronic+obstructive+pulmonary+disease&filter=years.2011-2021 (accessed on 22 March 2022). Cellular Senescence Idiopathic Pulmonary Fibrosis https://pubmed.ncbi.nlm.nih.gov/?term=Cellular+Senescence+Idiopathic+Pulmonary+Fibrosis&filter=years.2011-2021 (accessed on 22 March 2022).




Acknowledgments


Schematic figures were created using BioRender (BioRender, www.BioRender.com, 24 April 2022). Figure 2 was created using Public/Publisher Medline (National Library of Medicine, pubmed.ncbi.nlm.nih.gov, 22 March 2022).




Conflicts of Interest


The authors declare no conflict of interest.




References


	



López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The Hallmarks of Aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed]

	



Kuilman, T.; Peeper, D.S. Senescence-messaging secretome: SMS-ing cellular stress. Nat. Cancer 2009, 9, 81–94. [Google Scholar] [CrossRef] [PubMed]

	



Coppé, J.-P.; Desprez, P.-Y.; Krtolica, A.; Campisi, J. The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annu. Rev. Pathol. Mech. Dis. 2010, 5, 99–118. [Google Scholar] [CrossRef]

	



Parikh, P.; Wicher, S.; Khandalavala, K.; Pabelick, C.M.; Britt, R.D., Jr.; Prakash, Y.S. Cellular senescence in the lung across the age spectrum. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2019, 316, L826–L842. [Google Scholar] [CrossRef] [PubMed]

	



Kirkwood, T.B.L. Understanding the Odd Science of Aging. Cell 2005, 120, 437–447. [Google Scholar] [CrossRef]

	



Ito, K.; Barnes, P.J. COPD as a Disease of Accelerated Lung Aging. Chest 2009, 135, 173–180. [Google Scholar] [CrossRef] [PubMed]

	



Mora, A.L.; Bueno, M.; Rojas, M. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. J. Clin. Investig. 2017, 127, 405–414. [Google Scholar] [CrossRef] [PubMed]

	



Yue, L.; Yao, H. Mitochondrial dysfunction in inflammatory responses and cellular senescence: Pathogenesis and pharmacological targets for chronic lung diseases. J. Cereb. Blood Flow Metab. 2016, 173, 2305–2318. [Google Scholar] [CrossRef]

	



Prakash, Y.; Pabelick, C.M.; Sieck, G. Mitochondrial Dysfunction in Airway Disease. Chest 2017, 152, 618–626. [Google Scholar] [CrossRef]

	



Zhou, W.-C.; Qu, J.; Xie, S.-Y.; Sun, Y.; Yao, H.-W. Mitochondrial Dysfunction in Chronic Respiratory Diseases: Implications for the Pathogenesis and Potential Therapeutics. Oxidative Med. Cell. Longev. 2021, 2021, 5188306. [Google Scholar] [CrossRef]

	



Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef]

	



Shelton, D.N.; Chang, E.; Whittier, P.S.; Choi, D.; Funk, W.D. Microarray analysis of replicative senescence. Curr. Biol. 1999, 9, 939–945. [Google Scholar] [CrossRef]

	



Denchi, E.L.; Attwooll, C.; Pasini, D.; Helin, K. Deregulated E2F Activity Induces Hyperplasia and Senescence-Like Features in the Mouse Pituitary Gland. Mol. Cell. Biol. 2005, 25, 2660–2672. [Google Scholar] [CrossRef] [PubMed]

	



Campisi, J. The biology of replicative senescence. Eur. J. Cancer 1997, 33, 703–709. [Google Scholar] [CrossRef]

	



Storer, M.; Mas, A.; Robert-Moreno, À.; Pecoraro, M.; Ortells, M.C.; Di Giacomo, V.; Yosef, R.; Pilpel, N.; Krizhanovsky, V.; Sharpe, J.; et al. Senescence Is a Developmental Mechanism that Contributes to Embryonic Growth and Patterning. Cell 2013, 155, 1119–1130. [Google Scholar] [CrossRef] [PubMed]

	



Muñoz-Espín, D.; Cañamero, M.; Maraver, A.; Gómez-López, G.; Contreras, J.; Murillo-Cuesta, S.; Rodríguez-Baeza, A.; Varela-Nieto, I.; Ruberte, J.; Collado, M.; et al. Programmed Cell Senescence during Mammalian Embryonic Development. Cell 2013, 155, 1104–1118. [Google Scholar] [CrossRef] [PubMed]

	



Kuilman, T.; Michaloglou, C.; Mooi, W.J.; Peeper, D.S. The essence of senescence: Figure 1. Genes Dev. 2010, 24, 2463–2479. [Google Scholar] [CrossRef]

	



Parikh, P.; Britt, R.D., Jr.; Manlove, L.J.; Wicher, S.; Roesler, A.; Ravix, J.; Teske, J.; Thompson, M.A.; Sieck, G.C.; Kirkland, J.L.; et al. Hyperoxia-induced Cellular Senescence in Fetal Airway Smooth Muscle Cells. Am. J. Respir. Cell Mol. Biol. 2019, 61, 51–60. [Google Scholar] [CrossRef]

	



Kawamura, T.; Suzuki, J.; Wang, Y.V.; Menendez, S.; Morera, L.B.; Raya, A.; Wahl, G.M.; Belmonte, J.C.I. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 2009, 460, 1140–1144. [Google Scholar] [CrossRef]

	



Barnes, P.J. Senescence in COPD and Its Comorbidities. Annu. Rev. Physiol. 2017, 79, 517–539. [Google Scholar] [CrossRef]

	



Greider, C.W. Telomeres Do D-Loop–T-Loop. Cell 1999, 97, 419–422. [Google Scholar] [CrossRef]

	



Birch, J.; Victorelli, S.; Rahmatika, D.; Anderson, R.K.; Jiwa, K.; Moisey, E.; Ward, C.; Fisher, A.J.; De Soyza, A.; Passos, J.F. Telomere Dysfunction and Senescence-associated Pathways in Bronchiectasis. Am. J. Respir. Crit. Care Med. 2016, 193, 929–932. [Google Scholar] [CrossRef] [PubMed]

	



d’Adda di Fagagna, F.; Reaper, P.M.; Clay-Farrace, L.; Fiegler, H.; Carr, P.; von Zglinicki, T.; Saretzki, G.; Carter, N.P.; Jackson, S.P. A DNA Damage Checkpoint Response in Telomere-Initiated Senescence. Nature 2003, 426, 194–198. [Google Scholar] [CrossRef] [PubMed]

	



Birch, J.; Anderson, R.K.; Correia-Melo, C.; Jurk, D.; Hewitt, G.; Marques, F.M.; Green, N.J.; Moisey, E.; Birrell, M.A.; Belvisi, M.G.; et al. DNA damage response at telomeres contributes to lung aging and chronic obstructive pulmonary disease. Am. J. Physiol. Cell. Mol. Physiol. 2015, 309, L1124–L1137. [Google Scholar] [CrossRef]

	



Córdoba-Lanús, E.; Cazorla-Rivero, S.; Espinoza-Jiménez, A.; De-Torres, J.P.; Pajares, M.J.; Aguirre-Jaime, A.; Celli, B.; Casanova, C. Telomere shortening and accelerated aging in COPD: Findings from the BODE cohort. Respir. Res. 2017, 18, 59. [Google Scholar] [CrossRef]

	



Passos, J.F.; Nelson, G.; Wang, C.; Richter, T.; Simillion, C.; Proctor, C.J.; Miwa, S.; Olijslagers, S.; Hallinan, J.; Wipat, A.; et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 2010, 6, 347. [Google Scholar] [CrossRef]

	



Korolchuk, V.I.; Miwa, S.; Carroll, B.; von Zglinicki, T. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine 2017, 21, 7–13. [Google Scholar] [CrossRef]

	



Passos, J.F.; Saretzki, G.; Ahmed, S.; Nelson, G.; Richter, T.; Peters, H.; Wappler, I.; Birket, M.J.; Harold, G.; Schaeuble, K.; et al. Mitochondrial Dysfunction Accounts for the Stochastic Heterogeneity in Telomere-Dependent Senescence. PLoS Biol. 2007, 5, e110. [Google Scholar] [CrossRef]

	



van Deursen, J.M. The role of senescent cells in ageing. Nature 2014, 509, 439–446. [Google Scholar] [CrossRef]

	



Ovadya, Y.; Landsberger, T.; Leins, H.; Vadai, E.; Gal, H.; Biran, A.; Yosef, R.; Sagiv, A.; Agrawal, A.; Shapira, A.; et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 2018, 9, 5435. [Google Scholar] [CrossRef]

	



Childs, B.G.; Durik, M.; Baker, D.J.; Van Deursen, J.M. Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nat. Med. 2015, 21, 1424–1435. [Google Scholar] [CrossRef] [PubMed]

	



Herranz, N.; Gil, J. Mechanisms and functions of cellular senescence. J. Clin. Investig. 2018, 128, 1238–1246. [Google Scholar] [CrossRef] [PubMed]

	



Lasry, A.; Ben-Neriah, Y. Senescence-associated inflammatory responses: Aging and cancer perspectives. Trends Immunol. 2015, 36, 217–228. [Google Scholar] [CrossRef] [PubMed]

	



Martínez-Zamudio, R.I.; Robinson, L.; Roux, P.-F.; Bischof, O. SnapShot: Cellular Senescence Pathways. Cell 2017, 170, 816. [Google Scholar] [CrossRef] [PubMed]

	



Birch, J.; Barnes, P.J.; Passos, J.F. Mitochondria, telomeres and cell senescence: Implications for lung ageing and disease. Pharmacol. Ther. 2017, 183, 34–49. [Google Scholar] [CrossRef]

	



Herbig, U.; Jobling, W.A.; Chen, B.P.; Chen, D.J.; Sedivy, J.M. Telomere Shortening Triggers Senescence of Human Cells through a Pathway Involving ATM, p53, and p21CIP1, but Not p16INK4a. Mol. Cell 2004, 14, 501–513. [Google Scholar] [CrossRef]

	



Di Fagagna, F.D. Living on a break: Cellular senescence as a DNA-damage response. Nat. Cancer 2008, 8, 512–522. [Google Scholar] [CrossRef]

	



Panier, S.; Boulton, S.J. Double-strand break repair: 53BP1 comes into focus. Nat. Rev. Mol. Cell Biol. 2013, 15, 7–18. [Google Scholar] [CrossRef]

	



DiTullio, R.A., Jr.; Mochan, T.A.; Venere, M.; Bartkova, J.; Sehested, M.; Bartek, J.; Halazonetis, T.D. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat. Cell Biol. 2002, 4, 998–1002. [Google Scholar] [CrossRef]

	



Mochan, T.A.; Venere, M.; DiTullio, R.A.; Halazonetis, T.D. 53BP1, an activator of ATM in response to DNA damage. DNA Repair 2004, 3, 945–952. [Google Scholar] [CrossRef]

	



Childs, B.G.; Baker, D.J.; Kirkland, J.L.; Campisi, J.; Van Deursen, J.M. Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 2014, 15, 1139–1153. [Google Scholar] [CrossRef] [PubMed]

	



Silverman, J.; Takai, H.; Buonomo, S.B.; Eisenhaber, F.; de Lange, T. Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint. Genes Dev. 2004, 18, 2108–2119. [Google Scholar] [CrossRef] [PubMed]

	



Fernandez-Capetillo, O.; Chen, H.-T.; Celeste, A.; Ward, I.; Romanienko, P.J.; Morales, J.; Naka, K.; Xia, Z.; Camerini-Otero, R.D.; Motoyama, N.; et al. DNA damage-induced G2–M checkpoint activation by histone H2AX and 53BP1. Nat. Curell Biol. 2002, 4, 993–997. [Google Scholar] [CrossRef] [PubMed]

	



Wang, B.; Matsuoka, S.; Carpenter, P.B.; Elledge, S.J. 53BP1, a Mediator of the DNA Damage Checkpoint. Science 2002, 298, 1435–1438. [Google Scholar] [CrossRef]

	



Ward, I.M.; Minn, K.; van Deursen, J.; Chen, J. p53 Binding Protein 53BP1 Is Required for DNA Damage Responses and Tumor Suppression in Mice. Mol. Cell. Biol. 2003, 23, 2556–2563. [Google Scholar] [CrossRef]

	



Romagosa, C.; Simonetti, S.; López-Vicente, L.; Mazo, A.; Lleonart, M.E.; Castellvi, J.; Cajal, S.R.Y. p16Ink4a overexpression in cancer: A tumor suppressor gene associated with senescence and high-grade tumors. Oncogene 2011, 30, 2087–2097. [Google Scholar] [CrossRef]

	



Sturmlechner, I.; Zhang, C.; Sine, C.C.; van Deursen, E.-J.; Jeganathan, K.B.; Hamada, N.; Grasic, J.; Friedman, D.; Stutchman, J.T.; Can, I.; et al. p21 produces a bioactive secretome that places stressed cells under immunosurveillance. Science 2021, 374. [Google Scholar] [CrossRef]

	



Gil, J.; Peters, G. Regulation of the INK4b–ARF–INK4a tumour suppressor locus: All for one or one for all. Nat. Rev. Mol. Cell Biol. 2006, 7, 667–677. [Google Scholar] [CrossRef]

	



Sharpless, N.E. INK4a/ARF: A multifunctional tumor suppressor locus. Mutat. Res. Mol. Mech. Mutagen. 2005, 576, 22–38. [Google Scholar] [CrossRef]

	



Debacq-Chainiaux, F.; Erusalimsky, J.D.; Campisi, J.; Toussaint, O. Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protoc. 2009, 4, 1798–1806. [Google Scholar] [CrossRef]

	



Tilstra, J.S.; Robinson, A.R.; Wang, J.; Gregg, S.Q.; Clauson, C.L.; Reay, D.P.; Nasto, L.A.; Croix, C.M.S.; Usas, A.; Vo, N.; et al. NF-κB inhibition delays DNA damage–induced senescence and aging in mice. J. Clin. Investig. 2012, 122, 2601–2612. [Google Scholar] [CrossRef] [PubMed]

	



Hernandez-Segura, A.; de Jong, T.V.; Melov, S.; Guryev, V.; Campisi, J.; DeMaria, M. Unmasking Transcriptional Heterogeneity in Senescent Cells. Curr. Biol. 2017, 27, 2652–2660.e4. [Google Scholar] [CrossRef] [PubMed]

	



Casella, G.; Munk, R.; Kim, K.M.; Piao, Y.; De, S.; Abdelmohsen, K.; Gorospe, M. Transcriptome signature of cellular senescence. Nucleic Acids Res. 2019, 47, 7294–7305. [Google Scholar] [CrossRef] [PubMed]

	



Kurz, D.; Decary, S.; Hong, Y.; Erusalimsky, J. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J. Cell Sci. 2000, 113, 3613–3622. [Google Scholar] [CrossRef] [PubMed]

	



Hewitt, G.; von Zglinicki, T.; Passos, J.F. Cell Sorting of Young and Senescent Cells. Methods Mol. Biol. 2013, 1048, 31–47. [Google Scholar] [CrossRef]

	



Nicaise, A.M.; Wagstaff, L.J.; Willis, C.M.; Paisie, C.; Chandok, H.; Robson, P.; Fossati, V.; Williams, A.; Crocker, S.J. Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis. Proc. Natl. Acad. Sci. USA 2019, 116, 9030–9039. [Google Scholar] [CrossRef] [PubMed]

	



Nagano, T.; Nakano, M.; Nakashima, A.; Onishi, K.; Yamao, S.; Enari, M.; Kikkawa, U.; Kamada, S. Identification of cellular senescence-specific genes by comparative transcriptomics. Sci. Rep. 2016, 6, 31758. [Google Scholar] [CrossRef]

	



Zhang, L.; Dong, X.; Lee, M.; Maslov, A.Y.; Wang, T.; Vijg, J. Single-cell whole-genome sequencing reveals the functional landscape of somatic mutations in B lymphocytes across the human lifespan. Proc. Natl. Acad. Sci. USA 2019, 116, 9014–9019. [Google Scholar] [CrossRef]

	



Frescas, D.; Roux, C.M.; Aygun-Sunar, S.; Gleiberman, A.S.; Krasnov, P.; Kurnasov, O.V.; Strom, E.; Virtuoso, L.P.; Wrobel, M.; Osterman, A.L.; et al. Senescent cells expose and secrete an oxidized form of membrane-bound vimentin as revealed by a natural polyreactive antibody. Proc. Natl. Acad. Sci. USA 2017, 114, E1668–E1677. [Google Scholar] [CrossRef]

	



Schafer, M.J.; White, T.A.; Iijima, K.; Haak, A.J.; Ligresti, G.; Atkinson, E.J.; Oberg, A.L.; Birch, J.; Salmonowicz, H.; Zhu, Y.; et al. Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 2017, 8, 14532. [Google Scholar] [CrossRef]

	



Yao, C.; Guan, X.; Carraro, G.; Parimon, T.; Liu, X.; Huang, G.; Mulay, A.; Soukiasian, H.J.; David, G.; Weigt, S.S.; et al. Senescence of Alveolar Type 2 Cells Drives Progressive Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2021, 203, 707–717. [Google Scholar] [CrossRef] [PubMed]

	



Justice, J.N.; Nambiar, A.M.; Tchkonia, T.; Lebrasseur, N.K.; Pascual, R.; Hashmi, S.K.; Prata, L.L.; Masternak, M.M.; Kritchevsky, S.B.; Musi, N.; et al. Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. eBioMedicine 2019, 40, 554–563. [Google Scholar] [CrossRef] [PubMed]

	



Cottage, C.T.; Peterson, N.; Kearley, J.; Berlin, A.; Xiong, X.; Huntley, A.; Zhao, W.; Brown, C.; Migneault, A.; Zerrouki, K.; et al. Targeting p16-induced senescence prevents cigarette smoke-induced emphysema by promoting IGF1/Akt1 signaling in mice. Commun. Biol. 2019, 2, 307. [Google Scholar] [CrossRef] [PubMed]

	



Rashid, K.; Sundar, I.K.; Gerloff, J.; Li, D.; Rahman, I. Lung cellular senescence is independent of aging in a mouse model of COPD/emphysema. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]

	



Tsuji, T.; Aoshiba, K.; Nagai, A. Alveolar Cell Senescence in Patients with Pulmonary Emphysema. Am. J. Respir. Crit. Care Med. 2006, 174, 886–893. [Google Scholar] [CrossRef]

	



Amsellem, V.; Gary-Bobo, G.; Marcos, E.; Maitre, B.; Chaar, V.; Validire, P.; Stern, J.-B.; Noureddine, H.; Sapin, E.; Rideau, D.; et al. Telomere Dysfunction Causes Sustained Inflammation in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2011, 184, 1358–1366. [Google Scholar] [CrossRef]

	



Rutten, E.P.; Gopal, P.; Wouters, E.F.; Franssen, F.M.; Hageman, G.J.; Vanfleteren, L.E.; Spruit, M.A.; Reynaert, N. Various Mechanistic Pathways Representing the Aging Process Are Altered in COPD. Chest 2016, 149, 53–61. [Google Scholar] [CrossRef]

	



Kirkland, J.L.; Tchkonia, T. Senolytic drugs: From discovery to translation. J. Intern. Med. 2020, 288, 518–536. [Google Scholar] [CrossRef]

	



Pignolo, R.J.; Passos, J.F.; Khosla, S.; Tchkonia, T.; Kirkland, J.L. Reducing Senescent Cell Burden in Aging and Disease. Trends Mol. Med. 2020, 26, 630–638. [Google Scholar] [CrossRef]

	



John-Schuster, G.; Günter, S.; Hager, K.; Conlon, T.M.; Eickelberg, O.; Yildirim, A. Inflammaging increases susceptibility to cigarette smoke-induced COPD. Oncotarget 2015, 7, 30068–30083. [Google Scholar] [CrossRef]

	



Kujoth, G.C.; Hiona, A.; Pugh, T.D.; Someya, S.; Panzer, K.; Wohlgemuth, S.E.; Hofer, T.; Seo, A.Y.; Sullivan, R.; Jobling, W.A.; et al. Mitochondrial DNA Mutations, Oxidative Stress, and Apoptosis in Mammalian Aging. Science 2005, 309, 481–484. [Google Scholar] [CrossRef] [PubMed]

	



Mizumura, K.; Cloonan, S.; Nakahira, K.; Bhashyam, A.R.; Cervo, M.; Kitada, T.; Glass, K.; Owen, C.A.; Mahmood, A.; Washko, G.R.; et al. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J. Clin. Investig. 2014, 124, 3987–4003. [Google Scholar] [CrossRef] [PubMed]

	



Paschalaki, K.; Rossios, C.; Pericleous, C.; MacLeod, M.; Rothery, S.; Donaldson, G.C.; Wedzicha, J.A.; Gorgoulis, V.; Randi, A.M.; Barnes, P.J. Inhaled corticosteroids reduce senescence in endothelial progenitor cells from patients with COPD. Thorax 2022, 77, 616–620. [Google Scholar] [CrossRef] [PubMed]

	



Zhang, M.; Zhang, Y.; Roth, M.; Zhang, L.; Shi, R.; Yang, X.; Li, Y.; Zhang, J. Sirtuin 3 Inhibits Airway Epithelial Mitochondrial Oxidative Stress in Cigarette Smoke-Induced COPD. Oxidative Med. Cell. Longev. 2020, 2020, 7582980. [Google Scholar] [CrossRef]

	



Okuda, R.; Aoshiba, K.; Matsushima, H.; Ogura, T.; Okudela, K.; Ohashi, K. Cellular senescence and senescence-associated secretory phenotype: Comparison of idiopathic pulmonary fibrosis, connective tissue disease-associated interstitial lung disease, and chronic obstructive pulmonary disease. J. Thorac. Dis. 2019, 11, 857–864. [Google Scholar] [CrossRef]

	



Woldhuis, R.R.; Heijink, I.H.; van den Berge, M.; Timens, W.; Oliver, B.G.G.; de Vries, M.; Brandsma, C.-A. COPD-derived fibroblasts secrete higher levels of senescence-associated secretory phenotype proteins. Thorax 2021, 76, 508–511. [Google Scholar] [CrossRef]

	



Shammas, M.A. Telomeres, lifestyle, cancer, and aging. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 28–34. [Google Scholar] [CrossRef]

	



Finkel, T.; Hwang, P.M. The Krebs cycle meets the cell cycle: Mitochondria and the G 1 –S transition. Proc. Natl. Acad. Sci. USA 2009, 106, 11825–11826. [Google Scholar] [CrossRef]

	



Weir, H.J.; Yao, P.; Huynh, F.K.; Escoubas, C.C.; Goncalves, R.L.; Burkewitz, K.; Laboy, R.; Hirschey, M.D.; Mair, W.B. Dietary Restriction and AMPK Increase Lifespan via Mitochondrial Network and Peroxisome Remodeling. Cell Metab. 2017, 26, 884–896.e5. [Google Scholar] [CrossRef]

	



Conti, V.; Corbi, G.; Manzo, V.; Pelaia, G.; Filippelli, A.; Vatrella, A. Sirtuin 1 and Aging Theory for Chronic Obstructive Pulmonary Disease. Anal. Cell. Pathol. 2015, 2015, 897327. [Google Scholar] [CrossRef]

	



Johnson, S.; Rabinovitch, P.S.; Kaeberlein, M. mTOR is a key modulator of ageing and age-related disease. Nature 2013, 493, 338–345. [Google Scholar] [CrossRef] [PubMed]

	



Mitani, A.; Ito, K.; Vuppusetty, C.; Barnes, P.J.; Mercado, N. Restoration of Corticosteroid Sensitivity in Chronic Obstructive Pulmonary Disease by Inhibition of Mammalian Target of Rapamycin. Am. J. Respir. Crit. Care Med. 2016, 193, 143–153. [Google Scholar] [CrossRef] [PubMed]

	



Freund, A.; Patil, C.K.; Campisi, J. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J. 2011, 30, 1536–1548. [Google Scholar] [CrossRef] [PubMed]

	



Garcia, D.; Shaw, R.J. AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Mol. Cell 2017, 66, 789–800. [Google Scholar] [CrossRef] [PubMed]

	



Herzig, S.; Shaw, R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 2018, 19, 121–135. [Google Scholar] [CrossRef] [PubMed]

	



O’Neill, H.M.; Maarbjerg, S.J.; Crane, J.D.; Jeppesen, J.; Jørgensen, S.B.; Schertzer, J.D.; Shyroka, O.; Kiens, B.; van Denderen, B.J.; Tarnopolsky, M.A.; et al. AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc. Natl. Acad. Sci. USA 2011, 108, 16092–16097. [Google Scholar] [CrossRef] [PubMed]

	



Toyama, E.Q.; Herzig, S.; Courchet, J.; Lewis, T.L., Jr.; Losón, O.C.; Hellberg, K.; Young, N.P.; Chen, H.; Polleux, F.; Chan, D.C.; et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 2016, 351, 275–281. [Google Scholar] [CrossRef]

	



Laker, R.C.; Drake, J.C.; Wilson, R.J.; Lira, V.A.; Lewellen, B.M.; Ryall, K.A.; Fisher, C.C.; Zhang, M.; Saucerman, J.J.; Goodyear, L.J.; et al. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat. Commun. 2017, 8, 548. [Google Scholar] [CrossRef]

	



Yamakuchi, M.; Ferlito, M.; Lowenstein, C.J. miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl. Acad. Sci. USA 2008, 105, 13421–13426. [Google Scholar] [CrossRef]

	



Ito, Y.; Inoue, A.; Seers, T.; Hato, Y.; Igarashi, A.; Toyama, T.; Taganov, K.D.; Boldin, M.P.; Asahara, H. Identification of targets of tumor suppressor microRNA-34a using a reporter library system. Proc. Natl. Acad. Sci. USA 2017, 114, 3927–3932. [Google Scholar] [CrossRef]

	



Kauppinen, A.; Suuronen, T.; Ojala, J.; Kaarniranta, K.; Salminen, A. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell. Signal. 2013, 25, 1939–1948. [Google Scholar] [CrossRef] [PubMed]

	



Renda, T.; Baraldo, S.; Pelaia, G.; Bazzan, E.; Turato, G.; Papi, A.; Maestrelli, P.; Maselli, R.; Vatrella, A.; Fabbri, L.M.; et al. Increased activation of p38 MAPK in COPD. Eur. Respir. J. 2008, 31, 62–69. [Google Scholar] [CrossRef] [PubMed]

	



Gaffey, K.; Reynolds, S.; Plumb, J.; Kaur, M.; Singh, D. Increased phosphorylated p38 mitogen-activated protein kinase in COPD lungs. Eur. Respir. J. 2012, 42, 28–41. [Google Scholar] [CrossRef]

	



Vallese, D.; Ricciardolo, F.L.; Gnemmi, I.; Casolari, P.; Brun, P.; Sorbello, V.; Capelli, A.; Cappello, F.; Cavallesco, G.N.; Papi, A.; et al. Phospho-p38 MAPK Expression in COPD Patients and Asthmatics and in Challenged Bronchial Epithelium. Respiration 2015, 89, 329–342. [Google Scholar] [CrossRef] [PubMed]

	



Lea, S.; Li, J.; Plumb, J.; Gaffey, K.; Mason, S.; Gaskell, R.; Harbron, C.; Singh, D. P38 MAPK and glucocorticoid receptor crosstalk in bronchial epithelial cells. Klin. Wochenschr. 2020, 98, 361–374. [Google Scholar] [CrossRef]

	



Sgalla, G.; Biffi, A.; Richeldi, L. Idiopathic pulmonary fibrosis: Diagnosis, epidemiology and natural history. Respirology 2015, 21, 427–437. [Google Scholar] [CrossRef]

	



Martinez, F.J.; Collard, H.R.; Pardo, A.; Raghu, G.; Richeldi, L.; Selman, M.; Swigris, J.J.; Taniguchi, H.; Wells, A.U. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Prim. 2017, 3, 17074. [Google Scholar] [CrossRef]

	



Sosulski, M.L.; Gongora, R.; Feghali-Bostwick, C.; Lasky, J.A.; Sanchez, C.G. Sirtuin 3 Deregulation Promotes Pulmonary Fibrosis. Journals Gerontol. Ser. A 2016, 72, 595–602. [Google Scholar] [CrossRef]

	



Pearce, S.F.; Rebelo-Guiomar, P.; D’Souza, A.R.; Powell, C.A.; Van Haute, L.; Minczuk, M. Regulation of Mammalian Mitochondrial Gene Expression: Recent Advances. Trends Biochem. Sci. 2017, 42, 625–639. [Google Scholar] [CrossRef]

	



Fernie, A.R.; Carrari, F.; Sweetlove, L.J. Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport. Curr. Opin. Plant Biol. 2004, 7, 254–261. [Google Scholar] [CrossRef]

	



Martínez-Reyes, I.; Chandel, N.S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 2020, 11, 102. [Google Scholar] [CrossRef] [PubMed]

	



Bueno, M.; Lai, Y.-C.; Romero, Y.; Brands, J.; Croix, C.M.S.; Kamga, C.; Corey, C.; Herazo-Maya, J.D.; Sembrat, J.; Lee, J.; et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J. Clin. Investig. 2014, 125, 521–538. [Google Scholar] [CrossRef] [PubMed]

	



Kwong, F.N.K.; Nicholson, A.G.; Harrison, C.L.; Hansbro, P.M.; Adcock, I.M.; Chung, K.F. Is mitochondrial dysfunction a driving mechanism linking COPD to nonsmall cell lung carcinoma? Eur. Respir. Rev. 2017, 26, 170040. [Google Scholar] [CrossRef]

	



Zheng, S.; Wang, C.; Qian, G.; Wu, G.; Guo, R.; Li, Q.; Chen, Y.; Li, J.; Li, H.; He, B.; et al. Role of mtDNA haplogroups in COPD susceptibility in a southwestern Han Chinese population. Free Radic. Biol. Med. 2012, 53, 473–481. [Google Scholar] [CrossRef]

	



Calvo, S.E.; Clauser, K.; Mootha, V.K. MitoCarta2.0: An updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 2015, 44, D1251–D1257. [Google Scholar] [CrossRef]

	



Xu, W.; Chen, R.; Hu, B.; Zein, J.G.; Liu, C.; Comhair, S.A.A.; Aldred, M.A.; Hawkins, G.A.; Meyers, D.A.; Bleecker, E.R.; et al. Mitochondrial DNA Variation and Severe Asthma. American Thoracic Society International Conference Abstracts B33. ASTHMA: MECHANISMS OF DISEASE II 2019. Am. J. Respir. Crit. Care Med. 2019, 199, 1–2. [Google Scholar]

	



Wiley, C.D.; Velarde, M.C.; Lecot, P.; Liu, S.; Sarnoski, E.A.; Freund, A.; Shirakawa, K.; Lim, H.W.; Davis, S.S.; Ramanathan, A.; et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 2015, 23, 303–314. [Google Scholar] [CrossRef]

	



Birch, J.; Passos, J.F. Targeting the SASP to combat ageing: Mitochondria as possible intracellular allies? BioEssays 2017, 39, 1600235. [Google Scholar] [CrossRef]

	



Miyamoto, S. Nuclear initiated NF-κB signaling: NEMO and ATM take center stage. Cell Res. 2010, 21, 116–130. [Google Scholar] [CrossRef]

	



Holt, J.I.; Harding, A.E.; Morgan-Hughes, J.A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 1988, 331, 717–719. [Google Scholar] [CrossRef]

	



E Giles, R.; Blanc, H.; Cann, H.M.; Wallace, D.C. Maternal inheritance of human mitochondrial DNA. Proc. Natl. Acad. Sci. USA 1980, 77, 6715–6719. [Google Scholar] [CrossRef] [PubMed]

	



Imai, S.-I.; Guarente, L. It takes two to tango: NAD+ and sirtuins in aging/longevity control. NPJ Aging Mech. Dis. 2016, 2, 16017. [Google Scholar] [CrossRef] [PubMed]

	



Hoffmann, R.F.; Zarrintan, S.; Brandenburg, S.M.; Kol, A.; De Bruin, H.G.; Jafari, S.; Dijk, F.; Kalicharan, D.; Kelders, M.; Gosker, H.R.; et al. Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells. Respir. Res. 2013, 14, 97. [Google Scholar] [CrossRef] [PubMed]

	



Schriner, S.E.; Linford, N.J.; Martin, G.M.; Treuting, P.; Ogburn, C.E.; Emond, M.; Coskun, P.E.; Ladiges, W.; Wolf, N.; Van Remmen, H.; et al. Extension of Murine Life Span by Overexpression of Catalase Targeted to Mitochondria. Science 2005, 308, 1909–1911. [Google Scholar] [CrossRef]

	



Soulitzis, N.; Neofytou, E.; Psarrou, M.; Anagnostis, A.; Tavernarakis, N.; Siafakas, N.; Tzortzaki, E.G. Downregulation of lung mitochondrial prohibitin in COPD. Respir. Med. 2012, 106, 954–961. [Google Scholar] [CrossRef]

	



Sureshbabu, A.; Ebhandari, V. Targeting mitochondrial dysfunction in lung diseases: Emphasis on mitophagy. Front. Physiol. 2013, 4, 384. [Google Scholar] [CrossRef]

	



Stewart, R.; Weir, E.; Montgomery, M.; Niewoehner, D. Hydrogen peroxide contracts airway smooth muscle: A possible endogenous mechanism. Respir. Physiol. 1981, 45, 333–342. [Google Scholar] [CrossRef]

	



Ballinger, S.W.; Patterson, C.; Yan, C.-N.; Doan, R.; Burow, D.L.; Young, C.G.; Yakes, F.M.; Van Houten, B.; Ballinger, C.A.; Freeman, B.A.; et al. Hydrogen Peroxide– and Peroxynitrite-Induced Mitochondrial DNA Damage and Dysfunction in Vascular Endothelial and Smooth Muscle Cells. Circ. Res. 2000, 86, 960–966. [Google Scholar] [CrossRef]

	



Harman, D. Aging: A Theory Based on Free Radical and Radiation Chemistry. J. Gerontol. 1956, 11, 298–300. [Google Scholar] [CrossRef]

	



Aravamudan, B.; Kiel, A.; Freeman, M.; Delmotte, P.; Thompson, M.; Vassallo, R.; Sieck, G.C.; Pabelick, C.M.; Prakash, Y.S. Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human airway smooth muscle. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2014, 306, L840–L854. [Google Scholar] [CrossRef]

	



Mishra, P.; Chan, D.C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 634–646. [Google Scholar] [CrossRef] [PubMed]

	



Russell, O.M.; Gorman, G.S.; Lightowlers, R.N.; Turnbull, D.M. Mitochondrial Diseases: Hope for the Future. Cell 2020, 181, 168–188. [Google Scholar] [CrossRef] [PubMed]

	



Bonora, M.; Pinton, P. Mitochondrial DNA keeps you young. Cell Death Dis. 2018, 9, 992. [Google Scholar] [CrossRef]

	



Zhang, X.; Sun, Y.; Dong, X.; Zhou, J.; Sun, F.; Han, T.; Lei, P.; Mao, R.; Guo, X.; Wang, Q.; et al. Mitochondrial DNA and genomic DNA ratio in embryo culture medium is not a reliable predictor for in vitro fertilization outcome. Sci. Rep. 2019, 9, 5378. [Google Scholar] [CrossRef]

	



Loeb, L.A.; Wallace, D.C.; Martin, G.M. The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations. Proc. Natl. Acad. Sci. USA 2005, 102, 18769–18770. [Google Scholar] [CrossRef]

	



Krishnamurthy, J.; Torrice, C.; Ramsey, M.R.; Kovalev, G.I.; Al-Regaiey, K.; Su, L.; Sharpless, N.E. Ink4a/Arf expression is a biomarker of aging. J. Clin. Investig. 2004, 114, 1299–1307. [Google Scholar] [CrossRef]

	



Short, S.; Fielder, E.; Miwa, S.; von Zglinicki, T. Senolytics and senostatics as adjuvant tumour therapy. eBioMedicine 2019, 41, 683–692. [Google Scholar] [CrossRef]

	



Wallace, D.C. Mitochondrial genetic medicine. Nat. Genet. 2018, 50, 1642–1649. [Google Scholar] [CrossRef]

	



Singh, B.; Schoeb, T.R.; Bajpai, P.; Slominski, A.; Singh, K.K. Reversing wrinkled skin and hair loss in mice by restoring mitochondrial function. Cell Death Dis. 2018, 9, 735. [Google Scholar] [CrossRef]

	



Trifunovic, A.; Wredenberg, A.; Falkenberg, M.; Spelbrink, J.; Rovio, A.T.; Bruder, C.E.; Bohlooly-Y, M.; Gidlöf, S.; Oldfors, A.; Wibom, R.; et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004, 429, 417–423. [Google Scholar] [CrossRef]

	



Trifunovic, A.; Hansson, A.; Wredenberg, A.; Rovio, A.T.; Dufour, E.; Khvorostov, I.; Spelbrink, J.N.; Wibom, R.; Jacobs, H.T.; Larsson, N.-G. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc. Natl. Acad. Sci. USA 2005, 102, 17993–17998. [Google Scholar] [CrossRef] [PubMed]

	



Zhu, Y.I.; Tchkonia, T.; Pirtskhalava, T.; Gower, A.C.; Ding, H.; Giorgadze, N.; Palmer, A.K.; Ikeno, Y.; Hubbard, G.B.; Lenburg, M.; et al. The Achilles’ heel of senescent cells: From transcriptome to senolytic drugs. Aging Cell 2015, 14, 644–658. [Google Scholar] [CrossRef] [PubMed]

	



Campa, C.C.; Silva, R.; Margaria, J.P.; Pirali, T.; Mattos, M.; Kraemer, L.R.; Reis, D.C.; Grosa, G.; Copperi, F.; Dalmarco, E.M.; et al. Inhalation of the prodrug PI3K inhibitor CL27c improves lung function in asthma and fibrosis. Nat. Commun. 2018, 9, 1–16. [Google Scholar] [CrossRef]

	



Nelson, G.; Wordsworth, J.; Wang, C.; Jurk, D.; Lawless, C.; Martin-Ruiz, C.; von Zglinicki, T. A senescent cell bystander effect: Senescence-induced senescence. Aging Cell 2012, 11, 345–349. [Google Scholar] [CrossRef] [PubMed]

	



Correia-Melo, C.; Marques, F.D.M.; Anderson, R.; Hewitt, G.; Hewitt, R.; Cole, J.; Carroll, B.M.; Miwa, S.; Birch, J.; Merz, A.; et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016, 35, 724–742. [Google Scholar] [CrossRef]

	



Coskun, P.E.; Beal, M.F.; Wallace, D.C. Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc. Natl. Acad. Sci. USA 2004, 101, 10726–10731. [Google Scholar] [CrossRef]

	



Coskun, P.; Wyrembak, J.; Schriner, S.E.; Chen, H.-W.; Marciniack, C.; LaFerla, F.; Wallace, D.C. A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim. Biophys. Acta (BBA) Gen. Subj. 2012, 1820, 553–564. [Google Scholar] [CrossRef]

	



Corral-Debrinski, M.; Stepien, G.; Shoffner, J.M.; Lott, M.T.; Kanter, K.; Wallace, D.C. Hypoxemia Is Associated with Mitochondrial DNA Damage and Gene Induction. JAMA 1991, 266, 1812–1816. [Google Scholar] [CrossRef]

	



Zifa, E.; Daniil, Z.; Skoumi, E.; Stavrou, M.; Papadimitriou, K.; Terzenidou, M.; Kostikas, K.; Bagiatis, V.; Gourgoulianis, K.I.; Mamuris, Z. Mitochondrial genetic background plays a role in increasing risk to asthma. Mol. Biol. Rep. 2011, 39, 4697–4708. [Google Scholar] [CrossRef]

	



Velarde, M.C.; Flynn, J.; Day, N.U.; Melov, S.; Campisi, J. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin. Aging 2012, 4, 3–12. [Google Scholar] [CrossRef]

	



Carpagnano, G.E.; Lacedonia, D.; Malerba, M.; Palmiotti, G.A.; Cotugno, G.; Carone, M.; Foschino-Barbaro, M.P. Analysis of mitochondrial DNA alteration in new phenotype ACOS. BMC Pulm. Med. 2016, 16, 31. [Google Scholar] [CrossRef] [PubMed]

	



Carpagnano, G.E.; Lacedonia, D.; Carone, M.; Soccio, P.; Cotugno, G.; Palmiotti, G.A.; Scioscia, G.; Barbaro, M.P.F. Study of mitochondrial DNA alteration in the exhaled breath condensate of patients affected by obstructive lung diseases. J. Breath Res. 2016, 10, 26005. [Google Scholar] [CrossRef] [PubMed]

	



Xu, M.; Pirtskhalava, T.; Farr, J.N.; Weigand, B.M.; Palmer, A.K.; Weivoda, M.M.; Inman, C.L.; Ogrodnik, M.B.; Hachfeld, C.M.; Fraser, D.G.; et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 2018, 24, 1246–1256. [Google Scholar] [CrossRef] [PubMed]

	



Camell, C.D.; Yousefzadeh, M.J.; Zhu, Y.; Prata, L.G.P.L.; Huggins, M.A.; Pierson, M.; Zhang, L.; O’Kelly, R.D.; Pirtskhalava, T.; Xun, P.; et al. Senolytics reduce coronavirus-related mortality in old mice. Science 2021, 373, eabe4832. [Google Scholar] [CrossRef] [PubMed]

	



Hubackova, S.; Davidova, E.; Rohlenova, K.; Stursa, J.; Werner, L.; Andera, L.; Dong, L.; Terp, M.; Hodny, Z.; Ditzel, H.J.; et al. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ. 2018, 26, 276–290. [Google Scholar] [CrossRef] [PubMed]

	



Wang, Z.; Li, R.; Zhong, R. Extracellular matrix promotes proliferation, migration and adhesion of airway smooth muscle cells in a rat model of chronic obstructive pulmonary disease via upregulation of the PI3K/AKT signaling pathway. Mol. Med. Rep. 2018, 18, 3143–3152. [Google Scholar] [CrossRef] [PubMed]

	



Nelson, G.; Kucheryavenko, O.; Wordsworth, J.; Von Zglinicki, T. The senescent bystander effect is caused by ROS-activated NF-κB signalling. Mech. Ageing Dev. 2018, 170, 30–36. [Google Scholar] [CrossRef]

	



Pezze, P.D.; Nelson, G.; Otten, E.G.; Korolchuk, V.I.; Kirkwood, T.B.L.; Von Zglinicki, T.; Shanley, D.P. Dynamic Modelling of Pathways to Cellular Senescence Reveals Strategies for Targeted Interventions. PLoS Comput. Biol. 2014, 10, e1003728. [Google Scholar] [CrossRef]

	



Kim, J.; Yang, G.; Kim, Y.; Kim, J.; Ha, J. AMPK activators: Mechanisms of action and physiological activities. Exp. Mol. Med. 2016, 48, e224. [Google Scholar] [CrossRef]

	



Owen, M.R.; Doran, E.; Halestrap, A.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 2000, 348 Pt 3, 607–614. [Google Scholar] [CrossRef]

	



Mimaki, M.; Wang, X.; McKenzie, M.; Thorburn, D.R.; Ryan, M.T. Understanding mitochondrial complex I assembly in health and disease. Biochim. Biophys. Acta (BBA)-Bioenerg. 2012, 1817, 851–862. [Google Scholar] [CrossRef] [PubMed]

	



Chenggui, W.; Xiaolei, Z.; Pan, Z.; Xu, D.; Zhou, Y.; Wu, Y.; Cai, N.; Tang, Q.; Wang, C.; Yan, M.; et al. Metformin protects against apoptosis and senescence in nucleus pulposus cells and ameliorates disc degeneration in vivo. Cell Death Dis. 2016, 7, e2441. [Google Scholar] [CrossRef]








[image: Cells 11 01781 g001 550] 





Figure 1. Left schematic figure shows a normal lung of young age with a low number of senescent cells rapidly cleared by immune cells, normal cells maintain a baseline of telomere length and mitochondrial homeostasis. Right schematic figure shows aged and diseased lung associated with increased fibrosis, higher numbers of senescent cells, and slow response of immune cells to clear senescent cells. Senescent cells are characterized by telomere shortening, secreting high rates of SASP, mitochondrial dysfunction, and an imbalance in mitochondrial fission and fusion. Figure 1 was created with BioRender.com accessed on 24 April 2022. 
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Figure 2. An increased number of articles related to Cellular Senescence and COPD or IPF have been published in PubMed-indexed journals during the past 10 years. Keywords used in PubMed search engines are “Cellular Senescence Chronic Obstructive Pulmonary Disease” or “Cellular Senescence Idiopathic Pulmonary Fibrosis”. Figure 2 was created from National Library of Medicine (https://pubmed.ncbi.nlm.nih.gov accessed on 24 April 2022). 
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Figure 3. Shows different mechanisms between senolytic and senostatic agents targeting senescent cells. Left schematic figure shows normal cells exposed to DNA damaging agents resulting in upregulations of senescence signaling pathways. Top schematic figure shows senolytic agents selectively kill senescent cells in a living organism, inhibiting paracrine signaling with normal cell proliferation. Bottom schematic figure shows senostatic agents inhibit senescent cells releasing SASP, reducing paracrine signaling with normal cell proliferation. Figure 3 was created with BioRender.com accessed on 24 April 2022. 
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