
Citation: Zhao, B.; Peng, Q.; Wang,

D.; Zhou, R.; Wang, R.; Zhu, Y.; Qi, S.

Leonurine Protects Bone

Mesenchymal Stem Cells from

Oxidative Stress by Activating

Mitophagy through

PI3K/Akt/mTOR Pathway. Cells

2022, 11, 1724. https://doi.org/

10.3390/cells11111724

Academic Editors: Annalisa Santucci

and Frank Buttgereit

Received: 13 February 2022

Accepted: 20 May 2022

Published: 24 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Article

Leonurine Protects Bone Mesenchymal Stem Cells from
Oxidative Stress by Activating Mitophagy through
PI3K/Akt/mTOR Pathway
Bingkun Zhao 1,2,†, Qian Peng 1,†, Dan Wang 3,4, Rong Zhou 1, Raorao Wang 1,*, Yizhun Zhu 5

and Shengcai Qi 1,6,7,*

1 Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Shanghai 200072, China; 1811372@tongji.edu.cn (B.Z.); pengqhyc@163.com (Q.P.); zr181801054@163.com (R.Z.)

2 Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
3 Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong,

Hong Kong, China; wangmd@cuhk.edu.hk
4 School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
5 State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy,

Macau University of Science and Technology, Macau SAR 999078, China; yzzhu@must.edu.mo
6 Department of Prothodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, China
7 Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University,

Shanghai 200001, China
* Correspondence: raoraowang@tongji.edu.cn (R.W.); qishengcai@fudan.edu.cn (S.Q.)
† There authors contributed equally to this work.

Abstract: Osteoporosis bears an imbalance between bone formation and resorption, which is strongly
related to oxidative stress. The function of leonurine on bone marrow-derived mesenchymal stem
cells (BMSCs) under oxidative stress is still unclear. Therefore, this study was aimed at identifying
the protective effect of leonurine on H2O2 stimulated rat BMSCs. We found that leonurine can
alleviate cell apoptosis and promote the differentiation ability of rat BMSCs induced by oxidative
stress at an appropriate concentration at 10 µM. Meanwhile, the intracellular ROS level and the level
of the COX2 and NOX4 mRNA decreased after leonurine treatment in vitro. The ATP level and
mitochondrial membrane potential were upregulated after leonurine treatment. The protein level
of PINK1 and Parkin showed the same trend. The mitophage in rat BMSCs blocked by 3-MA was
partially rescued by leonurine. Bioinformatics analysis and leonurine-protein coupling provides
a strong direct combination between leonurine and the PI3K protein at the position of Asp841,
Glu880, Val882. In conclusion, leonurine protects the proliferation and differentiation of BMSCs from
oxidative stress by activating mitophagy, which depends on the PI3K/Akt/mTOR pathway. The
results showed that leonurine may have potential usage in osteoporosis and bone defect repair in
osteoporosis patients.

Keywords: osteoporosis; leonurine; mitophagy

1. Introduction

Osteoporosis is characterized by loss of bone mass, skeletal fragility, and deterioration
of structure, which is a systemic bone disease [1]. The elderly often suffer bone fractures
from osteoporosis, including especially the spine, proximal femur (hip), and humerus
fractures [2]. The prevalence of osteoporosis was reported to be 10% in 50-year-old people
and 25% in over 80-year-old people in 2010 [3]. It has become an urgent health concern
worldwide and contributes significantly to healthcare costs with the increasing aging
population.

Today, increasing recognition points out that reactive oxygen species (ROS) are im-
portant to the regulation of cell function. Many diseases related to oxidative stress have
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been confirmed, including osteoporosis [4]. The moderate redox state could indicate the
balance of bone metabolism that requires the coordinated action of different types of
bone cells: osteoclasts, osteoblasts and osteocytes [5]. Aging, estrogen deficiency, radia-
tion, chronic inflammation, and other factors would disrupt this balance, causing bone
loss [6,7]. During the differentiation process, an overloaded ROS burden would alleviate
cell differentiation capacity and induce osteoblasts dysfunction resulting in a reduction in
bone formation [8–10]. Therefore, dysregulated ROS and/or antioxidant systems seem to
contribute to bone loss. Antioxidants directly or by counteracting the action of oxidants
contribute to osteoblast differentiation, cell mineralization, and the inhibition of osteoclast
differentiation [11]. Given the significant role of antioxidants in osteoporosis, recent re-
search focuses on their advantages in bone metabolism, and suggests that antioxidants
could be useful in antiresorptive therapies for bone loss.

Oxidative stress is the result of uncontrolled ROS production and inadequate levels
of antioxidants. Therefore, antioxidants were added to increase osteogenic differentiation
and detoxify the microenvironment from oxidative stress by down-regulating ROS and
accelerating differentiation [12,13]. Traditional Chinese medicine has been developed to
prevent and treat osteoporosis for thousands of years. The use of these extracted active
compounds showed fewer side effects and higher sustainability [14–16], all of which can
be used as antioxidants. Leonurine is a natural chemical compound extracted from the
traditional Chinese medicine leonuri. Its high effeciency in the antioxidative effect has
drawn much attention, including for cardiovascular diseases, antherosclerosis, ischemic
stroke [17–19], etc. Interestingly, leonurine can reduce bone loss by inhibiting osteoclast
differentiation and promoting 3T3-L1 cell differentiation [20,21]. Our previous research
confirmed the contribution of leonurine to osteoblast proliferation and differentiation [19].
However, the possible ability of leonurine in BMSCs to prevent osteoporosis through the
antioxidative effect is still unclear.

Multiple studies have discovered that mitochondria deteriorate with age and produce
an excess of ROS, resulting in a loss of respiratory activity and an accumulation of damage
to mitochondrial DNA [mtDNA] [22]. In pathological states, mitochondria is a source
of uncontrolled ROS formation that alters mitochondria by destroying the mitochondria
membrane from the mitochondrial permeability transition pore [23,24]. On the other hand,
mitochondrial dysfunction is one of the main targets of ROS [25]. These double nature
characters would fuel a vicious cycle that once damaged by oxidative stress, mitochondria
would produce ROS at a high rate and, in turn, damage more mitochondria to deteriorate
the intracellular environment [26]. Therefore, maintaining a healthy mitochondrial function
network is essential in the response to physiological adaptations and the conditions of
oxidative stress. Mitophagy is an extremely important mechanism in the maintenance of
mitochondrial quality that is responsible for the maintenance of mitochondrial homeostasis
in disease [27]. Improving mitophagy is important for oxidation resistance and reducing
ROS accumulation [28]. Impaired mitophagy has been shown to have a negative impact on
osteoblast differentiation and mineralization [29,30]. Restoration of impared mitophagy
would help alleviate bone loss, paving a new strategy for antiosteoporosis therapy [31].
It has been shown that mitochondrial homeostasis and the redox state were rescued by
leonurine treatment in ischemic stroke [17]. Therefore, we hypothesize that leonurine
facilitates proliferation and differentiation of oxidative stress-induced BMSCs depending
on mitophagy.

In this study, the protection and molecular mechanism of leonurine in H2O2 stimulated
rat BMSCs was evaluated by CCK-8, cell apoptosis, ALP, intracellular ROS level, real-time
PCR and western blot. Meanwhile, the role of leonurine in inhibiting the progress of
osteoporosis and promoting bone defect repair was studied in vivo.
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2. Materials and Methods
2.1. Cell Preparation and Establishment of an Oxidative Stress Model In Vitro

BMSCs were extracted from the bone marrow of Sprague-Dawley (SD) rats at four
weeks of age. Briefly, rats were immersed in 75% ethanol after sacrifice. The tibias and
femurs were separated and the BMSCs were flushed from the bone marrow by syringes and
cultured in Petri dishes. After 24 h of incubation, BMSCs were extracted from each plate.
Cells were maintained in α-MEM (α-MEM, HyClone, Logan, UT, USA) with 10% foetal
bovine serum (FBS, Gibco, New York, NY, USA) and 1% penicillin/streptomycin (PS, Gibco,
New York, NY, USA) in cell incubator with 37 ◦C/5% CO2. A basic characterization of cells
was performed using flow cytometry on BMSCs markers CD11b(−) (Abcam, Cambridge,
UK), CD90(+) (Invitrogen, New York, NY, USA), CD45(−) (Milteny Biotechnology, Shang-
hai, China) and osteogenic and adipogenic differentiation assays. Cells were passaged
when the confluency reached about 80% and the medium was replaced every three days.
Cells within the passages between three to six days were used in the experiments.

To establish an oxidative stress model in vitro, 3 × 103 BMSCs were seeded in 96 well
plates per well with five replicates. The measurement was repeated overnight. Incubation
with a cell counting kit with eight assays (CCK-8) was used to confirm whether the cell
numbers were equal. The cells were then co-cultured with different concentrations of H2O2
from 0 to 500 µM for 4 h. The medium was replaced with 10 µL of CCK-8 solution dissolved
in 200 µL of cell culture medium. It was then incubated after 2 h and measured under
absorbance at 450 nm.

To inhibit mitophagy, cells were pretreated with 10 mM 3-methyladenine (3-MA)
(MCE, New Jersey, NJ, USA) for 4 h, and to inhibit the PI3K pathway, cells were pretreated
with 2 µM 740 Y-P (APExBIO, Houston, TX, USA) for 2 h.

2.2. Cell Vitality
2.2.1. CCK-8 Assays

Cell viability was measured using CCK-8 (Dojindo, Kumamoto, Japan) according to
the manufacturer’s protocol. After treatment, the medium was replaced with 10 µL of
CCK-8 solution dissolved in 200 µL of cell culture medium. It was then incubated after 2 h
and measured under absorbance at 450 nm.

2.2.2. Double Live/Dead Staining

The cells were washed with phosphate buffered saline (PBS) (Sangon Biotechnology,
Shanghai, China) and incubated with a LIVE/DEAD® Viability/Cytotoxicity Assay Kit
(Invitrogen, New York, NY, USA) for another 30 min at 37 ◦C. The results were then
observed by fluorescence microscopy and merged with image J.

2.2.3. Cell Apoptosis Analysis

Annexin V-FITC/PI double staining (BD Bioscience, New York, NY, USA) was applied
to confirm the apoptotic effect of ROS and protection effect of leonurine according to the
manufacturer’s protocol. After leonurine treatment, cells were washed with precold PBS
after collection. They were then stained with 5 µL of Annexin V-FICT and 5 µM propidium
iodide (PI) after resuspension with 1×binding buffer in the dark for 15 min at room
temperature. The experimental data was detected and collected using a BD FACSCanto II
flow cytometer (BD BioScience, New York, NY, USA).

2.2.4. RNA Isolation and Quantitative Real-Time PCR (qRT-PCR) Analysis

Total RNA was isolated with the TRIzol extraction method (Invitrogen, New York, NY,
USA) according to the manufacturer’s protocol, and the concentration was measured using
the Nanodrop system (Thermo Fisher, Cambridge, UK). cDNA was reverse transcribed
with a PrimeScript RT reagent Kit (TaKaRa, Dojindo, Kumamoto, Japan). The cDNA was
amplified and recoreded with HieffTM qPCR SYBR® Green Master Mix in an ABI 7500
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Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). The relative expression
level was calculated by the 2−∆∆Ct method.

2.2.5. Extraction of Proteins and Western Blot Analysis

Total protein was isolated with an RIPA buffer containing protease inhibitor and
phosphatase inhibitor after osteogenic induction for six days. The protein was separated
in equal amounts and transferred into nitrocellulose membranes (Millipore Corporation,
Massachusetts, MA, USA). Primary antibodies were incubated with membranes at 4 ◦C
overnight and secondary antibody was incubated at room temperature for 1 h. The mem-
branes were visualized using the Odyssey LI-CDR system. GAPDH (1:2000) and Caspase-3
were purchased from Cell Signaling Technology (CST, Boston, MA, USA). BAX(1:1000) was
purchased from Proteintech (Proteintech, Chicago, IL, USA).

2.3. Cell Differentiation

An osteogenic medium containing 10% FBS, 1% penicillin/streptomycin, 10 nM dex-
amethasone (Sigma, St. Louis, MO, USA), 10 mM sodium-glycerophosphate (Sigma,
St. Louis, MO, USA), and 50 g/mL ascorbic acid (Sigma, St. Louis, MO, USA) was used to
induce osteogenic differentiation. After treatment, osteogenic induction medium was used
in the following experiment for six days (ALP staining, real-time PCR and western blot)
and 14 days (Alizarin red staining).

2.3.1. Alkaline Phosphatase (ALP) and Alizarin Red Staining

ALP staining was carried out after six days of culture. Cells were stained with the
ALP color development kit (Beyotime, Shanghai, China) according to the manufacturer’s
protocols after being fixed with 4% paraformaldehyde for 10 min. After being stained
for 15 min, cells were washed with PBS three times. Subsequent observation and image
capture was carried out under phase-contrast microscopy. For Alizarin red staining, cells
were harvested after 14 days, fixed in 4% paraformaldehyde for 10 min and stained with
Alizarin red staining kits (Beyotime, Shanghai, China) for 60 min. Subsequent observation
and image capture were carried out under phase-contrast microscopy.

2.3.2. RNA and Protein Level Analysis

The cells were then cultured with medium containing different concentrations of
leonurine for 20 h and subsequently cultured with osteogenic induction medium for
six days. The osteogenic-related mRNA level of OCN, OPN, Runx2 and the osteogenic
protein level OPN, Runx2 expression level were further confirmed. OCN sense: 5′-
TGAGGACCCTCTCTCTGCTC-3′, antisence: 5′-GGGCTCCAAGTCCATTGTT-3′; OPN
sense: 5′-ATCTGAGTCCTTCACTG-3′, antisense: 5′-GGGATACTGTTCATCAGAAA-3′;
Runx2 sense: 5’-GCACCCAGCCCATAATAGA-3’, antisense: 5’-TTGGAGCAAGGAGAAC
CC-3′; GAPDH sense: 5′-CAGGGCTGCCTTCTCTTGT-3′, antisense: 5′-TCCCGTTGATGA
CCAGCTTC-3′. GAPDH (1:2000) was purchased from Cell Signaling Technology (CST,
Boston, MA, USA). OPG (1:500) and Runx2 (1:500) were purchased from Abcam (Abcam,
Cambridge, UK).

2.4. Intracellular ROS Measurements
2.4.1. Intracellular ROS Determination

An ROS assay kit was purchased from Beyotime for the production of intracellular
ROS. Cells were co-cultured in H2O2 with or without leonurine. The cells were stained in
serum-free medium containing 10 M DCFHDA and cultured for 20 min at 37 ◦C. It was
observed under microscopy, measured by flow cytometry.

2.4.2. Analysis of Intracellular ROS related mRNA Level

Cyclooxygenase 2 (COX-2), NADPH oxidase 4(NOX4) was further confirmed. The
primer sequences as follows: COX-2 sense: 5′- TGAGCATCTACGGTTTGCTG-3′, antisense:
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5′- ATCATCAGACCAGGCACCA-3′; NOX4 sense: 5′- GCACAGTCCTGGCTTACCTTC’,
antisense: 5′-AGCAGCAGCAGCATGTAGAAGAC-3′.

2.5. Mitophagy Accessibility
2.5.1. Measurement of Mitochondrial Membrane Potential

The fluorescent probe, JC-1 (Merk, New Jersey, NJ, USA), was applied to measure the
mitochondrial membrane potential according to the manufacturer’s protocol. 3 × 104 cells
were seeded in 24-well plates per well and followed by different treatment. The cells were
then incubated with JC-1 staining solution (5 µg) for 30 min in the incubator. After that,
cells were rinsed for twice with PBS before observation with a fluorescence microscope and
analysis with BD FACSCanto II flow cytometer (BD BioScience, New York, NY, USA).

2.5.2. Colocalization of Mitochondria and Lysosome

Mitochondrial and lysosome colocalization was measured by staining with mito-
tracker green (C1048, Beyotime, Shanghai, China), lyso-tracker red (C1046, Beyotime,
Shanghai, China) and DAPI (C1002, Beyotime, Shanghai, China) according to manufac-
turer’s instructions. Briefly, Cells were incubated in serum free medium with 150 nM
mitotracker green (excitation at 436 nm), 50 nM lyso-tracker red (excitation at 538 nm) and
2 µg/mL DAPI (excitation at 360 nm). Fluorescent images were obtained with a microscope.

2.5.3. Analysis of Protein Level

Mitophagy-related protein level PINK1, Parkin, P62 and LCA/B expression level of
mitophagy activation was further confirmed. PINK1 (1:500), Parkin (1:500), P62 (1:1000)
was purchased from Abcam (Abcam, Cambridge, UK). LC3 I/II (1:1000) were purchased
from Cell Signaling Technology (CST, Boston, MA, USA).

2.6. Pathway Investigation
2.6.1. Bibliometric Evaluation

We first analyzed leonurine related articles by advanced retrieval using the search term
“Mitophagy” [Mesh] and “leonurine” [Supplementary Concept] (Pubmed, https://pubmed.
ncbi.nlm.nih.gov/ at 2 April 2021) to include all current research about these two aspects.
With this approach, we recorded and reviewed 2057 and 89 articles. All articles were
analyzed using the VOS viewer version1.6.13 (VOSviewer, https://www.vosviewer.com/
at 12 April 2021, Centre of Science and Technology Studies of Leiden University, The
Netherlands). The rank of relevance score at top 60% was taken into analysis. The PI3K
(PDB ID:3LJ3) protein was chosen for the coupling studies. The protein structure was
downloaded from PDB (Protein Data Bank, https://www.rcsb.org at 5 April 2021).

2.6.2. PI3K/AKT/mTOR Pathway Analysis and Molecular Docking

PI3K/AKT/mTOR activation was confirmed in the next step. Antibodies against
AKT (1:1000), p-AKT (1:1000) and p-mTOR (1:1000) were purchased from Cell Signaling
Technology (CST, Boston, MA, USA). Antibodies against PI3K (1:1000) and p-PI3K (1:500)
were purchased from Abcam (Abcam, Cambridge, MA, USA). The PI3K structure (PDB
ID: 3LJ3) was download from RCSB Data Bank (Protein Data Bank, https://www.rcsb.org
at 5 April 2021) and the leonurine structure was prepared by Autodock Tools 1.5.6. It
shows ligand-binding flexibility with the binding pocket residues. The lowest energy
conformations were used for analysis and a picture was generated by Pymol.

2.7. Experiments on Animals
2.7.1. Animal Preparation

Ten-week-old Sprague Dawley rats were obtained from Shanghai SLAC Animal
Laboratory and fed in Tongji University’s Department of Laboratory Animal Science. These
experiments were approved by the local ethics committee according to the guidelines for
the care and use of animals. All rats had been acclimatized to the new conditions for

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
https://www.vosviewer.com/
https://www.rcsb.org
https://www.rcsb.org


Cells 2022, 11, 1724 6 of 20

one week. Ovariectomy surgery and skull defect surgery (5 mm) were performed after
anesthesia. The rats were then assigned to three different group: the control group (Sham
surgery followed with PBS), the OVX (ovariectomized) group (ovariectomy followed with
PBS), and the OVX+Leonurine group (ovariectomy followed with leonurine treatment).
Vehicle or leonurine (15 mg/kg per day) was administered intraperitoneally for eight
weeks. Rats were sacrificed after eight weeks and femurs and cranial bone were harvested
for microCT and histological analysis.

2.7.2. MicroCT and Histological Examination

The condition of the craniums and femurs was scanned with a micro-CT scanner
(Skyscan 1172, Bruker microCT, Kontich, Belgium) with a layer thick 10 µm. Further
analysis includes the new bone volume/total volume (BV/TV), trabecular number (Tb.N),
trabecular thickness (Tb.T), trabecular separation (Tb.Sp) and structure.

The samples were embedded in paraffin after decalcification with 10% EDTA and
sectioned at a thickness of 5 µm. H&E staining was performed to observe osteoporotic
progress and bone healing.

2.8. Statistical Analysis

Statistical data, with a repeat of least three times, was analyzed using SPSS 20.0 (IBM,
New York, NY, USA). Statistics of the two groups were analysed by unpaired Student’s
t-test. More than three groups were analysed by one-way analysis of variance followed
by the Bonferroni post-test. All data are represented by mean ± standard error (SEM).
p-values < 0.05 were considered significant.

3. Results
3.1. Establishment of the Oxidative Stress Model In Vivo

According to other reports, H2O2 was widely used to induce oxidative stress in vitro.
We investigated different concentrations of H2O2 under both 2% FBS basic medium and
10% FBS normal culture medium. Cell vitality is shown to descend exactly to the platform
in 300 µM for 4 h of treatment (Figure 1A). It laid the groundwork for the subsequent
assessment of the leonurine function.

3.2. Leonurine Can Protect the Vitality of BMSCs from Oxidative Stress Damage

To access the protective effects of leonurine from ROS damage, we first tested its
function on cell vitality. The effect of leonurine on BMSCs in vitro was investigated from
2 to 100 µM and it is shown that the protective effect is best when leonurine concentrations
reach 10 µM (Figure 1B). We further carried out live/dead double staining and the trend
is consistent with CCK-8 essays (Figure 1C). Cell apoptosis analysis showed an apparent
decrease in the leonurine treatment group (Figure 1D). The apoptosis proteins like BAX
and cleaved caspase 3 decreased in the leonurine group (Figure 1E).

3.3. Leonurine Can Protect the Differentiation Capacity of BMSCs from Oxidative Stress Damage

To access the leonurine effect on the protection of osteogenic differentiation, ALP and
Aliza red staining are carried out, accompanied by PCR and Western blot assay. From ALP
and Aliza red staining, leonurine contributed to the protection of osteoblastic differentiation
in a dose-dependent manner, which was the most apparent in the group treated with 10 µM
leonurine (Figure 2A). Along the same lines, Alizarin red staining yielded comparable
results, where a significant increase in mineralization was recorded for the 10 µM leonurine
treated group (Figure 2B). Further evidence showed that the expression of osteogenesis-
related markers increased at both mRNA levels (OCN, OPN, Runx2) and protein levels
(OPG, Runx2) compared to the H2O2 group (Figure 2C,D).
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Figure 1. (A) CCK-8 essay for BMSCs co-cultured with different concentrations of H2O2. (B) Evalua-
tion of leonurine protection at different concentrations in skeptical ROS burden. (C) Double live/dead
staining (scale bar = 200 µM). (D) Distribution of apoptotic BMSCs observed under flow cytometry
(FITC-Annexin V apoptotic detection assay). (E) Expression of apoptosis-related protein marker.
Leonurine can help BMSCs survive from an overload ROS environment. (&& p < 0.01 vs. Control
group. * p < 0.05, ** p < 0.01, vs. H2O2 group).
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Figure 2. Effect of leonurine protection on BMSCs from ROS damage. (A) ALP staining of leonurine
treated groups (0–10 µM) at day 6 (scale bar = 200 µM). (B) Aliza red staining of leonurine treated
groups (0–10 µM) at day 14 (scale bar = 200 µM). (C) Osteogenic-related mRNA expression level.
(D) Osteogenic-related protein expression level. (& p < 0.05, && p < 0.01 vs. control group. * p < 0.05,
** p < 0.01, *** p < 0.001 vs. H2O2 group).

3.4. Leonurine Can Alleviate Intracellular Oxidative Stress of BMSCs

Considering the high oxidative content in patients with osteoporosis, we further
tested the intracellular ROS level change. From intracellular ROS measurement assays, it
showed that H2O2 would apparently increase intracellular ROS levels and leonurine can
suppress ROS generation in a dose-dependent manner (Figure 3A). ROS analysis by flow
cytometry indicated the similar results that leonurine can decrease ROS generation caused
by H2O2 (Figure 3B,C). The reactive oxidative markers (NOX4,COX2) were used to test
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the intracellular ROS change in other respects, supporting the results of a decrease in the
intracellular oxidative level in the leonurine treatment group compared with the H2O2
group (Figure 3D).
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Figure 3. Effect of leonurine function on ameliorating ROS level. (A) Intracellular ROS measurement
under microscopy (scale bar = 100 µM). (B) Intracellular ROS measurement by flow cytometry.
(C) Quantitative analysis of flow cytometry results. (D) Intracellular ROS-related marker expression
level. &&& p < 0.001 vs. control group ** p < 0.01, *** p < 0.001 vs. H2O2 group).

3.5. Leonurine Maintains Mitochondrial Quality Control by Activating Mitophagy

Mitochondria, which is the first organelle to target ROS, is sensitive to intracellular
ROS change. From the results, we found an obvious decrease in ATP level in the H2O2
group and an increase in ATP level in the leonurine group (Figure 4A). This result reflect
that leonurine may act as a protective effect by maintaining mitochondrial quality control.
The JC-1 assay indicated that BMSCs failed to maintain mitochondrial membrane potential,
causing mitochondrial dysfunction (Figure 4B,C). In the leonurine treatment group, the
mitochondrial membrane potential was maintained and mitochondrial dysfunction was
suppressed (Figure 4B,C). According to the results, mitophagy was apparently activated
in the leonurine group. We observed an increase in autophagy level (Red) both the H2O2
and leonurine group, but the leonurine group showed more fusion between mitochondrial
(Green) and autophagosome (Red) (Figure 4E). Western blot experiments provided evidence
for mitophagy activation at the protein level (PINK1, Parkin, P62, LC3 I/II) (Figure 4F).
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3.6. Inhibition of Mitophagy Will Block Leonurine Function

Further experiments have identified the importance of mitophagy in the protection
function of leonurine. From the results of the ALP and Aliza red staining, mitophagy
inhibition would deteriorate the differentiation ability of BMSCs (Figure 5A,B). Leonurine
partly rescued 3-MA-induced mitophagy inhibition and significantly declined the protec-
tion(Figure 5A,B). PCR analysis on osteogenic protein mRNA level consists of results of
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ALP and Aliza red staining, and leonruine, at least, partly rescued 3-MA-caused damage to
the differentiation ability of BMSCs (Figure 5C). The next step in the analysis of the change
in ROS level related to 3-MA indicated that 3-MA sharply increased the level of ROS-related
markers(NOX4, COX2), and leonurine worked as an antagonist to 3-MA (Figure 5D). From
the results of the western blot, 3-MA appeared to inhibit mitophagy, and leonurine partially
reversed mitophagy inhibition (Figure 5E).
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related mRNA expression level. (D) Intracellular ROS-related marker expression level. (E) Related
protein expression change (& p < 0.05, && p < 0.01, &&& p < 0.001 vs. control group. * p < 0.05,
** p < 0.01, *** p < 0.001 vs. H2O2 group. # p < 0.05 vs. 3-MA+H2O2 group).
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3.7. Analysis of the Leonurine-Implied Signaling Pathway

We analyzed the research related to leonurine-related articles and found the five most
related pathways (Figure 6A). Combined with the mitophagy relationship, it was shown
that all the PI3K, AKT, AMPK, MAPK, NF-κB pathways have a strong relationship with
mitophagy, and leonurine had a comparative high level of relation with the PI3K and
NF-κB pathways (Figure 6B). We examined whether leonurine had a direct affinity for
related pathways. Molecular coupling indicated that the chemical structure of leonurine
can form a direction connection and dock nicely within the protein of PI3K (Figure 6C).
The view of local interaction of protein residues was shown in a ribbon model. The 2D
bonding model showed that some important hydrogen bonds were formed between the
leonurine and amino acid residues (Glu880, Val882, Asp841) of PI3K with a high affinity
of 3.04 kcal/mol, 2.89 kcal/mol, 3.21 kcal/mol. The PI3K-AKT-mTOR pathway had a
high relationship with mitophagy. Therefore, western blot was used to identify leonurine
function in the PI3K pathways (Figure 6D). Leonurine inhibits PI3K activation, including
its downstream of AKT/mTOR, as well as the function of the PI3K activator (740-YP) in
inhibiting mitophagy. These results supported leonurine moderate mitophagy through the
PI3K/AKT/mTOR pathway.

3.8. Leonurine Improves Bone Healing under Osteoporosis Conditions In Vitro

There is no apparent change in animal body weight of organic weight, and this
indicated no apparent toxicity (Figure 7A,B). In the OVX rat model, leonurine inhibited bone
loss, because we observed a higher bone density in cancellous bone (Figure 7C) and a thicker
bone cortex (Figure 7D) in the leonurine group, which was consistent with the results of the
H&E staining (Figure 7E,F). A microCT assessment including trabecular number (Tb.N),
trabecular thickness (Tb.Th) and trabecular bone volume fraction (BV/TV) improved in
the OVX+leonurine group compared with the OVX group, and trabecular spacing (Tb.S)
apparently decreased, contrary to bone density (Figure 7G). These results showed that
leonurine can apparently alleviate osteoporosis progression. To further confirm the bone
healing ability, we next test bone formation based on a skull defect model to confirm the
improvement in bone healing. The results showed that bone healing was inhibited by
the osteoporosis condition, and leonurine can recover healing capacity (Figure 7H). From
H&E staining, the OVX+leonurine group showed more new bone formation compared
with the OVX group (Figure 7I), and the qualitative analysis showed a statistical difference
(Figure 7J).
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mitophagy pathway. (C) 2D-molecular docking and 3D-molecular docking between leonurine and the
PI3K protein. (D) The effect of leonurine on the PI3K-AKT-mTOR pathway and change in mitophagy.
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Figure 7. Leonurine ameliorates osteoporosis and contributes to osteogenesis in vivo. (A) Body
weight. (B) Organic weight. (C) MicroCT of the femur on longitudinal section. (D) MicroCT of
the femur on transection; (E) H&E staining of the femur on cancellous bone. (F) H&E staining of
the femur in cortical bone. (G) MicroCT assessment evaluated for: Tb.N trabecular number; Tb.S
trabecular spacing; Tb.Th trabecular thickness; BV/TV trabecular bone volume fraction; (H) Skull
bone defect healing condition. (I) H&E staining of new bone formation. (J) Quantitative analysis of
the new bone formation area. (&& p < 0.01, &&& p < 0.001 vs. Control group. * p < 0.05, ** p < 0.01,
*** p < 0.001 vs. H2O2 group).
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4. Discussion

Osteoporosis, a most common skeletal disordered disease, is becoming a major clinical
and public health concern worldwide. The key feature of osteoporosis pathology is the
contribution of oxidative stress to the onset and development of osteoporosis [32]. However,
because of the involvement of high oxidative stress in osteoporosis pathogenesis and
comorbidities, a novel therapeutic strategy arises where the treatment of different etiologic
factors of osteoporosis can be possible with therapeutic targets [33]. In this study, we
confirmed that leonurine can apparently decrease ROS level, protect BMSCs from apoptosis,
and maintain the differentiation ability of BMSCs. Leonurine protection of BMSCs was
achieved by inhibiting PI3K/AKT/mTOR to activate mitophagy. Meanwhile, the results
showed that leonurine can alleviate osteoporosis and contribute to bone healing in the
osteoporotic rat model in vivo.

For the establishment of the cell model, scientists used H2O2 [34], lipopolysaccha-
ride(LPS) [35], and dexamethasone [36] to establish high oxidative stress. According to our
results, H2O2 can apparently increase the intracellular ROS level of BMSCs, and many stud-
ies also use H2O2 as a suitable way to mimic the oxidative microenvironment in vitro [37].
Therefore, to investigate leonurine protection, we set a different concentration of H2O2
(100–500 µM) stimulating BMCSs in vitro, in which 300 µM H2O2 would reach the critical
point concentration.

The mitochondria are the powerhouses of cells, acting as the source of ATP to maintain
the cellular processes. In the pathological state, mitochondria is the prior damage target of
ROS [38]. ROS can induce the loss of mitochondrial inner membrane permeability and an
apparent drop in mitochondrial membrane potential (∆Ψm) [39]. Damaged mitochondrial
membranes are also the major source of excessive ROS in cells, further causing deterioration
of the intracellular microenvironment [10]. Due to the critical role of mitochondrial function,
it has been confirmed that mitochondrial dysfunction has been associated with disease.
Therefore, an increasing interest in the development of mitochondrial-directed therapeutics
to correct or modify mitochondrial function was developed [40]. Leonurine, more specifi-
cally, restored mitochondrial function to attenuate cell damage [41]. Therefore, we also
examined the high oxidative microenvironments surrounding BMSCs in osteoporosis pa-
tients and the high relation with mitochondrial quality control. Our hypothesis is confirmed
by the fact that leonurine protects BMSCs from ROS damage by activating mitophagy. In
microenvironments of oxidative stress, leonurine can alleviate the intracellular ROS level
and protect BMSC proliferation and differentiation. From the results, we observed the
mitochondrial fusion with the lysosome processing mitophagy procedure. Further research
indicates that leonurine can at least partially reverse the mitophagy inhibition caused by
3-MA. Here we provided evidence to improve the osteogenic differentiation of BMSCs by
mitophagy, which based on the importance and breakthrough in mitophagy involvement in
scavenging damaged or burned-out mitochondria by preventing ROS overproduction [28].
From a previous report, mitophagy is becoming a new evident target in stem cell func-
tions and a potential target in the progression of aging and diseases [42]. A recent study
shows that mitophagy is directly essential to osteoblast mineralization [43]. This study
revisits a 50-year-old conundrum and laid the solid foundation of osteoporosis therapy
from mitophagy. As a result, evidence for treating osteoporosis by regulating mitophagy
is growing [44]. Our research also proven that leonurine played the protection roles on
BMSCs in vitro via regulating mitophagy in preventing ROS injury.

The mechanism of multiple pathways involves the regulation of mitophagy and is
especially focused on the regulation of mTOR in bone metabolic disorder [45]. Leonurine
has been reported to have a strong relationship with the PI3K pathway [21,46]. In this study,
the results indicate a high relationship of leonurine with the PI3K-AKT-mTOR pathway.
The results of the 2D and 3D docking studies also support that leonurine can regulate
PI3K directly, causing downstream protein changes, and the results of the western blots
indicated that the combination inhibits the phosphorylation of the PI3K/AKT/mTOR
pathway. The PI3K pathway has been shown to be involved in the determination of cell
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endogenous ROS level and cell fate [47]. This pathway is thought to be important for
cell survival and was thought to be a response to oxidative stress [48]. In particular, it is
notable that our results are different. We observed that the inhibition of the PI3K-AKT-
mTOR pathway by leonurine would improve the proliferation and differentiation ability of
BMSCs. Indeed, it has been suggested that the PI3K pathway may be a double edged-switch
depending on the different circumstances [49]. Therefore, more scientists are starting to
notice this fact. The benefit of inhibition of the ROS-induced DNA damage activated PI3K
pathway was observed in helicobacter pylori infection [50]. More research shows that
inhibiting the PI3K/AKT/mTOR pathway has the same benefit in LPS-induced kidney
injury, neurodegeneration, and osteoporosis [51–53]. According to our results, this study
is focused on the downstream PI3K pathway in the mTOR protein. Long-term research
on rapamycin, a well-known mTOR inhibition drug, for the treatment of osteoporosis
in both experiments and clinical studies has added confidence in the clinical application
of leonurine for the treatment of osteoporosis in the future [54]. Therefore, based on the
previous reports and our findings, considering the different views on the PI3K pathway and
the complexity downstream, further investigation of crosstalk between PI3K and mTOR
should be clarified, which may be a key to explaining the conflicting questions about PI3K
in different circumstances. Furthermore, it is worth clarifying further that mitophagy has
different types of activation, including PINK1/Parkin and receptor-induced mitophagy
such as NIX, BNIP3, FUNDC1 [55]. We only examined PINK1/Parkin, which has a close
relationship with osteoporosis [44,56]. Due to the limited scope of this study, we were
unable to include other types of mitophagy activation, and studies on receptor-induced
mitophagy on osteoporosis are lacking, which needs to be further work in the future.
What’s more, it is a pity that the cellular and dynamic bone histomophormometry were not
quantified and we didn’t use micro-CT to evaluate the overall condition of cortical bone.

In conclusion, our research revealed a new role for leonurine in the possible treat-
ment of osteoporosis by activating BMSCs mitophagy. From the mechanism point of view,
leonurine inhibits the PI3K-Akt-mTOR pathway to activate mitophagy, subsequently con-
tributing to mitochondrial quality control by preventing the generation of intracellular ROS
(Figure 8). These results strongly support that leonurine may be a candidate medicine for
the development of new therapies for osteoporosis.
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blocking ROS generation cycle by mitophagy to keep mitochondrial quality control. The mechanism
probably involves the moderate activation of the PI3K-AKT-mTOR pathway. Therefore, leonurine
can activate mitophagy to alleviate damage to BMSCs form ROS overload by the moderate PI3K-
AKT-mTOR pathway.
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