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Abstract: Recent evidence suggests that SARS-CoV-2 hinders immune responses via dopamine
(DA)-related mechanisms. Nonetheless, studies addressing the specific role of DA in the frame
of SARS-CoV-2 infection are still missing. In the present study, we investigate the role of DA in
SARS-CoV-2 replication along with potential links with innate immune pathways in CaLu-3 human
epithelial lung cells. We document here for the first time that, besides DA synthetic pathways, SARS-
CoV-2 alters the expression of D1 and D2 DA receptors (D1DR, D2DR), while DA administration
reduces viral replication. Such an effect occurs at non-toxic, micromolar-range DA doses, which are
known to induce receptor desensitization and downregulation. Indeed, the antiviral effects of DA
were associated with a robust downregulation of D2DRs both at mRNA and protein levels, while
the amount of D1DRs was not significantly affected. While halting SARS-CoV-2 replication, DA,
similar to the D2DR agonist quinpirole, upregulates the expression of ISGs and Type-I IFNs, which
goes along with the downregulation of various pro-inflammatory mediators. In turn, administration
of Type-I IFNs, while dramatically reducing SARS-CoV-2 replication, converges in downregulating
D2DRs expression. Besides configuring the CaLu-3 cell line as a suitable model to study SARS-CoV-2-
induced alterations at the level of the DA system in the periphery, our findings disclose a previously
unappreciated correlation between DA pathways and Type-I IFN response, which may be disrupted
by SARS-CoV-2 for host cell invasion and replication.

Keywords: dopamine; D2DR; interferons; quinpirole; NLRP3 inflammasome

1. Introduction

Since the outbreak of Coronavirus Disease 19 (COVID-19) by the novel Severe Acute
Respiratory Coronavirus-2 (SARS-CoV-2), immense efforts have been made by the scientific
community to uncover its viral mechanisms of action, potential therapeutic targets, and
factors controlling the susceptibility/outcome of the infection. A decrease in the innate
antiviral response, hyper-inflammation, along with exhaustion/loss in function of T-cells
are considered major determinants of COVID-19 severity.

Recent intriguing evidence suggests that SARS-CoV-2 may hinder immune responses
via dopamine (DA)-related mechanisms [1–3]. On the one hand, dopamine (DA) receptors
(DRs) have been hypothesized to be exploited by the virus to improve both its entry and
life cycle within cells; on the other, SARS-CoV-2 was documented to downregulate L-
Dopa-Decarboxylase (DDC), the rate-limiting enzyme for the conversion of L-DOPA to
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DA [3]. This is key in the frame of CNS viral infections and pre-existing comorbidities,
as well as virus-related neurological manifestations, which commonly appear after the
diagnosis of COVID-19 [4]. However, besides mere neurological manifestations, DA-related
alterations may lead to a plethora of systemic effects which may be relevant in the frame
of COVID-19 pathogenesis [5–7]. Indeed, DA or DA agonists, apart from modulating
reward, motivation and movement, exert endocrine, respiratory, cardiovascular, renal,
gastrointestinal, and immune functions by acting on G protein-coupled D1-like (D1, D5)
and D2-like (D2, D3, D4) receptors, which are abundantly expressed in a variety of immune
cell subpopulations and organs [5,6,8–13]. These include alveolar epithelial lung cells,
the major site of SARS-CoV-2 infection [12,13]. As documented by pioneer studies, the
lungs are endowed with scattered neuroendocrine and neuroepithelial bodies, that are
maximally developed around birth [13]. Coupled with evidence about the presence of
both DRs and DDC within these cells, this configures the respiratory epithelium as an
important potential source of extra-neuronal DA besides chromaffin cells of the adrenal
medulla and the gastrointestinal tract [12,13]. Thus, it is not surprising that alterations in
DA synthetic pathways or abnormal stimulation/expression of D1- and D2-like receptors
may disrupt a variety of peripheral physiological functions. These include also innate and
adaptive immunity, leading to exacerbation of pro-inflammatory responses and worsening
of various pathological scenarios.

Supporting a role for DA pathways in SARS-CoV-2 infection, a variety of indirect and
direct DA modulators, including the DA precursor L-DOPA, have been ranked among the
top drugs that own the greatest potential to interact with SARS-CoV-2 replication [14–18].
Nonetheless, studies addressing the specific role of DA in the frame of SARS-CoV-2 infection
are still missing.

Based on these premises, in the present study, we investigate the role of DA in SARS-
CoV-2 infection along with potential links with innate immune pathways in CaLu-3 human
lung epithelial cells, which are widely used as a model for SARS-CoV-2 infection in the light
of their high viral susceptibility and permissibility to effective replication. Remarkably,
within these cells, we could detect the expression of both DA synthetic enzymes and
DRs, which makes them a suitable model to study SARS-CoV-2-induced alterations at
the level of the DA system. We document here for the first time that, DA in the non-
toxic micromolar range (10–100 µM), dose-dependently reduces viral replication through
downregulation of D2 DA receptors (D2DRs), likely by acting at both transcriptional,
and post-translational levels. In this frame, we also disclose a role for Type-I IFNs (α, β)
bridging D2DR downregulation and inhibition of SARS-CoV-2 replication.

Our findings are expected to pave the way for future research centered on the role of
the DA system as a potential therapeutic target against COVID-19 multi-organ pathology,
which deserves to be investigated in other cell types and animal models.

2. Materials and Methods
2.1. Cell Lines, Virus, and Reagents

CaLu-3 cells (HTB-55™, human epithelial cells from lung adenocarcinoma) and VeroE6
(CRL-1586™, African green monkey kidney epithelial cells) were purchased from American
Type Culture Collection (ATCC®, Manassas, VA, USA). A549 (NR-53522, human lung ade-
nocarcinoma cells) expressing Human Angiotensin-Converting Enzyme 2 (A549-hACE2)
were obtained through BEI Resources, NIAID, NIH. CaLu-3 cells were grown in DMEM
high glucose (ECB20722L, Euroclone, Milan, Italy) supplemented with 10% FBS, 1% L-
Glutamine and PenStrep, and 1% NEAA. VeroE6 cells and A549-hACE2 cells were grown
in DMEM high glucose (ECB20722L, Euroclone, Milan, Italy), supplemented with 10%
FBS, and 1% L-Glutamine and PenStrep. Cells were grown at 37 ◦C in 5% CO2 and at 98%
humidity. Cells were routinely checked for mycoplasma contamination by PCR test. Cells
between passages 15 and 25 were used for the experiments.

The following reagents were used to stimulate cell culture: Dopamine Hydrochlo-
ride (Merck-Sigma, Milan, Italy); D1DR and D2DR agonists or antagonists (D1DR agonist
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SKF38393 Hydrochloride; D1DR antagonist SCH 23,390 Hydrochloride; D2DR agonist
Quinpirole Hydrochloride, D2DR antagonist Eticlopride Hydrochloride, Merck-Sigma,
Milan, Italy); Type-I Interferons (Human Interferon Beta NR-3080 and Human Recom-
binant Alpha A NR-3083, obtained from BEI Resources, NIAID, NIH). To prepare stock
solutions, all the compounds except for DA were dissolved in sterile PBS w/o calcium and
magnesium, aliquoted, and stored at −20 ◦C (IFN-α, 12.000 IU/mL, IFN-β 15.000 IU/mL,
D1DR agonist 10 mM, D1DR antagonist 100 mM, D2DR agonist 28 mM, D2DR antago-
nist 40 mM). On the day of the experiment, stock solutions were further diluted in the
same vehicle to obtain the final concentrations for cell culture treatment, as specified in
Section 2.2. DA stock solution was freshly prepared the day of the experiment by dis-
solving 40 mg of DA powder in 10 mL of sterile PBS w/o calcium and magnesium (pH
adjusted to 6.5 to prevent readily DA oxidation, at a final concentration of 21 mM), and
appropriate dilutions were performed in the same vehicle to obtain the concentrations for
cell culture treatment, as specified in Section 2.2. As per manufacturer instruction, light
exposure was avoided during the preparation of DA and DR agonist/antagonist solutions
and subsequent experiments with these compounds.

2.2. In Vitro SARS-CoV-2 Infection Assay and Treatment Protocols

For infection assays, SARS-CoV-2 Virus Human 2019-nCoV (strain 2019-nCoV/Italy-
INMI1, Rome, Italy) was expanded in VeroE6 cells and infectious viral particle concentration
was assessed by TCID50 endpoint dilution assay in CaLu-3 as previously described. [19]. In
detail, CaLu-3 cells were plated onto 96-well plates (3 × 104 cells/well) for 48 h and incu-
bated with SARS-CoV-2 serial 10-fold dilutions, from 106 to 10−4 TCDI50/mL (50 µL) for
3 h at 37 ◦C in 5% CO2. Cells were washed in PBS to remove unbound virus and incubated
at 37 ◦C in 5% CO2 for 72 h. Viral titer from cell supernatants was determined to assess
TCID50 through a single-step, real-time, quantitative Reverse Transcriptase-Polymerase
Chain Reaction (RT-qPCR, detailed in Section 2.2). All the experiments with the SARS-CoV-
2 virus were performed in the BSL3 facility; before sample analysis outside the BSL3 area,
the virus was inactivated according to institutional safety guidelines.

CaLu-3 cells were seeded and cultured for 48 h in either 12-well plates (2.5 × 105 cells/well
in a final volume of 1 mL for assessment of viral replication, Trypan Blue exclusion assay, and
intracellular RNA extraction), 24-well plates (1.25 × 105 cells/well in a final volume of 500 µL
for assessment of viral replication and immunofluorescence experiments), or 96-well plates
(3 × 104 cells/well in a final volume of 100 mL for MTT cell viability assay both in the absence
and presence of SARS-CoV-2). A549-hACE2 cells were seeded and cultured for 24 h in 12-well
plates (2 × 105 cells for assessment of viral replication and cellular RNA extraction).

Cells were treated according to a sub-chronic administration protocol. In detail, prior
to either Mock (Uninfected) or SARS-CoV-2 infection, cells were treated with DA (from
10 nM to 300 µM, for 1 h), D1DR, and D2DR agonists or antagonists (10 or 50 µM, either
alone or 30 min prior to administration of DA), or Type-I Interferons (10 or 100 IU/mL,
for 16 h). Control cells were treated with an equal volume of vehicle (PBS, 20 µL in a
final volume of 1 mL for 12-well plates, 10 µL in a final volume of 500 µL for 24-well
plates, and 2.5 µL in a final volume of 100 µL for 96-well plates). At these time points, the
medium was removed, and the cells were either Mock-infected (in DMEM supplemented
with 2% FBS in the absence of the virus) or infected with SARS-CoV-2 (MOI 0.02, virus
suspended in DMEM supplemented with 2% FBS) for 3 h. All the compounds (DA,
D1/D2DR agonists/antagonists, or Type-I IFNs) were added during the infection at the
above-indicated concentrations. After the infection, cells were washed in PBS to remove
unbound virus and replenished with DMEM 10% FBS supplemented with the specific
treatments (DA, D1/D2DR agonists/antagonists, or Type-I IFNs) at the corresponding
concentrations. Control cells (both Uninfected (Mock)- and SARS-CoV-2-infected) were
treated with an equal volume of PBS (both during infection and post-infection). All the
supernatants and cells were harvested at 24 and/or 48 h post-infection and appropriately
stored for further processing as specified below.
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2.3. RNA Extraction, Reverse Transcription, and Gene Expression
2.3.1. Viral Replication

For assessment of viral replication at 24 and 48 h post-infection, RNA from cell culture
supernatants was extracted by using Maxwell RSC Viral Total Nucleic Acid Purification
Kit (Promega, Fitchburg, WI, USA) through the Maxwell® RSC Instrument (Promega,
Fitchburg, WI, USA). Viral RNA was quantified as previously described [20]. Briefly, single-
step, real-time, RT-qPCR (GoTaq® 1-Step RT-qPCR, Promega, Fitchburg, WI, USA) and the
2019-nCoV CDC qPCR Probe Assay kit with probes targeting SARS-CoV-2 nucleocapsid
(N) gene and the human RNase P gene as an internal control (IDT, Coralville, IA, USA)
were used on a CFX96 instrument (Bio-Rad, Hercules, CA, USA). Absolute viral copy
number quantification was performed by generating a standard curve from the quantified
2019-nCoV_N-positive Plasmid Control (IDT, Coralville, IA, USA). A cycle threshold (Ct)
value of <40 was considered positive, based on CDC guidelines.

2.3.2. Cellular RNA Extraction, Reverse Transcription, and Gene Expression

Cellular RNA isolation, reverse transcription (RT) into cDNA, as well as amplification
and quantification through real-time qPCR were performed according to a standardized
protocol [21]. Briefly, cells were washed in PBS and collected in RNAzol® (TEL-TEST Inc.,
Friendswood, TX, USA) and RNA extraction was performed through the phenol-chloroform
method. RNA was dissolved in RNase-free water and quantified by the Nanodrop 2000
Instrument (1 µL, Thermo Scientific, Waltham, MA, USA). One µg of RNA was purified
from genomic DNA with RNase-free DNase (RQ1 DNase; Promega) and reverse transcribed
into first-strand cDNA with Moloney murine leukemia virus reverse transcriptase along
with random hexanucleotide primers, oligo dT, and dNTPs (Promega, Fitchburg, WI, USA).
cDNA (200 ng) was amplified and quantified by real-time qPCR (CFX96 connect, Bio-
Rad, Hercules, CA, USA) through SYBR Green PCR mix (Promega, Fitchburg, WI, USA),
according to the following thermal profile: initial denaturation (95 ◦C, 15 min), denaturation
(15 s at 95 ◦C × 40), annealing (1 min at 60 ◦C) and extension (20 s at 72 ◦C). Negative
controls (distilled water, and RT-negative, total RNA sample), as well as positive controls
(human cDNA), were included in each run. A Ct value of 40 or higher was considered
negative. Melting curves were also analyzed for amplicon characterization. Results for
gene expression analyses were calculated by the 2−∆∆Ct equation and presented as the
average of the relative expression units (in percentage) to an internal reference sample and
normalized to the GAPDH housekeeping gene. Samples with GAPDH Ct values above
20 were excluded from the analysis. As an internal reference, a Mock-infected Control
(Uninfected, vehicle-treated) with the best GAPDH Ct values (between 11 and 16) was
chosen for each experiment, and thus set as 100%. The following genes were analyzed, D1
dopamine receptor (D1DR), D2 dopamine receptor (D2DR), L-Dopa Decarboxylase (DDC),
dopamine transporter (DAT), Tyrosine Hydroxylase (TH), cAMP-dependent Protein Kinase
A (PKA), cAMP Response Element-Binding protein (CREB), Mitogen-activated Protein
Kinase 3 (MAPK3/ERK1), Glycogen Synthase Kinase 3-b (GSK3-β), Interferon A (IFNA1),
Interferon B (IFNB), Interferon Regulatory Factor 3 (IRF3), Human myxovirus resistance
protein 1 (MX-A), Toll-like Receptor 4 (TLR4), High-Mobility Group Box 1 (HMGB1),
NLR family pyrin domain containing 3 Inflammasome (NLRP3), Interleukin 1b (IL-1b),
Interleukin 6 (IL-6), Interleukin 4 (IL-4). Primers for DDC, PKA, MAPK3, CREB, GSK3-b,
IFNA1, TRL4, NLRP3, IL-6, and HMGB1 genes were purchased as already optimized
(PrimePCR, Bio-Rad, Segrate, Italy). Sequences of the remaining primers are listed in
Supplementary Materials, Table S1.

2.4. Immunocytochemistry

Forty-eight hours post-infection (either Mock- or SARs-CoV-2 infection) cells were
washed in PBS and fixed with 4% paraformaldehyde (PFA) for 10 min at room temperature
(RT), followed by permeabilization with 0.1% Triton X-100 in PBS for 10 min at RT, blocking
in 5% Bovine Serum Albumin (BSA) in PBS for 1 h at RT, and incubation for 1 h at RT with
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primary antibodies (Mouse anti-D2DR B-10: sc-5303, 1:200, Santa Cruz Biotechnology, Inc,
Dallas, TX, USA; Rabbit anti-N Nucleocapsid SARS-CoV-2 Antibody NR-53791, 1:1000,
obtained from Bei Resources, NIAID, NIH; Rabbit anti-D1DR bs-1007R, 1:200, Bioss, MA,
USA; Mouse anti-S2 Spike SARS-CoV-2, 1:100, GeneTex, Alton Pkwy Irvine, CA, USA) pre-
pared in 1% BSA-PBS. Cells were washed three times in PBS and incubated for 45 min at RT
with secondary antibodies (Goat anti-mouse Alexa Fluor 488 (ab150113) or 647 (ab150115),
or Goat anti-rabbit Alexa Fluor 488 (ab150077) or 647 (ab150079), 1:500, abcam, Cambridge,
UK) prepared in 1% BSA-PBS. Negative controls were performed by omitting primary
antibodies (Supplementary material, Figure S5). After three washes in PBS (5 min each),
coverslips were carefully removed from the wells and mounted on Superfrost glass slides
using a mounting medium with DAPI (Enzo Life Sciences, Milan, Italy). Confocal imag-
ing was performed with a Leica TCS SP5 AOBS microscope system using a 40×/1.30 oil
immersion objective (Leica Microsystems, Wetzlar, Germany). The images shown in the
figures are representative results from independent experiments.

2.5. MTT and Trypan Blue Cell Viability Assays

CaLu-3 cells were seeded in 96-well plates (3 × 104 per well) for 48 h and treated with
the specific compounds following the same protocols detailed in Section 2.2. Cells were
then either mock-infected or infected with SARS-CoV-2 as detailed in Section 2.2. After 48 h,
cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) method. Briefly, 30 µL of MTT (final concentration, 0.5 mg/mL) were added to
each well under sterile conditions, and the 96-well plates were incubated for 4 h at 37 ◦C.
Supernatants were removed, and dimethyl sulfoxide (100 µL/well) was added. The plates
were then agitated on a plate shaker for 5 min. The absorbance of each well was measured
at 490 nm with a Bio-Rad automated EIA analyzer (Bio-Rad Laboratories, Hercules, CA,
USA). The viability of Control cells (Mock-infected, vehicle-treated) was considered 100%,
while the other conditions were expressed as percentages of control.

For Trypan Blue exclusion assay, cells were incubated in Cell Dissociation Buffer 1X
(Merck-Sigma, Milan, Italy, 500 µL for 12-well plates) for 10 min at 37 ◦C. Then, an equal
volume of DMEM was added to the wells to stop the dissociation reaction. Cells were
detached and collected in sterile 2 mL Eppendorf Tubes in a final volume of 1 mL. Cells
were centrifuged at 8 min at 1200 rpm, the supernatant was carefully discarded, and cells
were resuspended in 1 mL of fresh medium. Ten µL of cell suspension were incubated with
10 µL of 0.4% Trypan Blue (Merck-Sigma, Milan, Italy) for 10 min in 96-well plates. Ten
microliters of the mix were loaded on chamber slides and counted with the T20 Automated
Cell Counter (Bio-Rad Laboratories, Hercules, CA, USA).

2.6. Statistics

Results are presented as mean ± SEM from at least n = 3 independent experiments,
each performed in triplicate. Results for viral replication are expressed as the absolute
viral copy number, which was calculated from the SARS-CoV-2 N gene Ct values by
referring to a standard curve from the quantified 2019-nCoV_N-positive Plasmid Control.
Percent inhibition of viral replication is calculated through the following formula, “1-viral
N gene copy number of SARS-CoV-2-infected treated cells/viral copy number of N gene
SARS-CoV-2-infected untreated (Control) cells”. Results for gene expression analyses were
calculated by the 2−∆∆Ct equation and presented as the average of the relative expression
units (expressed in percentage) to an internal reference sample and normalized to the
GAPDH housekeeping gene. As an internal reference, one among the three biological
replicates from Mock-infected Controls (uninfected, vehicle-treated cells) with the best
GAPDH Ct values (between 11 and 16) was chosen for each experiment, and thus set as
100%. Statistical analyses were performed through the Student’s t-test or one-way ANOVA,
as appropriate, with GraphPad Prism Version 5 (GraphPad Software, La Jolla, CA, USA).
Results were considered significant for p values ≤ 0.05.
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3. Results
3.1. DA in the Micromolar Range Reduces SARS-CoV-2 Replication in CaLu-3 Cells

Our data show that DA in the µM range (>1 µM) dose-dependently reduces SARS-
CoV-2 replication in CaLu-3mhuman epithelial lung cells. While the 10 µM dose produced a
moderate (nearly 50%), yet not significant, reduction in the amount of detectable viral RNA
at 24 h, a remarkable anti-replicative effect (roughly 80%) persisting at 48 h was detected
for the doses of 50 and 100 µM (Figure 1). Although the anti-SARS-CoV-2 effect of DA
occurred at doses that surpass the physiological range, the cell viability assay ruled out any
cytotoxic effects. In fact, DA was well-tolerated by CaLu-3 cells, inducing frank toxicity only
above the 200 µM dose (Figure S1). Intriguingly, in Uninfected (Mock-infected) cells, DA
between 1-to-50 µM doses produced a slight, yet significant proliferative effect, which was
not observed in the presence of SARS-CoV-2 (Supplementary material, Figure S1). These
data suggest that CaLu-3 cells well-tolerated high µM DA concentrations, ruling out any
anti-proliferative effects related to the antiviral effects of DA observed in the range of
10–100 µM doses.
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Figure 1. Dose- and time-related effects of dopamine in SARS-CoV-2 replication. Dopamine (DA)
dose-dependently reduces SARS-CoV-2 replication at 24 and 48 h post-infection in CaLu-3 epithelial
lung cells. Significant antiviral effects of DA occur in the micromolar range (10–100 µM). While the
antiviral effects of the 10 µM DA dose lose significance at 48 h, DA at 50–100 µM doses produces a
significant antiviral effect that persists at 48 h, exceeding 80% reduction in viral titers (SARS-CoV-
2-N gene RNA levels). SARS-CoV-2 was not detected in the Uninfected Control (Mock). Results
correspond to the absolute viral copy number of the SARS-CoV-2 N gene from cell supernatants
that were quantified through a single-step, real-time, RT-qPCR by referring to a standard curve
from RT-qPCR Ct values (IDT, Coralville, IA, USA). Results are presented as mean ± SEM from at
least n = 3 independent experiments, each performed in triplicate. # p < 0.05 vs. Uninfected Control
(Mock); * p < 0.05 vs. SARS-CoV-2-Infected Control.

3.2. Dopamine Receptor Agonists Recapitulate while Dopamine Receptor Antagonists Reverse
DA-Induced Inhibition of SARS-CoV-2 Replication

In light of the antiviral effect of DA at non-toxic µM DA range doses (10–100 µM),
we administered D1DR and D2DR modulators either alone or in combination with DA
to determine the contribution of D1DRs and D2DRs. For these assays, 50 µM DA was



Cells 2022, 11, 1691 7 of 23

chosen as the lowest dose within the µM range that yielded significant anti-SARS-CoV-2
effects. In order to choose the appropriate doses of DR modulators, an MTT assay in both
Mock- and SARS-CoV-2 infected cells was performed, which indicated the absence of any
cytotoxic effects for any of these compounds at the dose of 10 µM, or their combination
with DA 50 µM. In fact, only the D2DR antagonist at the dose of 50 µM produced a
frank cytotoxic effect compared with both Uninfected (Mock) Control and SARS-CoV-2-
infected Control (Supplementary material, Figure S2). To rule out any toxicities that are not
reflected in cell proliferation, we also performed a Trypan Blue exclusion assay, which once
again, confirmed the absence of cell toxicity for 50 µM DA or DR modulators at 10 µM,
administered either alone or in combination with DA (Supplementary Figure S3). Thus, the
dose of 50 µM and 10 µM was chosen for DA and D1/D2DR modulators, respectively, to
assess their effects on SARS-CoV-2 replication at 48 h post-infection.

Both D1DR and D2DR agonists recapitulated, though at different magnitudes, the
antiviral effect of DA, which was instead reversed by D1DR or D2DR antagonists (Figure 2).
In detail, while the anti-replicative effect of the D1DR agonist was roughly comparable to
that induced by the low-µM DA dose (10 µM, Figure 1), the D2DR agonist either alone or in
combination with DA produced a robust antiviral effect which recapitulated that produced
by DA at 50 µM dose (Figure 2). This suggests that SARS-CoV-2 is more sensitive to the
effects of D2DR compared with D1DR agonists at comparable doses.
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Figure 2. Effects of the D1 and D2 dopamine receptor agonists and antagonists in SARS-CoV-2
replication. D1DR and D2DR agonists (10 µM) reduce SARS-CoV-2 replication at 48 h post-infection,
recapitulating the antiviral effect of DA (50 µM), which is instead reversed by D1DR and D2DR
antagonists (10 µM). In detail, while the antiviral effect of the D1DR agonist alone is modest, reaching
50% of viral replication inhibition, the D2DR agonist either alone or in combination with DA, produces
a robust antiviral effect (>80% inhibition of detectable viral RNA) which recapitulates and slightly
surpasses that produced by DA alone. On the other hand, administration of either D1DR or D2DR
antagonists alone favors SARS-CoV-2 replication, meanwhile occluding the antiviral effects of DA in
the co-administration protocol. Values are expressed as percent (%) inhibition of viral replication,
calculated as “1–SARS-CoV-2 N gene copy number of SARS-CoV-2-infected treated cells/SARS-CoV-2
N gene copy number of SARS-CoV-2-infected Control (untreated) cells”, with SARS-CoV-2 Infected
Control corresponding to 0% Inhibition of viral replication. The absolute viral copy number of the
SARS-CoV-2 N gene from cell supernatants was quantified through a single-step, real-time, RT-qPCR
by referring to a standard curve from RT-qPCR Ct values (IDT, Coralville, IA, USA). Results are
presented as mean ±SEM from at least n = 3 independent experiments, each performed in triplicate.
# p < 0.05 vs. SARS-CoV-2-Infected Control; * p < 0.05 vs. DA 50 µM.

3.3. The Antiviral Effect of DA Is Associated with Downregulation of D2DRs

Since DA and DR agonists are known to induce a phenomenon of receptor desen-
sitization that eventually leads to the downregulation of DRs, we sought to determine
whether the antiviral effects of these compounds are associated with any alterations in DRs’
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expression. Remarkably, following SARS-CoV-2 infection, the expression of D1DRs and
D2DRs increased by at least 2-fold compared with Uninfected Control (Mock). Noteworthy,
compared with SARS-CoV-2 Infected Control, DA dramatically downregulated the expres-
sion of D2DR along with the downstream kinase GSK3-β, while it did not significantly
affect the expression of either D1DR or downstream effectors such as PKA, ERK1, and
CREB (Figure 3). At the same time, DA was able to rescue the expression of DDC (Figure 3),
though the underlying mechanism remains to be clarified. The lack of evident effects
of 50 µM DA upon D1DR expression is in line with the 10 to 100-fold lower affinity for
D1-like compared with D2-like DRs (low vs. moderate µM DA doses, respectively) [11].
On the other hand, the remarkable decrease in both D2DR and the downstream effector
GSK3-β expression suggests that the anti-SARS-CoV-2 effects of DA are related to the
downregulation of D2DRs.
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Figure 3. Dopamine-induced changes in the expression of D1DR, D2DR, downstream effector
genes, and DA synthetic enzyme DDC. Compared with Uninfected Control (Mock), SARS-CoV-2
significantly increases the expression of D1DR, D2DR, and respective downstream effectors PKA,
ERK1, and GSK3β at 48 h post-infection. Compared with the SARS-CoV-2-Infected Control, 50 µM
DA administration to SARS-CoV-2-Infected cells markedly reduces the expression of D2DR and
the downstream kinase GSK3-β while increasing DDC expression. On the other hand, DA does
not significantly affect the expression of D1DR or downstream effectors. mRNA quantification was
performed through real-time qPCR and calculated by the 2−∆∆Ct equation. Results are presented as
mean ± SEM from at least n = 3 independent experiments, each performed in triplicate. # p < 0.05 vs.
Uninfected Control (Mock), * p < 0.05 vs. SARS-CoV-2 Infected Control.

It is remarkable that DR agonists, and mostly the D2DR agonist, produced a similar
scenario in the expression levels of D1DR, D2DR, and DDC within SARS-CoV-2-infected
cells. While neither the D1DR nor the D2DR agonist altered the expression of D1DRs, either
compound decreased, though at different magnitudes, the expression of D2DRs, meanwhile
augmenting the expression DDC (Figure 4). Indeed, the D2DR agonist produced a robust
reduction of D2DR expression, which was slightly potentiated by co-administration of
DA. Instead, the D2DR antagonist produced opposite effects, suggesting that agonist-
induced downregulation rather than the mere blockade of D2DR activity, is key to halting
SARS-CoV-2 replication.
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Figure 4. D1 and D2 receptor agonist/antagonist-induced changes in the expression of D1DR, D2DR,
and DDC. Similar to DA 50 µM, administration of DR agonists (10 µM) to SARS-CoV-2-Infected
cells, either alone or in combination with DA, decreases the expression of D2DR while increasing
the expression of DDC compared with SARS-CoV-2-Infected Control at 48 h post-infection. The
most robust effects are produced by D2DR agonists either alone or in combination with DA. mRNA
quantification was performed through real-time qPCR and calculated by the 2−∆∆Ct equation. Results
are presented as mean ± SEM from at least n = 3 independent experiments, each performed in
triplicate. # p < 0.05 vs. Uninfected Control (Mock), * p < 0.05 vs. SARS-CoV-2-Infected Control.

The downregulation of D2DRs that is observed following administration of either
DA or the D2DR agonist may be related to four, non-necessarily mutually-exclusive
events [22–24], namely (i) inhibition of mRNA receptor transcription, (ii) reduction in
the receptor mRNA steady-state levels, (iii) post-transcriptional agonist-mediated degrada-
tion of mRNA and iv) post-translational receptor degradation following agonist-induced
receptor internalization and sequestration into proteolytic organelles. In order to assess
whether SARS-CoV-2 and treatment with DA or DR agonists alter DRs at protein levels, we
performed double immunostaining at fluorescence microscopy for DRs and SARS-CoV-
2 proteins. Impressively, while D2DR staining in Uninfected control (Mock) showed a
diffuse pattern with enhanced immune reactivity at the level of the plasma membrane
(Figure 5, Panel A), SARS-CoV-2 produced a dramatic clustering of D2DRs at the plasma
membrane and adjacent intracellular compartments, where a clear-cut co-localization with
the viral Nucleocapsid (N) protein emerged, suggesting that SARS-CoV-2 may exploit
D2DR for host cell invasion and replication (Figure 5, Panel B). In support of this hy-
pothesis, administration of DA, similar to the D2DR agonist, dramatically disrupted such
a co-localization by reducing both SARS-CoV-2 infection and D2DR abundance. Such
an effect was instead reversed by the D2DR antagonist (Figure 5, Panel B). A dramatic
reduction of D2DR staining, similar to that observed in SARS-CoV-2 infected cells, was
also evident in Uninfected (Mock) cells following administration of DA or D2DR agonist
(Figure 5, Panel A). As mentioned above, this might be due to either transcriptional (inhibi-
tion of D2DR mRNA transcription), post-transcriptional (degradation of D2DR mRNA and
subsequent reduction of protein synthesis), or post-translational events (agonist-dependent
receptor internalization, and degradation). However, these events are not necessarily mu-
tually exclusive. Indeed, while DA and the D2DR agonist produced a rough 65% reduction
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in D2DR mRNA levels in SARS-CoV-2 infected cells, the downregulation at protein D2DR
levels was almost abolished by these compounds in both Mock- and SARS-CoV-2 infected
cells (Figure 5A,B, respectively). In line with recent studies, this suggests the potential in-
volvement of agonist-related post-translational events fostering degradation of D2DRs [25],
which remains to be confirmed in CaLu-3 cells specifically through tailored methodological
approaches targeting endocytic and degradation pathways.

In summary, these data cast the hypothesis that agonist-induced D2DR activation
and subsequent downregulation interfere with SARS-CoV-2 replication either by reducing
the amount of plasma membrane receptors available for SARS-CoV-2 entry and/or by
fostering degradation of the internalized D2DR-SARS-CoV-2 complex, which remains to
be confirmed.
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Figure 5. Representative images of combined immunofluorescence for D2DR and SARS-CoV-2 N
protein. The anti-replicative effects of dopamine (DA, 50 µM) and D2DR agonist quinpirole (10 µM)
at 48 h post-infection are associated with downregulation of D2DRs in either Uninfected (Mock,
Panel A) and SARS-CoV-2-Infected cells (Panel B). Compared with Uninfected Control cells (Panel A,
Control), SARS-CoV-2 produces a dramatic clustering of D2DRs both at the plasma membrane and
adjacent intracellular compartments, where an impressive co-localization with the SARS-CoV-2-N
protein occurs (Panel B, Control). On the other hand, administration of DA, similar to the D2DR
agonist, dramatically reduces D2DR staining leading to the formation of intracellular red puncta
in both Uninfected (DA, and D2DR Ago, Panel A), and SARS-CoV-2-Infected (DA, and D2DR Ago,
Panel B) cells. Such a scenario is not observed following D2DR antagonist administration in either
Uninfected (Mock), or SARS-CoV-2-infected cells (D2DR Ant, Panel A and Panel B, respectively). In
SARS-CoV-2 infected cells, the reduction in SARS-CoV-2-N protein staining that is produced by either
DA or the D2DR agonist (Panel B) goes along with a dramatic reduction of D2DR immunostaining
and a disruption of their co-localization. This is instead occluded by the administration of the D2DR
antagonist, whereby the co-localization between D2DR and N-SARS-CoV-2 protein is magnified, as
evident by the occurrence of both wide, overlapping areas and large intracellular puncta (D2DR Ant,
Panel B). Cells were incubated with primary antibodies (Mouse anti-D2DR B-10: sc-5303, 1:200, Santa
Cruz Biotechnology, Inc, Dallas, USA; Rabbit anti-N Nucleocapsid SARS-CoV-2 Antibody NR-53791,
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1:1000, obtained from Bei Resources, NIAID, NIH), and with secondary antibodies [Goat anti-mouse
Alexa Fluor 647 (ab150115), and Goat anti-rabbit Alexa Fluor 488 (ab150077), 1:500, abcam, Cambridge,
UK]. Coverslips were mounted on Superfrost glass slides using a mounting medium with DAPI
(Enzo Life Sciences, Milan, Italy). Confocal imaging was performed with a Leica TCS SP5 AOBS
microscope system using a 40X/1.30 oil immersion objective (Leica Microsystems, Wetzlar, Germany).
The images shown in the figures are representative results from independent experiments. Bars
correspond to 20 µM.

At first glance, no clear-cut correlation emerged between D1DR and SARS-CoV-2
staining patterns instead (Supplementary material, Figure S4). At a closer look, the D1DR
agonist enhanced D1DR staining, especially at the intracellular level, while the D1DR
antagonist produced an opposite effect, suggesting a potentially protective role for D1DR.
However, it appears hazardous either to draw any sound conclusions on the role of D1DRs,
as it emerged for D2DR, or hypothesize a phenomenon of agonist induced D1DR inter-
nalization and downregulation. In light of these considerations, we focused on D2DRs
as a major target underlying the robust antiviral effects of DA and D2DR agonists in or-
der to further examine potential links with innate immunity pathways in the frame of
SARS-CoV-2 infection.

3.4. The Antiviral Effect of DA and D2DR Agonist Is Associated with Upregulation of Type-I
Interferons and Downregulation of Pro-Inflammatory Mediators

In search of molecular pathways associated with the antiviral effect of DA and D2DR
agonists, we performed a transcriptional analysis of a wide variety of genes implicated in
innate immunity, including IFN signaling pathways, such as Type-I IFNs (IFNA, IFNB),
IFN-stimulating genes (ISGs, IRF3) and antiviral effectors (MX-A), along with inflammatory
cytokines and receptors which are known to be involved SARS-CoV-2 infection. These
include pro-inflammatory mediators IL-6, TNF-α, NLRP3/IL-1β, TLR4/HMGB1 pathway,
or anti-inflammatory mediators such as IL-4. Remarkably, within SARS-CoV-2 Infected
cells, both DA and the D2DR agonist produced a similar transcriptional profile which
was associated with a dramatic augmentation of Type-I IFNs and MX-A, while IRF3 was
only moderately enhanced. A remarkable reduction in the levels of pro-inflammatory
mediators NLRP3/IL-1β, and TLR4/HMGB1 pathways, as well as TNF-α and IL-6, was
also detected, while IL-4 was instead augmented by both compounds (Figure 6). Although
these data need to be confirmed at protein levels, they suggest that the antiviral effects of
DA and D2DR agonists are bound to the enhancement of Type-I IFNs, along with down-
regulation of NLRP3 inflammasome and Danger Associated Molecular Pattern (DAMP)
signaling pathways.
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overlapping transcriptional profile that includes potentiation of Type-I IFN response genes and
downregulation of pro-inflammatory pathways and cytokines. In detail, compared with Uninfected
Control (Mock), SARS-CoV-2 (Infected Control) increases the expression of IFNA, IFNB, MX-1,
HMGB1/TLR4, NLRP3/IL-1β, as well as IL-6 and IL-4. Instead, administration of DA to SARS-CoV-2
infected cells, similar to the D2DR agonist, markedly upregulates the expression of IFNA, IFNB, MX-1,
and to a lesser extent IRF3 compared with Infected Control, suggesting potentiation of innate immune
antiviral pathways. At the same time, DA, and the D2DR agonist downregulate HMGB1/TLR4,
NLRP3/IL-1β, and IL-6 while increasing IL-4 mRNA levels, suggesting the induction of an anti-
inflammatory profile. mRNA quantification was performed through real-time qPCR and calculated
by the 2−∆∆Ct equation. Results shown on the heatmap correspond to the mean ± SEM from at least
n = 3 independent experiments, each performed in triplicate. Quantified mean values are shown in
the table. # p < 0.05 vs. Uninfected Control (Mock), * p < 0.05 vs. Infected (SARS-CoV-2) Control.

3.5. Type-I Interferons Suppress SARS-CoV-2 Replication, Which Is Associated with
Downregulation of D2DRs and the Rescue of DA Synthetic Enzymes

Eventually, we sought to determine the molecular mechanisms bridging Type-I Inter-
feron (IFN) response and DA pathways in SARS-CoV-2 infection. In line with previous
evidence, administration of Type-I IFNs, especially IFN-β, dramatically reduced SARS-
CoV-2 replication (Figure 7), leading to nearly 100% inhibition at the dose of 100 IU at 48 h.
As shown by the MTT assay, neither IFN-α nor IFN-β at the dose of 100 IU/mL produced
any significant alterations in cell viability in either Mock- or SARS-CoV-2-infected cells
(Supplementary Figure S6).
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frame, it should be pointed out that, contrarily to D1DR, D2DR, and DDC, TH was only 
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Figure 7. Dose- and time-related effects of Type-I Interferons in SARS-CoV-2 replication. Adminis-
tration of Type-I Interferons (IFN-α, β, 10 and 100 IU/mL) dose-dependently inhibits SARS-CoV-2
replication in CaLu-3 cells. The strongest antiviral effect is observed for 100 IU/mL IFN-β, leading
to nearly 100% inhibition of viral replication at 24 and 48 h. SARS-CoV-2 was not detected in the
Uninfected Control (Mock). Results correspond to the absolute viral copy number of the SARS-CoV-2
N gene from cell supernatants that were quantified through a single-step, real-time, RT-qPCR by re-
ferring to a standard curve from RT-qPCR Ct values (IDT, Coralville, IA, USA). Results are presented
as mean ± SEM from at least n = 3 independent experiments, each performed in triplicate. # p < 0.05
vs. Uninfected Control (Mock); * p < 0.05 vs. Infected Control.
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Thus, we chose the dose of 100 IU/mL for both IFN-α and -β to examine their transcrip-
tional effects on the DA system’s targets. Remarkably, in SARS-CoV-2 infected cells, both
IFNs converged in strongly downregulating the expression of D2DRs, while D1DRs were
not significantly affected, strengthening the major role of D2DR in acting as a bridge in the
anti-SARS-CoV-2 effects of DA and Type-I IFNs (Figure 8). Noteworthy, when examining
the effects of IFNs upon DA synthetic and transport pathways, we disclosed two important
findings related to SARS-CoV-2-induced alterations at the level of the DA system within
human epithelial lung cells. Firstly, besides D1DR and D2DR, within CaLu-3 cells, we could
detect for the first time the mRNA expression of DA synthetic enzymes TH, and DDC, and
the DA transporter DAT. Remarkably, while SARS-CoV-2 infection strongly induced the
expression of the DAT along with D1DR and D2DR, it suppressed the expression of TH
while slightly downregulating DDC compared with Uninfected Control (Figure 8). The
expression of these genes in CaLu-3 cells is also supported by their representative melting
curves (Supplementary Figure S7). In this frame, it should be pointed out that, contrarily
to D1DR, D2DR, and DDC, TH was only moderately expressed at baseline (Uninfected
Control). Instead, DAT was very weakly expressed at baseline, while it was increased by
nearly 10-fold following SARS-CoV-2 infection (Figure 8), as also witnessed by the melting
peaks (Supplementary Figure S7). Thus, it is likely that the weaker baseline expression
of TH and DAT might contribute to magnifying the effects of SARS-CoV-2 upon TH and
DAT compared with DRs which are increased by 2-fold instead. This notwithstanding,
our data suggest that SARS-CoV-2 infection in the lung epithelium produces dramatic
alterations at the level of DA pathways, and CaLu-3 cells might represent a suitable model
to study these effects. The second remarkable point is that SARS-CoV-2-induced alterations
at the level of DA genes here examined were indeed reversed by Type-I IFNs (Figure 8).
In fact, while downregulating D2DR and DAT, IFNs rescued TH and DDC expression.
These data indicate broad effects of both SARS-CoV-2 and Type-I IFNs in DA-related path-
ways, including DA synthesis, and intracellular DA re-uptake, which in turn, are a key to
determining the extracellular availability, and subsequent effects of DA upon D1DR and
D2DR. In fact, the increase in DAT expression following SARS-CoV-2 infection as compared
with Uninfected (Mock) controls, might provide a rationale for the µM DA dosage that is
required to produce anti-SARS-CoV-2 effects within these cells.
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DDC. Treatment of SARS-CoV-2-Infected cells with Type-I Interferons (IFN-α, -β, 100 IU/mL) reduces
D2DR and DAT expression while potentiating TH and DDC expression in CaLu-3 cells. mRNA
quantification was performed through real-time qPCR and calculated by the 2−∆∆Ct equation. Results
are presented as mean ± SEM from at least n = 3 independent experiments, each performed in
triplicate. # p < 0.05 vs. Uninfected Control (Mock), * p < 0.05 vs. SARS-CoV-2-Infected Control
(SARS-CoV-2).

3.6. A549-hACE2 Lack D2DRs and Are Less Susceptible to Both SARS-CoV-2 Infection and
Type-IFN Treatment

When investigating the potential antiviral effects of DA in other cell lines, we made
a serendipitous finding which strengthened the hypothesis of a correlation among D2DR
expression, the effects of DA, SARS-CoV-2 susceptibility, and Type-I IFNs response. Indeed,
compared with CaLu-3 cells, the expression of D2DR in lung A549-hACE2 was barely
detectable, while D1DR was instead expressed to a higher extent (Figure 9A). Albeit the
exogenous expression of ACE2, such cells are less susceptible to SARS-CoV-2 infection at
comparable MOI with respect to CaLu-3 cells, and remarkably, they are also less sensitive
to administration of either DA (50 µM, Figure 9B) or Type-I IFNs (100 UI/mL, Figure 9C).
In fact, contrarily to CaLu-3 cells whereby IFNs almost completely abolish viral replication,
in A549-hACE2 they produce a rough 50 and 70% inhibition of SARS-CoV-2 replication at
24 and 48 h, respectively (Figure 9C). Again, SARS-CoV-2-infected A549-hACE2 cells were
refractory to the effects of DA, strengthening the hypothesis that DA acts mainly through
D2DR; instead, the D1DR agonist exerted a modest anti-replicative effect, whilst the D1DR
antagonist significantly favored SARS-CoV-2 replication, suggesting a potentially protective
role for D1DRs (Figure 9B). This strengthens the hypothesis that D2DRs play a major role
in influencing the susceptibility to both SARS-CoV-2 infection and Type-I IFNs response.
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expressions of D1DR and D2DR in A549-hACE2 compared with Calu-3 cells in either Mock-infected
and SARS-CoV-2 infected cells at 48 h post-infection. At baseline (Uninfected, Mock), D1DR expres-
sion is higher in A549-hACE2 cells while D2DR is almost undetectable compared with CaLu-3 cells.
SARS-CoV-2 (Infected Control) increases D1DR expression by 2-fold and 1.5-fold compared with
Uninfected Control in CaLu-3, and A549-hACE2 cells, respectively, while a 2-fold increase in D2DR
expression is observed only in CaLu-3 cells. In fact, even following SARS-CoV-2 infection, D2DR
expression remains almost undetectable in A549-ACE2 cells. mRNA quantification was performed
through real-time qPCR and calculated by the 2−∆∆Ct equation. Results are presented as mean ± SEM
from at least n = 3 independent experiments, each performed in triplicate. * p < 0.05. (B) Effect of
DA and DR modulators on SARS-CoV-2 replication within A549-hACE2 cells. A549-hACE2 cells
are refractory to the effects of DA 50 µM, while the D1DR agonist 10 µM decreases SARS-CoV-2
replication by roughly 30 and 40%, at 24 and 48 h, respectively. On the other hand, the D1DR
antagonist 10 µM significantly favors SARS-CoV-2 replication at both 24 and 48 h. SARS-CoV-2
was not detected in the Uninfected Control (Mock). Results correspond to the absolute viral copy
number of the SARS-CoV-2 N gene from cell supernatants that were quantified through a single-step,
real-time, RT-qPCR by referring to a standard curve from RT-qPCR Ct values (IDT, Coralville, IA,
USA). Results are presented as mean ± SEM from at least n = 3 independent experiments, each
performed in triplicate. # p < 0.05 vs. Uninfected Control (Mock); * p < 0.05 vs. Infected Control
(SARS-CoV-2). (C) Effects of Type-I Interferons on SARS-CoV-2 replication within A549-hACE2 cells.
In A549-hACE2 cells, Type-I IFNs produce a rough 50 and 70% inhibition of SARS-CoV-2 replication
at 24 and 48 h, respectively. SARS-CoV-2 was not detected in the Uninfected Control (Mock). Results
correspond to the absolute viral copy number of the SARS-CoV-2 N gene from cell supernatants
that were quantified through a single-step, real-time, RT-qPCR by referring to a standard curve
from RT-qPCR Ct values (IDT, Coralville, IA, USA). Results are presented as mean ± SEM from at
least n = 3 independent experiments, each performed in triplicate. # p < 0.05 vs. Uninfected Control
(Mock); * p < 0.05 vs. Infected Control (SARS-CoV-2).

4. Discussion and Conclusions

Alterations of the systemic or local DA system occur in both experimental models and
patients with various inflammatory diseases [9,10,26]. Beyond the CNS, DA synthetic en-
zymes as well as DRs are expressed in a variety of organs and immune cell subpopulations,
where they modulate pathological processes by interacting with a plethora of inflammatory
mediators and pathways [6,10,27]. For instance, DA acting through DRs modulates the
innate immune response to viral infections including HIV, Ebola Virus, and the Japanese
Encephalitis Virus [27–29]. The latter also exploits DA transduction pathways to increase
neuronal susceptibility to infection.

In the lung, the major site of SARS-CoV-2 infection, DRs are expressed by alveolar
epithelial cells, lung macrophages, and pulmonary terminal nerves. Thus, it is not sur-
prising that DA in the lungs modulates a variety of physiological functions, including
ventilation, pulmonary circulation, bronchial diameter, and water clearance, meanwhile
shaping immune responses [12,13,27]. Expression of D1DR and D2DR has been already
detected in human epithelial lung cell lines CaLu-3 and CaLu-6 [30,31]. To our knowl-
edge, none of the other DA-related targets (DDC, TH, DAT) has been ever investigated
in CaLu cells specifically, though their expressions are reported in the lungs from either
human subjects or experimental animals [13,26,30,32–34]. Here, within CaLu-3 cells, we
could detect the expression of both D1DR and D2DR, as well as DA synthetic enzymes,
which makes them a suitable model to investigate SARS-CoV-2-induced alterations in the
DA system. Since the DA system in the lungs is maximally developed at birth to cope
with lung water clearance [13], it is likely that CaLu-3 cells might have retained some
neuroepithelial/neuroendocrine properties due to their tumoral, stemness-like properties.

Although several hypotheses have been put forward on the role of DA in the frame
of COVID-19, especially in relation to parkinsonism [1,4,35], to our knowledge this is
the first report documenting a beneficial role of DA in SARS-CoV-2 infection within hu-
man epithelial lung cells. Although both D1DR and D2DR were enhanced following
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SARS-CoV-2 infection, downregulation of D2DR but D1DR emerged as the convergent
mechanism underlying the anti-SARS-CoV-2 effects produced by DA, DR agonists, as well
as Type-I IFNs.

It should be pointed out that the doses of DA and DR modulators that display sig-
nificant effects in SARS-CoV-2 replication in the present study are likely to surpass the
physiological concentrations detected in the blood and periphery [6]. While DA concen-
trations in synapses may peak in the µM range [36], DA concentrations detected in the
periphery are extremely variable among different organs and species, as extensively re-
viewed elsewhere [6]. However, high DA concentrations are detected in the rodent kidney
and ruminant lungs, ranging from 10−4 M to 10−8 M, and from 10−5 M to 10−8 M, respec-
tively [6]. In the human lungs, DA concentrations are above those in the adrenal glands,
the main peripheral source of DA, though data from human subjects remain scarce [6,13].
In line with our results, the antiviral activity of other indirect DA agonists (amantadine)
has been recently reported to occur at µM concentrations (between 83 and 119 µM) in the
frame of SARs-CoV-2 infection in vitro [17].

Several potential explanations for this phenomenon exist. Firstly, the presence of the
DA transporter DAT, which is remarkably increased here following SARS-CoV-2 infection
in CaLu-3 cells, may contribute to influencing the extracellular availability of DA to exert
its effects upon DRs.

Again, DA and D1/D2DR agonist doses in the micromolar range (10–100 µM) may
be required to produce specific effects that might be relevant for SARS-CoV-2 infection
as well. These include inhibition of systemic inflammation through downregulation of
pro-inflammatory cytokines and NLRP3 as documented within various cell types, as well
as liquid lung clearance through modulation of ion channel activity, as documented in
alveolar and bronchial epithelial cells both in vitro and in vivo [5,13,32,37,38]. The high, yet
non-toxic DA concentrations needed for such effects, similar to those required for inhibition
of SARS-CoV-2 replication in our study, might be due to the instability of DA [5]. In fact, in
both cases, these beneficial effects are observed when a sub-chronic, rather than acute DA
administration protocol in the µM range is employed.

Eventually, DA as well as DR agonists at saturating µM doses may be required
to induce long-lasting desensitization and internalization of DRs. Indeed, highlighting
the fact that agonist-induced GPCR internalization is both a dose and time-dependent,
and cell-specific event [24,39,40], a plethora of studies documented receptor internaliza-
tion and downregulation following administration of DA and DR modulators in the µM
range [40–44]. This might explain why in the present study DA produces a remarkable
antiviral effect overlapping with that yielded by the D2DR agonist and Type-I IFNs only
at doses above 10 µM. Furthermore, D2DRs possess 10- to 100-fold greater affinity to DA
compared with D1DRs, which supports the hypothesis that the robust antiviral effect that
occurs above the 10 µM DA dose, is mostly related to agonist-induced downregulation
of D2DR. Again, downregulation of the downstream D2DR effector GSK3-β supports
this hypothesis. Indeed, downregulation or inhibition of GSK3-β was recently shown
to reduce SARS-CoV-2 replication [45], strengthening the potential key role of D2DRs in
SARS-CoV-2 infection.

Since D2DR antagonists occluded the antiviral effect of DA, it is likely that agonist-
induced downregulation rather than the mere blockade of D2DR activity is key to halting
SARS-CoV-2 replication. This is in line with both pioneer and recent studies indicating that
agonist binding to GPCRs triggers transduction cascades which foster receptor signaling ter-
mination and their downregulation at both mRNA and protein levels [22–25,39,40,43,44,46].
In the case of DA specifically, the latter event was recently shown to involve agonist-induced
activation of degradation pathways, which is occluded by D2DR antagonists instead [25].
Thus, asides from, or along with agonist-induced mechanisms affecting D2DR mRNA
transcription [23], endosomal/autophagy pathways are triggered by DA or D2DR agonists,
with D2-like DRs being more sensitive to their endogenous ligand-induced degradation
compared with D1-like DRs [25], which is in line with our results.
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Nevertheless, the role of D1DRs remains unclear. In this frame, it is worth mentioning
that D1DRs feature different internalization fates and recycling dynamics compared with
D2DRs [25,47]. While agonist-induced internalization of D2DR is rapid and may last from
hours to days involving degradation of endocytosed receptors, D1DR internalization is
an extremely rapid event, with D1DRs skewing degradation pathways. This is confirmed
by their ability to signal from endosomal intermediates [47]. Both the narrow timeframe
of D1DR internalization and their rapid recycling dynamics, incompatibly with the wide
timeframe which is necessary for effective SARS-CoV-2 replication, are expected to impede
the ready detection of changes related to D1DR receptor abundance following agonist
treatments. Since D1DR antagonists could reverse the anti-replicative effects of DA while
weakening D1DR immunostaining in CaLu-3 cells, it is likely that the increase observed at
D1DR levels following SARS-CoV-2 infection represents a compensatory cytoprotective
response. Again, the pro-viral effect of the D1DR antagonist in A549-hACE2 supports
their protective role. Nonetheless, further investigations through tailored methodological
approaches, such as radioligand binding assay, are needed to clarify the specific involve-
ment of DRs in SARS-CoV-2 infection. In this frame, we cannot exclude that besides
specific effects on D2DRs, the antiviral effects of DA and DR modulators may be bound, at
least in part, to adenosine, norepinephrine, and serotonin pathways, which remain to be
investigated as well.

Although we could not detect significant changes at the level of DDC mRNA following
SARS-CoV-2 infection, the antiviral effect of either DA, DR agonists, and Type-I IFNs was
associated with a remarkable increase in TH and DDC expression. This indirectly suggests
that SARS-CoV-2 might affect DA synthesis, as previously documented in non-neuronal
cells [2], while Type-I IFNs are able to reverse such an effect. Intriguingly, DDC expression
is decreased in the lungs of subjects with idiopathic pulmonary fibrosis [26], which in
turn, is associated with both COVID-19 susceptibility and severity, suggesting a potentially
protective role for DA signaling. Again, in this frame, it is likely that D2DR downregulation
represents the convergent mechanism through which Type-I IFNs rescue TH and DDC
expression, and potentially, DA synthesis. In neuronal cells within the ventral tegmental
area, D2DR auto-receptors are known to exert an inhibitory tone on DA synthesis and
release while accelerating DA reuptake through the DAT [48]. Following the release, DA
activates these auto-receptors to decrease the probability of an excess DA release due to
subsequent presynaptic stimulation, which is a rapid event generally lasting up to several
seconds. Such an event is followed by a mechanism involving auto-receptor desensitization
and downregulation, a form of plasticity that promotes burst firing in DA neurons [48].
Thus, D2DR downregulation, as observed in the present study following sub-chronic
exposure to DA, DA agonist, or IFNs, is expected to rescue DA synthetic pathways, which
remains to be confirmed in CaLu-3 cells.

Intriguingly, administration of Type-I IFNs, besides upregulating DDC and TH en-
zymes that were downregulated by SARS-CoV-2, was able to downregulate the expression
of the DAT, which was instead upregulated by SARS-CoV-2. This suggests that, while
increasing DA synthesis, IFNs may increase the availability of extracellular DA to act
via DRs. In turn, DA acting on D2DRs may trigger a rapid transduction cascade which
fosters induction of IFN-stimulating genes (ISGs) and transcription of Type-I IFNs, fol-
lowed by downregulation of D2DRs. These events may eventually contribute to hindering
SARS-CoV-2 infection while restraining hyper-inflammation to limit tissue damage. In
fact, DA, similar to the D2DR agonist was able to downregulate key pro-inflammatory
mediators that are also implicated in COVID-19 severity, including IL-6, TNF-α, and
NLRP3/IL-1b, TRL4/HMGB1 pathways. Besides activation of TLR4 by SARS-CoV-2-
released DAMPs such as HMGB1, TLR4 has been predicted to own strong binding affinity
to the SARS-CoV-2 spike protein directly. Thus, COVID-19 severity is bound to an enhance-
ment of TLR4-mediated inflammatory signaling, including the release of TNF-α and other
pro-inflammatory cytokines [49–52]. These events also instigate NLRP3 inflammasome
activation, eventually causing an intensely exacerbated immune response due to cytokine
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storm in the host’s lungs, which may lead to multiple organ failure [53]. As such, targeting
the TLR4/HMGB1 and NLRP3 inflammasome/IL-1β axis may be beneficial in the frame of
COVID-19 [50,54]. Our results are in line with previous evidence documenting that DA
inhibits NLRP3 inflammasome by increasing its ubiquitination and degradation, which has
been attributed to either D1DR or D2DR pathways [5,55].

Adding to previous evidence on the beneficial role of Type-I IFNs in SARS-CoV-2
replication [56–60] here we document that such effects are bound to the rescue of alterations
in DA pathways. The link between Type-I IFNs and DA system integrity is supported by
evidence that the lack of IFN-β signaling in murine models causes defective DA signaling,
reduction of DA neurons, and movement disorders reminiscent of PD, which are associated
with deficits in degradation pathways [61]. This underlines the need for further studies
investigating the role of the endocytic/autophagy-lysosomal pathways in the mechanisms
bridging D2DR and IFN responses, in as much as they are modulated downstream of DA
receptors and modulate in turn D2DR internalization, meanwhile being involved in Type-I
IFN response and SARS-CoV-2 replication [7,25,62].

It is remarkable that the scenario produced by SARS-CoV-2 at the level of DA pathways
documented in the present study is reminiscent of PD pathogenesis, whereby the loss of
DA weakens the direct pathway mediated by D1DRs while strengthening the indirect
pathway mediated by D2DRs. This eventually leads to elevated inhibitory outflow from
the basal ganglia and consequent movement disorders. Should this SARS-CoV-2-induced
scenario be confirmed to operate in neuronal cells, it would contribute to explaining in
part the mechanisms through which the virus causes neurological manifestations that are
reminiscent of parkinsonism. Again, this same mechanism might explain the occurrence of
olfactory disturbances as a common feature in early parkinsonism and COVID-19, since
D2DR was recently documented to induce a tonic inhibition on olfactory abilities within
mice olfactory neurons [63]. At the same time, D2DR agonists improve olfactory function
and neuroinflammatory injury in olfactory bulb neurons through inhibition of TLR4, IL-1β,
and IL-6 [64]. This is key as, similar to the lungs, the olfactory bulb represents both a source
of DA pathways and a potential gate for SARS-CoV-2 entry and subsequent propagation in
the CNS. Currently, DA receptor agonists are the first choice of treatment for PD patients,
which delays the onset of L-DOPA therapy [65]. The DA receptor agonists are also used in
a combination with L-DOPA to treat motor complications in advanced stages of PD [65].
This might have important implications in the treatment of PD patients diagnosed with
COVID-19, given the antiviral effect of DR agonists documented in the present study.

In summary, although the specific molecular and cellular mechanisms bridging DA
activity and regulation of IFN pathways remain to be elucidated, we disclose a previously
unappreciated correlation among DA and Type-I IFNs which may be disrupted by SARS-
CoV-2 for host cell invasion and replication. In light of the multisystem effects of DA, our
findings are expected to pave the way for a novel stream of research focused on the role of
the DA system in COVID-19 multi-organ pathology. We firmly believe that this deserves
to be investigated in other experimental models and cell types, hopefully contributing to
uncovering novel therapeutic targets against SARS-CoV-2.
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//www.mdpi.com/article/10.3390/cells11101691/s1, Table S1: Primer sequences employed in the
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doses; Figure S2: MTT cell viability at 48 h post-infection following treatment with D1DR or D2DR
agonist/antagonist (10 and 50 µM) alone and in combination with 50 µM DA; Figure S3: Trypan Blue
cell exclusion assay at 48 h post-infection following treatment with 50 µM DA, or D1DR or D2DR
agonist/antagonist 10 µM, either alone and in combination with 50 µM DA. Figure S4: Representative
images of combined immunofluorescence for D1DR and SARS-CoV-2 S protein at 48 h post-infection;
Figure S5: Immunofluorescence negative controls. Figure S6: MTT cell viability at 48 h post- SARS-
CoV-2 infection following treatment with Type-I IFNs at 10 and 100 IU/mL; Figure S7: Representative
qPCR melting curves for the expression of the DA-related genes TH, DAT, DDC, D1DR, and D2DR in
CaLu-3 cells at 48 h post-infection.
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Abbreviations

CREB cAMP Response Element-Binding protein
D1DR D1 Dopamine Receptor
D2DR D2 Dopamine Receptor
DA Dopamine
DAT Dopamine Transporter
DDC L-Dopa-Decarboxylase
GSK3-β Glycogen Synthase Kinase 3-beta
HMGB1 High-Mobility Group Box 1
IFN Interferon
IL-1b Interleukin 1 beta
IL-6 Interleukin 6
IRF3 Interferon Regulatory Factor 3
MAPK3/ERK1 Mitogen-activated Protein Kinase 3
MOI Multiplicity of Infection
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
MX-A Human myxovirus resistance protein 1
NLRP3 NLR family pyrin domain containing 3 Inflammasome
PKA cAMP-dependent Protein Kinase A
SARS-CoV-2 Severe Acute Respiratory Syndrome-Coronavirus-2
TCID50 50% Tissue Culture Infectious Dose
TH Tyrosine Hydroxylase
TLR4 Toll-like Receptor 4
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