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Abstract: Colorectal cancer is the second leading cause of cancer death globally. The gold standard for
locally advanced rectal cancer (LARC) nowadays is preoperative concurrent chemoradiation (CCRT).
Approximately three quarters of LARC patients do not achieve pathological complete response and
hence suffer from relapse, metastases and inevitable death. The exploration of trustworthy and timely
biomarkers for CCRT response is urgently called for. This review focused upon a broad spectrum
of biomarkers, including circulating tumor cells, DNA, RNA, oncogenes, tumor suppressor genes,
epigenetics, impaired DNA mismatch repair, patient-derived xenografts, in vitro tumor organoids,
immunity and microbiomes. Utilizing proper biomarkers can assist in categorizing appropriate
patients by the most efficient treatment modality with the best outcome and accompanied by minimal
side effects. The purpose of this review is to inspect and analyze accessible data in order to fully
realize the promise of precision oncology for rectal cancer patients.

Keywords: CCRT; rectal cancer; biomarker; pCR; neoadjuvant therapy

1. Introduction

Colorectal cancer (CRC) is the second leading cause of cancer death (9.4%) and the
third most commonly diagnosed cancer (10.0%) in the latest global cancer statistics using
the GLOBOCAN 2020 estimates of cancer incidence and mortality by the International
Agency for Research on Cancer [1]. Neoadjuvant Concurrent chemoradiation (CCRT)
before surgical intervention is an imperative component in the current standard treatment
for locally advanced rectal cancer (LARC) [2–5]. However, the challenge that a wide
variety of treatment responses occurs after similar standardized management remains [6,7].
Approximately 15–27% of patients achieve complete pathological response (pCR—ypT0N0),
whereas about three-quarters of patients do not and thus have higher rates of relapse and
death [8]. A mounting body of evidence strongly supports the paramount importance of
biomarkers to provide individually-tailored therapeutic recommendations [9–11]; however,
until recently, all patients requiring CCRT have had to balance the benefits and potential
risks of toxicity due to lack of established and reliable predictive markers in clinical use.
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Some studies have highlighted various biomarkers that could be considered in reach-
ing the best treatment decisions for each patient on an individual basis [12–15], although
evidence-based research on the role of biomarkers in predicting response to neoadjuvant
CCRT in patients with LARC remains scarce. The European Society for Medical Oncology
(ESMO) consensus guidelines consider downgrading in Tumor or Nodal classification as
a prognostic factor of favorable outcome rather than a predictive biomarker for further
adjuvant treatment [16]. Controversial viewpoints enable further clarification, and the
purpose of this review is to scrutinize the most updated data and analyze not only novel
biomarkers but comprehensive and timely methods in clinical practice as well. This ought
to help minimize the potential barriers and fully realize the promise of precision oncology
for cancer patients. In this review, we will specifically summarize the convenience and
efficacy of available biomarkers regarding tumor response after neoadjuvant CCRT and
not survival, which is multifactorially influenced.

2. Circulating Tumor Cells

In 1955, Engell published a clinical study on the occurrence of cancer cells in the
peripheral blood and in venous blood draining of the tumor area during operation [17];
following this, the presence of circulating tumor cells (CTCs) was then documented [18].
Moreover, real-time quantitative polymerase chain reaction (PCR) and high-sensitivity
colorimetric membrane array-based multigene biomarker assays can detect CTCs in the
peripheral blood [19–21]. Studies a decade ago showed MicroRNA (miRNA) is significantly
elevated in the plasma of patients with CRC and can be a potential marker for screening.
MiR-17-3p and miR-92 were significantly elevated in the patients, and the plasma levels of
these miRNAs were reduced after surgery [22,23].

Sun et al. reported the advantage of detecting CTC level via EpCAM magnetic bead-
based enrichment combined with cytometric identification over serum carcinoembryonic
antigen (CEA) for predicting treatment responses in rectal cancer [24], finding a close corre-
lation between CTC levels and treatment outcomes [24]. In addition, they measured the
concentration, KRAS mutation and O6-methylguanine-DNA methyltransferase (MGMT)
promoter methylation status of cell-free DNA by PCR [25]. The 400-base pair (bp) DNA
concentration and 400-/100-bp DNA ratio dropped notably after CCRT in the good respon-
ders, and higher MGMT promoter methylation status at baseline DNA was associated with
better tumor response [25].

Tumor regression grading (TRG) was defined as follows: grade 0, no regression;
grade 1, dominant tumor mass with obvious fibrosis and/or vasculopathy; grade 2, dom-
inantly fibrotic changes with few tumor cells or groups (easy to find); grade 3, very few
tumor cells (difficult to find microscopically) in fibrotic tissue with or without mucous
substance; grade 4, no tumor cells, only fibrotic mass (total regression or response). Base-
line CTC counts of responders with tumor regression grade (TRG) classifications 3–4 were
appreciably superior to those of non-responders (TRG0-2) (44.50 ± 11.94 vs. 37.67 ± 15.45,
p = 0.012) [26], and the post-CCRT CTC counts of responders were extensively lower than
those of non-responders (3.61 ± 2.90 vs. 12.08 ± 7.40, p < 0.001). The results of multivariate
analyses indicated that post-CRT CTC counts and ∆%CTC (percentage difference in CTC
counts between baseline and post-CCRT) were significantly and independently related to
CCRT response [26].

Furthermore, in a prospective single institutional study by Magni et al., there was
a statistically noteworthy association between changes of CTC number from before to
after neoadjuvant chemotherapy, according to pathological responses in their cohort of
cT3–4 and/or N+ rectal cancer patients treated with neoadjuvant CCRT (p = 0.02) [27]. To
summarize, the predictability of CTCs might require more (and larger) prospective research
studies in order to authenticate its credibility.
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3. DNA and RNA

However, Tie et al. reported that the conversion of circulating tumor DNA (ctDNA) sta-
tus from positive at baseline to negative at four to six weeks after CCRT was not correlated
with pCR (pCR vs. non-pCR, 95% vs. 88%, p = 0.46) in a prospective study [8], although
the latest study involving 29 patients with LARC confirmed that ctDNA predicts pCR.
The overall margin-negative, node-negative resection rate was 73% and was considerably
higher among patients with undetectable preoperative ctDNA (n = 17, 88%) versus patients
with measurable preoperative ctDNA (n = 9, 44%; p = 0.028) [28]. Table 1 summarized
five LARC studies of CTCs and ctDNA characteristics regarding tumor response after
neoadjuvant treatment.

Table 1. Human studies of circulating tumor cells characteristics regarding tumor response after
neoadjuvant treatment for locally advanced rectal cancer.

Author (Reference No.) Study Year CTC Type Correlation with pCR or TRG Patient Number

Tie et al. [8] * Prospective 2019 ctDNA NO n = 159
Sun et al. [25] 2013 400-/100-bp DNA ratio YES n = 103
Sun et al. [26] 2014 ∆%CTC YES n = 34

Magni et al. [27] * Prospective 2014 ∆CTC YES n = 85
McDuff et al. [28] 2021 ctDNA YES n = 29

Abbreviations: TRG: tumor regression grading; ctDNA: circulating tumor DNA; CTC: circulating tumor cell;
pCR: pathological complete response; ∆%CTC: percentage difference in CTC counts between baseline and
post-concurrent chemoradiation. * Prospective.

The gene interaction network and module analysis of differential expression mRNAs
contained in the lncRNA-miRNA-mRNA network identified five hub genes (KRAS, PDPK1,
PPP2R5C, PPP2R1B and YES1) closely associated with CCRT response in LARC [29]. Three
lncRNA-based signatures: lnc-KLF7-1, lnc-MAB21L2-1 and LINC00324 were found to be
the most promising variable subset for classification, with overall sensitivity and specificity
of 0.91 and 0.94, respectively, and with an AUC of our ROC curve = 0.93 [30]. Palma et al.
used the Human WG CodeLink microarray platform and demonstrated that high Gng4,
c-Myc, Pola1 and Rrm1 mRNA expression levels were significant predictors for CCRT
response in LARC patients (p < 0.05) [31]. Aberrant DNA methylation, specifically the
cytosine-phosphate-guanine (CpG) island methylator phenotype (CIMP), has been dis-
played in CRC [32]. Some researchers proposed a novel prophetic tool based on three CpGs
potentially useful for pretreatment screening of LARC patients and steering the selection
of treatment modality [33]. Lately, MicroRNA-130a (miR-130a) has been spectacularly up-
regulated in radiosensitive rectal cancer cells where overexpression of miR-130a promotes
rectal cancer cell radiosensitivity by targeting SOX4 [34].

4. Oncogenes and Tumor Suppressors

The pursuit of biomarkers to differentiate responsive patients is to avoid drastic
procedures causing inadvertent iatrogenic complications. Genomic data pertaining to
oncogenes and tumor suppressors have long been considered potential gizmos to select
better-responsive patients for less radical strategies. Modern technology enables us to
profile over five hundred genes to deliver a comprehensive genomic profile at a time. With
access to cancer profiles that account for the unique molecular profile and biology of rectal
cancer in an individual person, researchers have aimed at finding the optimal predictive
biomarkers. The drug 5-FU is catabolized in vivo via the dihydrothymine dehydrogenase
(DPYD/DPD) [35]. Huang et al. tested multiple genetic biomarkers (chip), including DPYD,
TYMS, TYMP, TK1 and TK2, at a cutoff value for three positive genes, and a sensitivity of
89.7% and a specificity of 81% were obtained (AUC: 0.915; 95% CI: 0.840–0.991) [36]. Nega-
tive data on chips significantly correlated to poor neoadjuvant CCRT responses (TRG 0–1)
(p = 0.014, hazard ratio: 22.704, 95% CI: 3.055–235.448 in multivariate analysis) [36].
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Mutation of TP53 was most frequently detected in stage III patients with tumorigenic-
ity [37]. More than two decades ago, Adell et al. proposed p53 as an indicator for the effect
of preoperative radiotherapy (RT) of rectal cancer using data from the Southeast Swedish
Health Care region included in the Swedish rectal cancer trial between 1987–1990 [38]. Later,
Kim et al. discovered that immunohistochemical expressions of p53 and BCL-2 had no corre-
lation with tumor response after CCRT, but Ki-67 labeling might be a useful parameter for
radiosensitivity [39]. In light of the inconsistent results regarding p53 status and the response
to neoadjuvant CCRT, a meta-analysis that included 1830 cases documented the wild-type
form of p53 status (low expression of p53 protein and/or wild-type p53 gene) being associated
with pathologic responses in rectal cancer patients who received neoadjuvant radiation-based
therapy (good response: risk ratio [RR] = 1.30; 95% confidence intervals [CI] = 1.14–1.49;
p < 0.001; complete response RR= 1.65; 95% CI = 1.19–2.30; p = 0.003; poor response RR= 0.85;
95% CI = 0.75–0.96; p = 0.007) [40].

Tumors with TP53 mutations tend to accumulate through CCRT [41]. A pilot study by
Douglas et al. discerned that patients with partial response (PR) showed mutations in four
genes that were not mutated in complete responders (CR): KDM6A, ABL1, DAXXZBTB22
and KRAS [42]. Ten genes were mutated only in the CR group, including ARID1A, PMS2,
JAK1, CREBBP, MTOR, RB1, PRKAR1A, FBXW7, ATM C11orf65 and KMT2D, with specific
discriminating variants noted in DMNT3A, KDM6A, MTOR, APC and TP53 [42].

The mammalian Rat Sarcoma Viral Oncogene Homolog (Ras) gene family consists of
the Harvey, Kirsten Ras genes and the Neuroblastoma RAS Viral Oncogene Homolog (NRas)
gene. HRAS, KRAS and NRAS are the most common oncogenes in human cancer [43].
The KRAS gene is the most frequently mutated (about 22% in all human tumors) among
the three isoforms, followed by NRAS (8%) and HRAS (3%) [44]. KRAS mutations have
been detected in 35–45% of all patients with CRC [45–47], whereas NRAS and HRAS
were only found in less than 5%. A retrospective observational study of Japanese patients
with metastatic CRC found that among 264 patients, mutations in KRAS exon 2, KRAS
exons 3 or 4 and NRAS were detected in 34.1%, 3.8% and 4.2% of patients, respectively [48].
Another American study performed molecular testing on 1286 consecutive metastatic CRC
from 1271 patients as part of routine clinical care, and RAS amplification was detected in
and included: KRAS, NRAS and HRAS for 15, 5 and 2 cases, respectively [49]. A high
neutrophils-platelets score (NPS) (OR = 10.52; 95% CI = 1.34–82.6; p = 0.025) and KRAS
mutated cases (OR = 5.49; 95% CI = 1.06–28.4; p = 0.042) were identified as independent
predictive factors of poor response to neoadjuvant CCRT in a multivariate analysis with
non-metastatic rectal cancer [50].

In addition to TP53, Luna-Pérez et al. reported that specific KRAS mutations are
an indicator of tumor response in patients with LARC treated with preoperative CCRT
and surgery [51]. KRAS is a protein downstream of the epidermal growth factor receptor
(EGFR; also known as HER1). The rate of KRAS mutation was reduced considerably after
CCRT, whether the patients had a good or poor response [25]. Another study showed that
KRAS mutation was independently related to a lower pCR rate in patients with LARC after
adjusting for variations in the neoadjuvant regimen [52].

Some authors had different results. Davies et al. reported that Phospho-ERK and
AKT status, but not KRAS mutation status, were associated with clinical outcomes in
LARC treated with CCRT [53]. PI3K/AKT/mTOR is an intracellular-signaling pathway
regulating cell cycles. There is ample evidence regarding PI3K/AKT/mTOR pathway
inhibitors as improving radiotherapy response in rectal cancer but not so much in clinical
practice at present [54]. Chow et al. considered that KRAS and combined KRAS/TP53
mutations in LARC were independently associated with poor pCR after neoadjuvant CCRT
in a retrospective analysis of 229 pretreatment biopsies [52]. The early detection of CTCs
with KRAS mutation might guide therapy in certain patients [55].

Some studies have revealed many discriminating genes that could be used for de-
piction of CCRT response [42,56–58], and more recently, the highest accuracy rate (89.1%)
has been displayed by using four genes: LRRIQ3, FRMD3, SAMD5 and TMC7, with a
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predictive accuracy rate of 81.3% [59]. DNAJC12 is a member of the HSP40/DNAJ family
that was revealed to be a potential biomarker in a study conducted with 172 patients as
high expression of DNAJC12 was notably associated with inferior TRG (p = 0.009) [60].
The SMAD3 gene is involved in the cytoskeleton remodeling pathway [61]. A multivariate
analysis showed that phosphorylated SMAD3 overexpression correlated to poor neoadju-
vant CCRT responses (p = 0.015; OR 7.218; 95% CI 1.479–35.229), and pathological TRG of
0–1 was an independent predictor of postoperative relapse (p = 0.021; OR 5.452; 95% CI
1.286–23.113) [61].

Excision repair cross-complementing (ERCC) genes encode proteins to remove DNA
lesions and maintain chromosome stability [62]. In this complex DNA repair mechanism,
ERCC overexpression was associated with the poor response of neoadjuvant CCRT in
rectal cancer [62,63]. Apoptosis inducers (lumican, thrombospondin 2, and galectin-1)
have been proven to have higher expression in responders, whereas apoptosis inhibitors
(cyclophilin 40 and glutathione peroxidase) have higher expression in non-responders after
CCRT [56]. Another study identified 95 genes displaying differential expression between
PR and CR [64]. He et al. determined that high expression of Regenerating Gene Type
IV (REG4) was the most significantly associated gene with CCRT resistance [65]. Table 2
summarizes the above studies.

Table 2. Molecular genetic markers: Oncogenes and tumor suppressors regarding tumor response
after neoadjuvant treatment for locally advanced rectal cancer.

Author (Reference No.) Study Year Genes Patient Number

Huang et al. [30] 2013 DPYD, TYMS, TYMP, TK1 and TK2 n = 60

Kim et al. [33] 2001 Ki-67 n = 23

Chen et al. [34] 2012 p53 n = 1830

Douglas et al. [36] 2020
ARID1A, PMS2, JAK1, CREBBP, MTOR,

RB1, PRKAR1A, FBXW7, ATM
C11orf65 and KMT2D

n = 17

Luna-Pérez et al. [45] 2000 KRAS n = 37

Chow et al. [46] 2016 KRAS n = 229

Davies et al. [47] 2011 Phospho-ERK, AKT n = 70

Li et al. [50] 2019 KRAS, PDPK1, PPP2R5C,
PPP2R1B and YES1 n = 6

Watanabe et al. [55] 2014 LRRIQ3, FRMD3, SAMD5 and TMC7 n = 52

He et al. [56] 2015 DNAJC12 n = 172

Huang et al. [57] 2015 SMAD3 n = 86

Huang et al. [58] 2020 ERCC n = 20

Huang et al. [59] 2017 ERCC n = 86

Kim et al. [60] 2007 95 genes n = 46

He et al. [61] 2014 REG4 n = 172

5. Epigenetics-Gene Methylation Transcriptome/Epigenome

Various types of epigenetic processes have been identified: methylation, acetyla-
tion, phosphorylation, ubiquitylation and sumoylation. In 1983, Feinberg and Vogelstein
originally found that CRC had less DNA methylation than normal tissue from the same
patients [66]. Analysis of the association between methylation and response to therapy
in tumor samples showed that only TIMP3 gene methylation status differed significantly
within the four TRG classes (ANOVA, p < 0.05) [67].

In terms of the fibroblast growth factor/fibroblast growth factor receptor (FGFR) sig-
naling pathway, scientists have also performed experiments to better excel in grasping its
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core function. The mammalian fibroblast growth factor (FGF) exerts its actions through
four vastly conserved transmembrane tyrosine kinase receptors, including FGFR1, FGFR2,
FGFR3 and FGFR4. This signaling pathway controls cellular processes in different frame-
works, including proliferation, differentiation, survival and motility. High expression of
FGFR2 appears significantly linked to inferior TRG (p < 0.001) [68].

6. Impaired DNA Mismatch Repair

The exquisite DNA in our bodies may encounter impaired DNA mismatch repair
(MMR) where such deficiency is a replication error status that can result in microsatellite
instability (MSI). The 5-fluorouracil response is strongly affected by MMR deficiency
and the loss of heterozygosity for DCC (chromosome 18) and mutations in TGFbIIR are
secondary [69]. Because current CCRT is 5-fluorouracil-based, MMR ought to be taken
into account. Fluoropyrimidine-based neoadjuvant CCRT is associated with a pCR rate
of 27.6% in 62 patients with DNA MMR deficiency [70]. Charara et al. reported that high
MSI with a loss of MMR protein expression and p21WAF1/C1PI is predictive of superior
CCRT response in LARC patients [71], and in their study, tumors with CR showed higher
expression of bcl-2, Ki-67, topo II and p27. Furthermore, p53 is more frequently expressed
in PR tumors [71].

A recent study used immunohistochemistry, laser capture microdissection/qRT-PCR,
flow cytometry and functional analysis of tumor-infiltrating lymphocytes (TIL) from CRC
patients and unveiled that the dynamic immune microenvironment of MSI was balanced by
multiple counter-inhibitory checkpoints, such as programmed cell death 1 (PD-1), PD-L1,
cytotoxic T cell-associated protein 4 (CTLA-4), LAG-3 and IDO [72]. There have been good
outcomes in studies with an immune checkpoint blockade by PD-1 receptor inhibitors,
nivolumab and pembrolizumab and the CTLA-4 inhibitor, ipilimuma [73,74]. Avelumab is
a fully human immunoglobulin that binds PD-L1. A phase II trial found that in patients
with LARC, neoadjuvant radiation followed by mFOLFOX6 with avelumab is safe, with a
promising pCR [75].

Focusing on some genes as regulators of radio-sensitivity, the study on MSI continues.
The overexpression of CHD4 resulted in radio-resistance in MSI-High (MSI-H) colorectal
cells, whereas the knockdown of CHD4 enhanced radio-sensitivity in Microsatellite stable
(MSS) cells [76]. Wang et al. utilized the microarray datasets (GSE68204) of rectal cancer
from the Gene Expression Omnibus database and confirmed overexpression of CHD4 is an
independent biomarker of poor TRG and worse therapeutic response in LARC patients
after CCRT [76]. Rectal tumors with deficiency of MMR are sensitive to CCRT [77], and
even though MSI is independently linked to less pCR for LARC patients with 4450 MSS
and 636 MSI in a National Cancer Database (NCDB)-based analysis [78], some researchers
might hence deem MMR status as a prospective biomarker for CCRT response.

However, the majority of our rectal cancer patients are MSS with still existing diverse
CCRT responses. Biomarkers may play a more preponderant role if they can be applied to
most populations. B-cell-specific Moloney murine leukemia virus insertion site 1 (BMI1)
deficiency enhances radiosensitivity in MSS CRCs, whereas BMI1 overexpression was
found to significantly correlate with inferior TRG (p = 0.001) in 172 patients with LARC [79].
In 2020, a meta-analysis of five studies describing 5877 patients found no significant
difference in pCR rate following CCRT in patients with MSI versus MSS rectal tumors [80].
There may still be hitherto undiscovered mechanisms of MMR to CCRT response.

For a minority of patients with MSI-high/MMR-deficient tumors, either due to Lynch
syndrome or sporadic mutations, immunotherapy is recommended as first-line treat-
ment [81]. There have been several case series of MMR-deficient LARC that showed
significant response with neoadjuvant immunotherapy-based systemic treatment [82–84].
Immune checkpoint inhibitors are more active in treatment-naïve patients than in those
with refractory MSI-H/deficiency in MMR CRC [11,73,84]. Since neoadjuvant CCRT modu-
lates the immune-related characteristics of LARC, it may thus enhance the responsiveness
of LARC to immunotherapy [85,86].
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Histones are proteins abundant in lysine and arginine residues that are found in
eukaryotic cell nuclei. In another study, high histone ubiquitination enzyme (UBE2B)
expression appeared significantly correlated with poor TRG, and the recruitment of 53BP1
and Rad51 was remarkably prolonged in cells after pre-treatment with the UBE2B inhibitor
TZ9, suggesting a defective DNA repair pathway in UBE2B-deficient cells [87]. Figure 1
displays the crucial parameters for favorable responses.
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in patients with locally advanced rectal cancer. Abbreviations: CCRT, concurrent chemoradiation;
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7. Patient-Derived Xenograft (PDX) and In Vitro Tumor Organoid (PDO)

Successful disease-specific preclinical models are still absent. Guenot et al. reported
in 2006 that patient-derived xenografts (PDXs) retain primary tumor genetic alteration
and intra-tumoral heterogeneity and remain stable across passages [88]. PDX models are
progressively exploited in translational cancer research [37,89]. Organoid technology has
recently been recommended for generating an imitation to reflect the value in ex vivo
drug testing [90]. Nunes et al. investigated 52 colorectal PDXs, composed of 48 MSS
and 4 MSI tumors and reached appealing findings regarding IGF2–PI3K and ERBB–RAS
alterations in colorectal tumor grafts. The genomic anomaly frequencies observed in MSS
PDX reproduced those detected in non-hypermutated patient tumors. There was frequent
IGF2 upregulation (16%), which was mutually exclusive with IRS2, PIK3CA, PTEN and
INPP4B alterations, supporting IGF2 as a prospective drug target [91]. On the other hand,
since G9a is crucial in mediating phenotypes of cancer stem cells (CSCs), a study with
PDX in immunodeficient mice and in vitro stemness ability showed evidence of surviving
cells after RT with high levels of G9a [92]. They discovered a positive correlation between
G9a and the CSCs marker CD133 in LARC patients with CCRT, and that knockdown of
G9a increased radiosensitivity and sensitized cells to DNA-damage agents through the
PP2A-RPA axis [92].

Organoids and PDX models have similar clonal selections and heterogeneity [93].
Patient-derived organoids (PDOs) are unlike in vivo PDX in that the former preserves
the tumor microenvironment (TME) architecture with tumor parenchyma and stroma,
including tumor-specific TILs [94,95]. Some investigators have established a biorepository
of PDOs to mimic the genetic multiplicity and CCRT response of rectal cancer [96,97]. The
neoadjuvant CCRT responses in PDOs in vitro were replicated as observed clinically in
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corresponding patient tumors (p < 0.05) [98]; additionally, CCRT responses in patients
corresponded to PDO responses with 84.43% accuracy, 78.01% sensitivity and 91.97%
specificity [99]. Nonetheless, the present direction of PDO studies lies in reproducibility
and accuracy, as the similarity of these models to patient tumors could be as low as only
40% [100]. Because PDOs are more difficult to create from those with MSI, if they areBRAF-
mutated, poorly-differentiated and/or of a mucinous type, they could barely be applied
in patients with the aforementioned tumor characteristics [90]. The combined targeting
of EGFR and KRAS (G12C) is highly effective in CRC cells, PDO and PDX, suggesting a
new therapeutic strategy to treat patients with KRAS (G12C)-mutated CRC [101]. Since
PDO-based in vitro cell culture models could preserve the histological and mutational
characteristics of their corresponding tumors and mimic the tumor microenvironment, PDX
or PDO has been employed for drug screening in the last decade.

8. Immunity

CCRT boosts local immune response by increased TILs. The density of CD8+ TILs in
post-CCRT resected specimens was significantly increased compared with that in pre-CCRT
biopsy samples [102]. In addition, radiotherapy fractionation significantly influenced the
CD8C/FoxP3C ratio after CCRT (p = 0.027), with a lower ratio with hypofractionated
RT [103]. More than a decade ago, Yasuda et al. examined the numbers and the densities of
both CD4 + and CD8+ TIL in pre-CCRT biopsy samples and found that they were strongly
correlated with the tumor reduction ratio and histological grade, respectively. The density
of CD8+ TIL is an independent factor for CR [104], and alterations in the densities of TILs
have continued to draw the attention of scientists. Teng et al. reported high pretreatment
CD3+ and CD8+ TILs were associated with a good response (TRG ≥ 3) (p = 0.033 and 0.021,
respectively) [105]. CD8C/GrzBC T-cells in the tumor stroma are significantly associated
with poor TRG [106]. Because the proportions of patients with high densities of CD3+,
CD4+, CD8+ and FoxP3+ cells seven days after starting CCRT were radically lower than
the respective values before starting nCRT (p < 0.0001, p < 0.0001, p = 0.0023, and p = 0.0046),
some authors have recommended the evaluation of immunohistochemical staining ought
to be conducted after CCRT and not prior to CCRT [107]. Figure 2 displays the crucial
parameters for unfavorable responses.
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Whole-exome sequencing and gene expression microarray analysis were conducted
to investigate the genomic properties associated with CCRT response, with a study in
275 patients showing that pre-CCRT CD8+ TIL density was associated with better CCRT
response [108]. Whole-exome sequencing in 74 patients showed that the numbers of single-
nucleotide variations (SNVs) and neoantigens predicted from SNVs were higher in good
responders than in their counterparts, and these correlated positively with CD8+ TIL
density (rS = 0.315 and rS = 0.334 respectively) [108]. Ample evidence has shown that T-cell
complexity and density are associated with sensitivity to neoadjuvant CCRT, where several
biomarkers have been elected, such as Tumor-infiltrating FOXP3+ T regulatory cells and
the density of total and cytotoxic T lymphocytes, CD8+ TIL [109–116].

Systemic inflammation has long reflected on clinical outcomes of many diseases
and a systemic inflammatory response before CCRT was proven to be linked to poor
pCR [117,118]. Elevated preoperative Neutrophil-to-lymphocyte ratio (NLR) is caused
by neutrophilia and/or lymphopenia, the two conditions of the pro-tumor inflammatory
process. There are tight connections between systemic inflammation and nutritional status
in the host. NLR has been evaluated with cutoffs before and after CCRT, as 2.8 and 3.8
respectively, whereas preoperative NLR higher than cutoffs had significantly poor TRG
and postoperative complications [119]. A recent retrospective study was conducted on
1052 patients operated on during 2013–2019 and calculated that an NLR value of ≥3.11
indicated poor responses to neoadjuvant CCRT [120].

A study with 170 patients validated that post-CCRT CEA levels < 5 ng/mL were asso-
ciated with increased rates of clinical CT and pCR [121]. CEA alone failed to significantly
impact pCR in another study of 562 LARC patients in a multivariate analysis [122]. A
preoperative Fibrinogen–Albumin ratio index (FARI) was deemed to be a reliable CCRT
response predictor (OR = 3.044, p = 0.012) in LARC Patients [123]. A high percentage of
FARI patients (>8.8%) showed poor CCRT response. The same research team built a scoring
system named CEA-FARI-PNI (CFP) that combined CEA, FARI and the Prognostic Nutri-
tional Index (PNI) and found that high CFP (OR = 3.693, p = 0.002) was an independent
risk factor for poor response [124]. The combination score enhanced the predictive value
than any one of the three factors alone. Wang et al. proposed the optimal cutoff value of
the PNI was approximately 45 [125].

9. Microbiome

Gut microbiome analysis is a recently rising yet imperative field of study. The gut
microbiota harbor about 100 trillion microbial cells, constituting a complex community of
bacteria, fungi, protozoa and viruses [126]. The level of gram-positive bacteria potentially
influences radiotherapy response [127], as radiotherapy has immune modulatory effects via
tumor-associated antigen cross-presentation to cytolytic CD8+ T cells and IFN-γ. Toomey
et al. suggested that tumor Fusobacteria may be associated with poor TRG following CCRT
in LARC [128]. A study of 1041 patients with CRC revealed the association of F. nucleatum
with TIL differed by tumor MSI status [129]. Moreover, Bacteroidales (Bacteroidaceae,
Rikenellaceae, Bacteroides) were relatively more copious in patients with non-CR than
those with CR and Duodenibacillus massiliensis, and was linked with a better CR rate,
according to a Bayesian network analysis [130]. Microbes related to butyrate production
including Roseburia, Dorea and Anaerostipes were overrepresented in responders, whereas
Coriobacteriaceae and Fusobacterium were overrepresented in nonresponders [131]. In
mouse models, buccal Fusobacterium nucleatum migrated rectal cancer lesions and de-
creased the therapeutic efficacy and prognosis of radiotherapy [132].

Yi et al. found that Dorea, Anaerostipes and Streptococcus yielded an area under the
curve value of 93.57% [95% CI, 85.76–100%] in the training cohort and 73.53% (95% CI,
58.96–88.11%) in the validation cohort [131]. Figure 3 illustrates different species of micro-
biota related to favorable and unfavorable neoadjuvant CCRT responses in LARC patients,
respectively.
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10. Conclusions

Predictive biomarkers for neoadjuvant CCRT response in LARC patients have de-
veloped within reach. CTC and genetic profiling including epigenetic exploration once
proposed has now been customized, with new technology whose credibility and feasibility
continues to improve. Meanwhile, many genes have been discovered to have a correlation
with neoadjuvant CCRT responses. Certain pathway investigations in the FGFR signaling
pathway, DNA repair and PI3K/AKT/mTOR pathway have been further clarified under
investigation and some inhibitors may soon enter clinical trials.

Radiosensitization relies on the alteration of the tumor microenvironment with in-
tegration of proper immunity and nutrition of the distinct host. The implementation of
reliable biomarkers for treatment stratification and clinical management requires valida-
tion in large independent studies, which are now warranted. Tumor grafts from either
xenografts or tumor organoids face the technical challenges of accuracy, sensitivity and
specificity. Some novel biomarkers, such as gut microbiomes, entail prospective validation
to guide clinicians in optimal decision making. In the prediction of CCRT response prior to
surgical intervention for LARC patients, there have been recent advancements, leading to
an expandingly wide selection.
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