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Abstract: Autoencoders have been used to model single-cell mRNA-sequencing data with the
purpose of denoising, visualization, data simulation, and dimensionality reduction. We, and others,
have shown that autoencoders can be explainable models and interpreted in terms of biology. Here,
we show that such autoencoders can generalize to the extent that they can transfer directly without
additional training. In practice, we can extract biological modules, denoise, and classify data correctly
from an autoencoder that was trained on a different dataset and with different cells (a foreign model).
We deconvoluted the biological signal encoded in the bottleneck layer of scRNA-models using saliency
maps and mapped salient features to biological pathways. Biological concepts could be associated
with specific nodes and interpreted in relation to biological pathways. Even in this unsupervised
framework, with no prior information about cell types or labels, the specific biological pathways
deduced from the model were in line with findings in previous research. It was hypothesized
that autoencoders could learn and represent meaningful biology; here, we show with a systematic
experiment that this is true and even transcends the training data. This means that carefully trained
autoencoders can be used to assist the interpretation of new unseen data.

Keywords: autoencoders (AE); single-cell mRNA-sequencing data; transfer learning; deep learning;
artificial neural networks

1. Introduction

Deep learning models have been described as the Swiss Army knife of single-cell
mRNA analysis [1] and used for denoising [2,3], data simulation [4], imputation of missing
values [5–7], visualization [8–11], and decomposition [12,13]. All these applications have
proven that this class of models correctly encapsulates the relevant information in a dataset,
even from the sparse and often heterogeneous single-cell data. We showed that with
specialized training, it is possible to make such models interpretable [14], and more recently,
studies from several other groups have been aiming at the interpretation of autoencoder
models trained on single-cell data [15–19].

In our implementation [14], we aimed specifically to increase the autoencoders ability
to capture interpretable biological features in the bottleneck layer by enforcing a soft
orthogonality constraint to prevent entanglement and task-sharing between units [20,21],
using the following constraint on the loss:

Loss = mean(x − y ∗ log(x + ε)) + λ ∗ L2_norm(I − WWT)

where x is the input, y is the reconstructed input; y = decode(encode(x)), ε is 1 × 10−8 con-
stant, λ is a hyperparameter that determines the impact of the soft orthogonality constraint,
W is the weight matrix of the final encoding layer, WT (the transpose matrix) of W, and
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I-WWT is the orthogonality constraint. This, in essence, penalizes the sharing of tasks over
units in the hidden layer during the training process.

Each unit in the bottleneck layer was subsequently interrogated using saliency
maps [22,23]. This made it possible to directly map the relationships between input and
output of a neural network model and thereby deconvolute the model to highlight salient
features (genes) that are activated for a given cell.

Here we investigate the transferability of the model, which is still an open question
for further implementation of this type of model and a prerequisite for transfer learning
between datasets. We further use an automated hyperparameter optimization step to
pursue a more holistic model and to evaluate the use of additional regularization. We
found that adding complexity to the model did not improve the performance. We also
found the structure of the data in the latent space to match the structure in the input space,
even when the model was trained on data from another tissue. This suggests that our
model system was able to generalize and capture fundamental biological processes and that
this encoding was transferable across distant tissue types such as muscle and mammary
gland tissues. By applying saliency maps, we interpreted the salient features in a systematic
manner using gene set enrichment analysis (GSEA) [24]. With batch correction techniques,
we could further extend generalization across 10x genomics and SMART-seq2 sequencing
platforms.

2. Materials and Methods

In this study, we used data from Tabular Muris Compendium [25], where data from
12 organs and tissues were included comprising data generated using both 10x genomics
and SMART-seq2 (see Table 1 and Supplementary File S1: Section A) for data counts.

Table 1. Datasets from Tabular Muris included in the study and the number of genes in each dataset
used for training (after extracting the Hallmark genes and filtering or batch correction).

Smart-seq2 Amount of Genes 10x Genomics Amount of Genes Combined Dataset
Seurat Amount of Genes

Tongue 3904 Tongue 10,757 Tongue 498

Thymus 3772 Thymus 7808 Thymus 726

Spleen 3708 Spleen 8798 Spleen 848

Marrow 3992 Marrow 10,445 Marrow 771

Liver 3779 Liver 6950 Liver 653

Kidney 3762 Kidney 11,645 Kidney 774

Heart 4130 Heart_and_Aorta 8081 Heart 745

Bladder 3900 Bladder 10,926 Bladder 653

Mammary 3969 Mammary_Gland 11,495 Mammary 829

Lung 3974 Lung 10,666 Lung 738

Trachea 4022 Trachea 10,584 Trachea 822

Muscle 3968 Limb_Muscle 9202 Muscle 834

Single-cell mRNA datasets were standardized to the logarithm of counts per million
log(CPM+1). Datasets were used independently or combined with Seurat batch correc-
tion [26]. The combined dataset takes a name from the Smart-seq2 tissue component
(Table 1). The autoencoder was implemented in Python v.3.6.8 (https://www.python.org/,
accessed on 9 June 2020) using the PyTorch v.1.3.0 deep learning framework (https://
pytorch.org/, accessed on 9 June 2020). The neural network was fully connected with 2
layers for the encoding and 2 layers for the decoding process, with a width defined by
the number of genes of the dataset (Table 1). Weights were initialized using the Xavier

https://www.python.org/
https://pytorch.org/
https://pytorch.org/
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normal distributed initialization [27], and the autoencoder was trained unsupervised with
Stocastic gradient descent (SGD) with a fixed Nesterov momentum of 0.9 using a negative
log-likelihood (NLL) Poisson loss function and a soft plus the activation function. The
soft orthogonality constraint was applied to the bottleneck layer, as described in the in-
troduction, and the autoencoder was trained using early stopping with a hyperparameter
optimization, based on [28]. In order to reduce training time, only genes present in the
50 Mus Musculus Hallmark pathways from MSigDB [29] were used in the training pro-
cess. Underlying patterns captured in the autoencoder were interpreted using Guided
backpropagation [23], and the bottleneck layer was visualized using saliency maps. See
Supplementary Materials and Methods for further details on the model, deconvolution,
and interpretation of saliency maps from guided backpropagation.

The explainability of the model was assessed with GSEA on the saliency maps based
on the implementation from [30]. The performance of the models was visually assessed
with UMAP [31] and quantitatively predicting cell type with kNN [32], with k = {5...25}.
One dataset was used to train the kNN, and multiple datasets were used for testing (see
Supplementary S1.5) to quantify the performance using the following measure:

Accuracy = number of correct predictions/(number of correct predictions + number of false predictions)

3. Results

The autoencoder (for example, Bladder data from 10x genomics in Figure 1) consists
of an input (yellow), output (red), and three hidden layers, the central being the bottleneck
layer (green) and thus the lowest dimensionality representation of the data. The input and
output dimensions are equal to the number of genes in the dataset that was present in
the Mus Musculus Hallmark pathways post-filtering. Initially, the input is encoded into a
reduced version in the bottleneck layer and then decoded back to its original dimensionality
in the output layer. During the decoding, the autoencoder learns to recreate its original
input based on the information retained in the bottleneck layer. The encoding/decoding
process is learned during training in a process where weights are fitted based on a Poisson
loss function and a soft orthogonality constraint, such that the output values resemble
closer the input values, see further specification in Supplementary S1.1).
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Figure 1. Overview of data visualization and autoencoder. UMAP of raw data (left), autoencoder
architecture (center), UMAP of encoded data (right). In the autoencoder nodes in the input layer
are yellow, the bottleneck layer nodes are green and output layer nodes are red. “ . . . ” indicates
additional nodes not displayed in the graphics.

In order to optimize the model’s hyperparameter space, Bayesian optimization (BO)
was used for each individual Tabula Muris tissue dataset, including Smart-seq2, 10x ge-
nomics, and combined (see Table 1) (see Supplementary S1.2). The Bayesian statistical
model was created by testing some initial hyperparameter values in the actual model and
finding the respective loss. The obtained coordinates then constitute the initial Bayesian
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statistical model [33], and the acquisition function expected improvement (EI) [34] (see
below) was used to decide which hyperparameter values should be tested next by using
previous experience to avoid optimizing hyperparameters that do not influence the objec-
tive function [34,35]. EI(x) = E[max(f(x) − f∗),0)] (f is the expected improvements relative to
f∗, f∗ = maxiyi is currently the best-observed outcome, with the goal of maximizing f) [33].

An experiment was carried out to investigate a simple model versus a model with
additional regularization in the form of L1 norm and weight decay. The simple model
was optimized for learning rate (lr), orthogonality constraint, size of the bottleneck layer
(bottleneck_size), and the size of the neighboring hidden layers (hidden_size) in the fol-
lowing ranges: lr [1 × 10−5, 1 × 10−3], orthogonality [1 × 10−25, 1 × 10−5], hidden_size
(50, 140) and bottleneck_size (35, 75). The complex model was additionally optimized for
L1 norm and weight decay, in ranges: L1 [1 × 10−25, 1 × 10−5], weight decay [1 × 10−25,
1 × 10−5]. The simple and the complex model were optimized over 40 trials, where each
trial examined a new set of hyperparameters. Each trial comprised 100 training epochs,
where the training dataset constituted 95%. After each trial, a hold-out dataset (5%) eval-
uated the model’s performance by computing the mean test loss for all cells in the test
set. This experiment was performed for Smart-seq2 (Supplementary File S1: Section B)
and 10x genomics (Supplementary File S1: Section B), and the combined dataset batch was
corrected using Seurat (Table 2; see Supplementary File S1: Section D). Furthermore, we
captured the mean loss of unseen datasets evaluated in a model after completed training
(see Supplementary File S1: Section E).

Table 2. Model test loss using a combined dataset with a simple and a more complex regularization.
Bold indicates best model.

Simple Model
Mean Loss Hidden Layers Bottleneck

Layer
Complex Model

Mean Loss
Hidden
Layers

Bottleneck
Layer

Bladder 0.94610459 77 44 0.94966865 101 65

Heart 0.95382822 99 57 0.95688325 70 40

Kidney 0.97204543 118 42 0.97270389 95 65

Liver 0.95906472 106 35 0.95659369 124 40

Lung 0.96714902 83 63 0.96536231 119 62

Mammary 0.97676671 65 42 0.97654885 91 62

Marrow 0.98160857 110 53 0.98427087 67 60

Muscle 0.95753598 92 72 0.95977772 89 62

Spleen 0.97818142 98 68 0.97743446 67 58

Thymus 0.98370707 73 63 0.98711485 88 57

Tongue 0.93583191 90 51 0.93667495 74 70

Trachea 0.97082079 100 49 0.96826011 116 55

Bold indicates best model—it is standard in machine learning community in performance tables.

We found no clear signs of improvement or deterioration of performance by adding
more complexity or when assessing similar experiments for 10x Genomics and SMART-seq2
datasets independently (data not shown). No overall trends point to one model being
superior to the other; therefore, further analysis was performed based on the simple model
since there is no justification in adding additional complexity, considering the number of
extra calculations and computational power needed.

The orthogonality constraint varied markedly between different datasets in 10x ge-
nomics, Smart-seq, and Seurat, where optimal values were found in the full range from
[1 × 10−25, 1 × 10−5]. BO always led to a bottleneck layer smaller than the neighboring
hidden layers for all datasets and platforms, although the ranges include overlapping
values of the hidden_size and the bottleneck_size (50, 140 and 35, 75).
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The hyperparameter optimization was able to find minimums in the hyperparameter
space to reduce the model’s test loss and thereby enhance the bottleneck layer’s ability to
capture essential features in the noisy scRNA-seq dataset. The resulting optimal model and
its associated hyperparameters were then trained for additional 400 epochs to constitute
the final model.

In order to obtain a better understanding of the underlying space that an autoencoder
captures, an autoencoder trained on one dataset was exposed to a new unseen dataset
to examine if the model could generalize over datasets. This was performed by feeding
a new dataset through an already trained model and examining how the model projects
new datasets. For this experiment, we trained the autoencoder with the combined Marrow
dataset (Smart-seq2 and 10x genomics) and investigated how well it could project the
other combined datasets, see Figure 2. Additionally, we specifically investigated if a
model can generalize across other datasets when there are no overlapping cell types, see
Supplementary File S1: Section F.

Furthermore, an experiment was conducted assessing one dataset’s ability to predict
cell type labels in another dataset. This was performed using the SMART-seq2 Marrow
dataset and the combined (Smart-seq2 and 10x genomics) Lung dataset because these
represent both integrated and single technology and have an overlap with cells in other
tissue datasets. See Table 3 for overlapping cell types with Marrow and Table 4 for overlap
with Lung. Cell type distributions for the Smart-seq2 and the combined dataset are seen in
Supplementary File S1: Sections C.1 and C.2.

Table 3. Cell types from SMART-seq2 bone marrow samples, also present in other SMART-seq2
datasets.

Dataset Cell Types Overlapping with Marrow

Lung T-cell B-cell Natural killer cell Monocyte

Liver B-cell Natural killer cell

Muscle T-cell B-cell

Thymus T-cell B-cell

Spleen T-cell B-cell

Table 4. Cell types from Lung samples integrated from SMART-seq2 and 10x genomics, also present
in other combined datasets.

Dataset Cell Types Overlapping with Lung

Bladder Leukocyte Endothelial cell

Marrow Monocyte Macrophage Natural killer cell T-cell B-cell

Thymus T-cell Leukocyte

Trachea Stromal cell Leukocyte Epithelial cell Endothelial cell

Spleen B-cell Myeloid cell Natural killer cell T-cell

Kidney Leukocyte Macrophage Endothelial cell

Liver B-cell Leukocyte Natural killer cell

Mammary Endothelial cell T-cell B-cell Macrophage

Muscle Endothelial cell T-cell B-cell Macrophage

Heart Endothelial cell Leukocyte
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Figure 2. Left plots are the original UMAP of the Seurat datasets, Bladder, Heart, Mammary, Muscle.
The right plots are the same datasets e ncoded by the model trained on the Seurat Marrow dataset.
Each color depicts a different cell type, as labeled in Tabular Muris Compendium [25].
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Assessing the kNN predicted cell type, using k = [2, ..., 25] (Figure 3) shows that the
bottleneck layer in several cases improves the accuracy of the classification, most likely
by acting to denoise the input data, even if the autoencoder is trained on the basis of
another dataset. Classifying cell types with a naïve kNN on the original full dataset (middle
panel) is thus comparable or worse than the same classification based on autoencoder
encoded data even when it is trained on foreign data (left panel). This is not the case
when the autoencoder is not trained on any data (right panel). This suggests that relevant
information, not specific to the dataset, is encoded in the autoencoder and that it can be
transferred to unseen data. This ability may even transfer across not too distant species
(see a test in Supplementary File S1: Section I, transferring between Mouse and Human).
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Figure 3. Example kNN-model predicting accuracy of common cell type labels. The kNN was trained
on Marrow dataset from Smart-seq2, on the datasets encoded by a trained autoencoder, full dataset,
and a randomly initialized autoencoder. Predicting cell type labels for the other Smart-seq2 datasets.
Dashed line indicates performance when taking a majority vote as prediction, which assigns all cells
to the most abundant cell type. The left represents the kNN model trained and tested on the encoded
datasets, the middle represents the kNN model trained and tested on the full dataset and the right
represents the kNN trained and tested on data encoded by a randomly initialized autoencoder.

A few of the datasets benefit from denoising, as also seen in Figure 4, but generally,
the increase in accuracy is smaller than with the single-technology transfer in Figure 3.
Moreover, the effect of neighborhood size, k, for kNN on variance in accuracy appears
to be decreased dramatically, most likely by Seurat batch correction. In both cases, the
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accuracy of predictions using representations from an autoencoder trained on a foreign
dataset is comparable to the kNN model trained on the full dataset. This indicates that the
autoencoder preserves and encodes essential general biological information in the manifold
dimensionality reduction.
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Figure 4. kNN was trained on combined Lung dataset from Smart-seq2 and 10x genomics, on data
encoded by the trained autoencoder, full dataset, and dataset encoded by a randomly initialized
autoencoder. Predicting cell type labels for the other combined datasets. Dashed line indicates
performance when taking a majority vote as prediction, which assigns all cells to the most abundant
cell type. The left represents the kNN model trained and tested on the encoded datasets, the middle
represents the kNN model trained and tested on the full dataset, and the right represents the kNN
trained and tested on data encoded by a randomly initialized autoencoder.

There is no assumption that cell types behave identically or are in a similar state when
found residing in different tissues or organs, and we merely highlight this overlap to reason
that the space spanned by the training space will also accommodate the projected data.
When projecting datasets with cell types that the model has not previously been exposed to
(Figure 2), the model trained on the Marrow dataset is able to project highly specific heart
cells (Supplementary File S1: Section C Table S24). The mean F1 scores corresponding to
Figures 3 and 4 can be found in Supplementary File S1: Section G.

We have previously shown that the combination of orthogonality constraint and
saliency maps makes it possible to explain features. In order to investigate if this ability
is intact when using a foreign autoencoder trained on a different dataset and tissue, we
performed GSEA on the input using the gradient of the back-propagated saliencies.
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GSEA takes a ranked list of genes as input and investigates the hypothesis that
members of a query gene set are randomly distributed throughout the gene set being tested.
In this case, the ranking is based on each row in a gene-based saliency map, such that the
adapted gradient from the backpropagation pass forms the basis for the ranking.

In order to demonstrate an example of the interpretation of a transferability of the
model, it trained on the Muscle dataset from Smart-seq2 that was used to compute the
saliency maps for the Mammary dataset (Figure 5). Here the saliency map is computed for
each individual cell type in the Mammary dataset and then subtracting the saliency map
from the whole dataset. Each individual corrected saliency map was then used as an input
to the GSEA analysis to compute the number of times a given pathway was significant.
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19 of the hidden units, only one pathway is significant (11 units have two significant path-
ways, 6 have 3, and 2 have 4 and 5 pathways, respectively). For the pathways, 11 out of 
50 are significant in only one hidden unit, and four have more than four. Out of 50 hall-
mark signatures that become significant when calculating saliencies for all cells in the 
Mammary dataset, there are 19 of which two (adipogenesis, epithelial-mesenchymal tran-
sition) are also the most significantly overlapping (p < 2.27 × 10−3, hypergeometric test) 
with breast tissue-specific genes from Protein Atlas [36]. Signature Hallmark pathways 
“Myogenesis” and “UV-response UP” that are significantly overlapping with tissue spe-
cifically expressed genes from both skeletal muscle and breast tissue are not found signif-
icant. These results suggest that the primary signal when interpreting saliencies from the 
direct transfer of foreign models provides mainly differences between the dataset used for 
training and the data subsequently passed. Further studies are needed to explore if this 
feature can be scaled to larger or combined datasets, e.g., to delineate differences in nor-
mal cells from cancer cells. In order to further investigate the tendency to share tasks over 

Figure 5. Model trained on Muscle dataset from Smart-seq2 with orthogonality constraint used to
compute the saliency maps for each cell type in the Mammary dataset. Heatmap shows frequency
that each pathway was significant. The saliency map from each bottleneck layer was thereby used as
an input to the GSEA analysis to compute the number of times a given pathway was significant. The
x-axis represents the (nth-bottleneck layer), and the color of the heatmap displays how many times
the given Hallmark pathway was found significant, considering that the mammary dataset has 4 cell
types. Only hidden units with at least one significant pathway are displayed.

From the heatmap Figure 5, we can see that hidden units generally do not appear
to share tasks when normalized to the total dataset, suggesting intact explainability of
the model, as investigated in a previous study [14]. Most of the hidden units have one or
few significant pathways associated with their activity, as calculated by the saliency maps.
For 19 of the hidden units, only one pathway is significant (11 units have two significant
pathways, 6 have 3, and 2 have 4 and 5 pathways, respectively). For the pathways, 11 out of
50 are significant in only one hidden unit, and four have more than four. Out of 50 hallmark
signatures that become significant when calculating saliencies for all cells in the Mammary
dataset, there are 19 of which two (adipogenesis, epithelial-mesenchymal transition) are
also the most significantly overlapping (p < 2.27 × 10−3, hypergeometric test) with breast
tissue-specific genes from Protein Atlas [36]. Signature Hallmark pathways “Myogenesis”
and “UV-response UP” that are significantly overlapping with tissue specifically expressed
genes from both skeletal muscle and breast tissue are not found significant. These results
suggest that the primary signal when interpreting saliencies from the direct transfer of
foreign models provides mainly differences between the dataset used for training and the
data subsequently passed. Further studies are needed to explore if this feature can be scaled
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to larger or combined datasets, e.g., to delineate differences in normal cells from cancer
cells. In order to further investigate the tendency to share tasks over hidden units, the
significant pathways were calculated on a model trained without orthogonality constraint
where the remaining parameters are tuned with Bayesian Optimisation (see Supplementary
File S1: Section H). Here, only 13 of the hidden are significantly associated with a single
pathway (10 units have 2 significant pathways, 6 have 3, and 1 has 5), suggesting that the
orthogonality constraint is a contributing factor to ensure interpretability.

4. Discussion

Here we investigated the generalization of autoencoders across datasets and found
that specialized training of autoencoders encodes biologically meaningful modules, which
can be applied to a new dataset. This ability is intact even if there are no cell types in
common between training and prediction data. We assume that the primary source of
increase in accuracy when predicting cells on the representation of an autoencoder trained
from another dataset is due to a reduction in noise. However, the increase would not be
possible if the autoencoder was not able to learn a representation that spans biologically
relevant features, important to differentiate even unseen cell types. Our findings suggest
that a common transcriptional representation can be found using single-cell sequencing.
The current main obstacles are the effect of batch and technologies, which we could only
partially address here, using common single-cell batch correction methods.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/10.3
390/cells11010085/s1: Supplementary S1: Supplementary methods, Section A: Dataset specifications,
Section B: Experiment testing simple and complex model, Section C: Cell type distributions from
kNN, Section D: Batch correction, Section E: Loss of model trained on one dataset while initializing
an unseen dataset, Section F: Auto encoder modelling data with no overlapping cell types, Section G:
F1 scores of kNN cell type prediction, Section H: Gene set enrichment analysis of saliency maps.
Section I: Autoencoders ability to project Human data.

Author Contributions: Conceptualization, F.O.B. and S.K.; methodology, F.O.B., S.K. and J.S.W.;
software, S.K. and J.S.W.; validation, J.S.W.; formal analysis, J.S.W.; investigation, J.S.W., S.K., O.W.,
F.C.N. and F.O.B.; resources, F.C.N.; data curation, S.K. and J.S.W.; writing—original draft preparation,
J.S.W.; writing—review and editing, F.O.B., S.K. and J.S.W.; visualization, J.S.W.; supervision, F.O.B.;
project administration, O.W. and F.C.N. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data analyzed in this paper are publicly available from GEO accession
number GSE109774. The code is available at https://github.com/s144489/Autoencoder.git (accessed
on 16 December 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Way, G.P.; Greene, C.S. Bayesian deep learning for single-cell analysis. Nat. Methods 2018, 15, 1009–1010. [CrossRef]
2. Eraslan, G.; Simon, L.M.; Mircea, M.; Mueller, N.S.; Theis, F.J. Single-cell RNA-seq denoising using a deep count autoencoder. Nat.

Commun. 2019, 10, 390. [CrossRef]
3. Grønbech, C.H.; Vording, M.F.; Timshel, P.N.; Sønderby, C.K.; Pers, T.H.; Winther, O. scVAE: Variational auto-encoders for

single-cell gene expression data. Bioinformatics 2020, 36, 4415–4422. [CrossRef] [PubMed]
4. Marouf, M.; Machart, P.; Magruder, D.S.S.; Bansal, V.; Kilian, C.; Krebs, C.F.; Bonn, S. Realistic in silico generation and

augmentation of single cell RNA-seq data using Generative Adversarial Neural Networks. bioRxiv 2018, 390153. [CrossRef]
5. Mattei, P.-A.; Frellsen, J. MIWAE: Deep Generative Modelling and Imputation of Incomplete Data Sets. In Proceedings of the 36th

International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 4413–4423.

https://www.mdpi.com/article/10.3390/cells11010085/s1
https://www.mdpi.com/article/10.3390/cells11010085/s1
https://github.com/s144489/Autoencoder.git
http://doi.org/10.1038/s41592-018-0230-9
http://doi.org/10.1038/s41467-018-07931-2
http://doi.org/10.1093/bioinformatics/btaa293
http://www.ncbi.nlm.nih.gov/pubmed/32415966
http://doi.org/10.1101/390153


Cells 2022, 11, 85 11 of 12

6. Hou, W.; Ji, Z.; Ji, H.; Hicks, S.C. A systematic evaluation of single-cell RNA-sequencing imputation methods. Genome Biol. 2010,
21, 218. [CrossRef] [PubMed]

7. Viñas Torné, R.; Azevedo, T.; Gamazon, E.; Liò, P. Deep learning enables fast and accurate imputation of gene expression across
tissues. Front. Genet. 2021, 12, 489.

8. Bica, I.; Andrés-Terré, H.; Cvejic, A.; Liò, P. Unsupervised generative and graph representation learning for modelling cell
differentiation. Sci. Rep. 2020, 10, 9790. [CrossRef] [PubMed]

9. Ding, J.; Condon, A.; Shah, S.P. Interpretable dimensionality reduction of single cell transcriptome data with deep generative
models. Nat. Commun. 2018, 9, 2002. [CrossRef]

10. Lopez, R.; Gayoso, A.; Yosef, N. Enhancing scientific discoveries in molecular biology with deep generative models. Mol. Syst.
Biol. 2020, 16, e9198. [CrossRef]

11. Lopez, R.; Regier, J.; Cole, M.B.; Jordan, M.; Yosef, N. Deep generative modeling for single-cell transcriptomics. Nat. Methods 2018,
15, 1053–1058. [CrossRef]

12. Menden, K.; Marouf, M.; Oller, S.; Dalmia, A.; Magruder, D.S.; Kloiber, K.; Heutink, P.; Bonn, S. Deep learning–based cell
composition analysis from tissue expression profiles. Sci. Adv. 2020, 6, eaba2619. [CrossRef]

13. Torroja, C.; Sanchez-Cabo, F. Digitaldlsorter: Deep-Learning on scRNA-Seq to Deconvolute Gene Expression Data. Front. Genet.
2019, 10, 978. [CrossRef]

14. Kinalis, S.; Nielsen, F.C.; Winther, O.; Bagger, F.O. Deconvolution of autoencoders to learn biological regulatory modules from
single cell mRNA sequencing data. BMC Bioinform. 2019, 20, 379. [CrossRef] [PubMed]

15. Mao, H.; Broerman, M.J.; Benos, P.V. Interpretable Factors in scRNA-seq Data with Disentangled Generative Models. In
Proceedings of the 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE), Cincinnati, OH, USA,
26–28 October 2020; pp. 85–88.

16. Lotfollahi, M.; Naghipourfar, M.; Theis, F.J.; Wolf, F.A. Conditional out-of-distribution generation for unpaired data using transfer
VAE. Bioinformatics 2020, 36, i610–i617. [CrossRef] [PubMed]

17. Rybakov, S.; Lotfollahi, M.; Theis, F.J.; Alexander Wolf, F. Learning interpretable latent autoencoder representations with
annotations of feature sets. bioRxiv 2020. [CrossRef]

18. Svensson, V.; Gayoso, A.; Yosef, N.; Pachter, L. Interpretable factor models of single-cell RNA-seq via variational autoen-coders.
Bioinformatics 2020, 36, 3418–3421. [CrossRef]

19. Zhang, S.; Li, X.; Lin, Q.; Lin, J.; Wong, K.-C. Uncovering the key dimensions of high-throughput biomolecular data using deep
learning. Nucleic Acids Res. 2020, 48, e56. [CrossRef]

20. Wang, W.; Yang, D.; Chen, F.; Pang, Y.; Huang, S.; Ge, Y. Clustering with Orthogonal AutoEncoder. IEEE Access 2019, 7,
62421–62432. [CrossRef]

21. Bansal, N.; Chen, X.; Wang, Z. Can We Gain More from Orthogonality Regularizations in Training Deep CNNs? arXiv 2018,
arXiv:1810.09102.

22. Brocki, L.; Chung, N.C. Concept Saliency Maps to Visualize Relevant Features in Deep Generative Models. In Proceedings of the
2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA), Boca Raton, FL, USA, 16–19 December
2019; pp. 1771–1778. [CrossRef]

23. Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for Simplicity: The All Convolutional Net. arXiv 2014,
arXiv:1412.6806.

24. Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.;
Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.
Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [CrossRef]

25. Tabula Muris, C. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 2018, 562, 367–372. [CrossRef]
26. Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M., III; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R.

Comprehensive Integration of Single-Cell Data. Cell 2019, 177, 1888–1902.E21. [CrossRef]
27. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, Chia Laguna
Resort, Sardinia, Italy, 13–15 May 2010; Volume 9, pp. 249–256.

28. Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of initialization and momentum in deep learning. In Proceedings
of the 30th International Conference on Machine Learning, PMLR, Atlanta, GA, USA, 17–19 June 2013; Volume 28, pp. 1139–1147.

29. Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database (MSigDB)
hallmark gene set collection. Cell Syst. 2015, 1, 417–425. [CrossRef] [PubMed]

30. Korotkevich, G.; Sukhov, V.; Budin, N.; Shpak, B.; Artyomov, M.N.; Sergushichev, A. Fast gene set enrichment analysis. bioRxiv
2021, 060012. [CrossRef]

31. Becht, E.; McInnes, L.; Healy, J.; Dutertre, C.-A.; Kwok, I.W.H.; Ng, L.G.; Ginhoux, F.; Newell, E.W. Dimensionality reduction for
visualizing single-cell data using UMAP. Nat. Biotechnol. 2018, 37, 38–44. [CrossRef] [PubMed]

32. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

33. Frazier, P.I. Bayesian Optimization Recent. In Advances in Optimization and Modeling of Contemporary Problems; The Institute for
Operations Research and the Management Sciences: Catonsville, MD, USA, 2018; pp. 255–278. [CrossRef]

http://doi.org/10.1186/s13059-020-02132-x
http://www.ncbi.nlm.nih.gov/pubmed/32854757
http://doi.org/10.1038/s41598-020-66166-8
http://www.ncbi.nlm.nih.gov/pubmed/32555334
http://doi.org/10.1038/s41467-018-04368-5
http://doi.org/10.15252/msb.20199198
http://doi.org/10.1038/s41592-018-0229-2
http://doi.org/10.1126/sciadv.aba2619
http://doi.org/10.3389/fgene.2019.00978
http://doi.org/10.1186/s12859-019-2952-9
http://www.ncbi.nlm.nih.gov/pubmed/31286861
http://doi.org/10.1093/bioinformatics/btaa800
http://www.ncbi.nlm.nih.gov/pubmed/33381839
http://doi.org/10.1101/2020.12.02.401182
http://doi.org/10.1093/bioinformatics/btaa169
http://doi.org/10.1093/nar/gkaa191
http://doi.org/10.1109/ACCESS.2019.2916030
http://doi.org/10.1109/icmla.2019.00287
http://doi.org/10.1073/pnas.0506580102
http://doi.org/10.1038/s41586-018-0590-4
http://doi.org/10.1016/j.cell.2019.05.031
http://doi.org/10.1016/j.cels.2015.12.004
http://www.ncbi.nlm.nih.gov/pubmed/26771021
http://doi.org/10.1101/060012
http://doi.org/10.1038/nbt.4314
http://www.ncbi.nlm.nih.gov/pubmed/30531897
http://doi.org/10.1287/educ.2018.0188


Cells 2022, 11, 85 12 of 12

34. Wilson, J.T.; Moriconi, R.; Hutter, F.; Deisenroth, M.P. The reparameterization trick for acquisition functions. arXiv 2017,
arXiv:1712.00424.

35. Letham, B.; Karrer, B.; Ottoni, G.; Bakshy, E. Constrained Bayesian Optimization with Noisy Experiments. Bayesian Anal. 2019, 14,
495–519. [CrossRef]

36. Uhlen, M.; Oksvold, P.; Fagerberg, L.; Lundberg, E.; Jonasson, K.; Forsberg, M.; Zwahlen, M.; Kampf, C.; Wester, K.; Hober, S.;
et al. Towards a knowledge-based Human Protein Atlas. Nat. Biotechnol. 2010, 28, 1248–1250. [CrossRef]

http://doi.org/10.1214/18-BA1110
http://doi.org/10.1038/nbt1210-1248

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	References

