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Abstract: Fibroblast growth factor 23 (FGF23) controls vitamin D and phosphate homeostasis in the 

kidney and has additional paracrine effects elsewhere. As a biomarker, its plasma concentration is 

associated with progression of inflammatory, renal, and cardiovascular diseases. Major stimuli of 

FGF23 synthesis include active vitamin D and inflammation. Antineoplastic chemotherapy treats 

cancer by inducing cellular damage ultimately favoring cell death (apoptosis and necrosis) and 

causing inflammation. Our study explored whether chemotherapeutics and other apoptosis induc-

ers impact on Fgf23 expression. Experiments were performed in osteoblast-like UMR106 cells, Fgf23 

gene expression and protein synthesis were determined by qRT-PCR and ELISA, respectively. Via-

bility was assessed by MTT assay and NFκB activity by Western Blotting. Antineoplastic drugs cis-

platin and doxorubicin as well as apoptosis inducers procaspase-activating compound 1 (PAC-1), a 

caspase 3 activator, and serum depletion up-regulated Fgf23 transcripts while reducing cell prolif-

eration and viability. The effect of cisplatin on Fgf23 transcription was paralleled by Il-6 up-regula-

tion and NFκB activation and attenuated by Il-6 and NFκB signaling inhibitors. To conclude, cell 

viability-decreasing chemotherapeutics as well as apoptosis stimulants PAC-1 and serum depletion 

up-regulate Fgf23 gene expression. At least in part, Il-6 and NFκB may contribute to this effect.  
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1. Introduction 

Cells that make up bone, osteoblasts, and osteocytes produce fibroblast growth factor 

23 (FGF23), a protein with classical endocrine, but also paracrine effects [1,2]. As a hor-

mone, it targets renal sodium phosphate co-transporter NaPiIIa, the main phosphate 

transporter of the proximal tubule, thereby enhancing urinary elimination of phosphate 

[3]. Moreover, FGF23 down-regulates CYP27B1, the renal key enzyme for the activation 

of vitamin D [4]. Therefore, FGF23 lowers the plasma concentration of active vitamin D 

(1,25(OH)2D3), which itself is a major regulator of phosphate metabolism [5]. Further en-

docrine effects of FGF23 are effective in the parathyroid gland, where FGF23 reduces par-

athyroid hormone (PTH) expression and secretion [6]. These classical endocrine effects 

require a complex of a FGF receptor (FGFR) and co-receptor αKlotho, a transmembrane 

protein with high expression in the kidney and parathyroid gland [7–9]. A certain motif 

with FGF23-independent endocrine and paracrine effects can be released from αKlotho 

upon cleavage, called soluble Klotho (sKl) [7,10]. The correct interplay of FGF23 and 

αKlotho in the regulation of phosphate and vitamin D metabolism is critical: mice defi-

cient for FGF23 or αKlotho age rapidly and exhibit premature aging-associated diseases 

with death at young age, whereas overexpression of αKlotho extends life span by about 

30% [11–13]. 
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Elevations of the plasma FGF23 concentration were found in many clinical conditions 

including renal [14,15], cardiovascular [16–19], and inflammatory diseases [20]. Particu-

larly in chronic kidney disease (CKD), changes in FGF23 level can be detected very early 

and correlate with outcome [21]. 

For this reason, regulation of FGF23 production and secretion is of high interest. Reg-

ulators of FGF23 thus far disclosed include dietary phosphate [22], PTH [23], 1,25(OH)2D3 

[24], insulin [25], erythropoietin [26], or inflammation [27]. Pro-inflammatory cytokines 

such as interleukin-6 (Il-6) [28], tumor necrosis factor alpha (TNFα) [29] or transcription 

factor complex NFκB (nuclear factor kappa-light-chain-enhancer of activated B-cells) are 

major drivers of FGF23 expression [30]. 

For most malignancies, chemotherapy is part of therapy either at certain stages, or 

along with other approaches (e.g., surgery, radiation) [31]. Common chemotherapeutics 

are cytotoxic drugs damaging cells and inducing apoptosis [32]. Among them are an-

thracyclines (e.g., doxorubicin) that intercalate with DNA [33] or platinum derivatives 

(e.g., cisplatin) inhibiting DNA replication by DNA cross-linking [34]. Initiation of apop-

tosis ultimately results in the activation of executioner caspase 3, which can directly be 

activated by procaspase-activating compound 1 (PAC-1) [35]. Lack of growth factors also 

induces apoptosis, which can be accomplished by serum depletion in cell culture [36]. 

Chemotherapeutics induce strong inflammation [37]. Moreover, chemotherapy with 

platinum derivatives is nephrotoxic [38] whereas anthracyclines are cardiotoxic [39]. In 

view of the strong FGF23 expression-inducing properties of pro-inflammatory pathways 

[27] and kidney or cardiovascular damage elevating FGF23 plasma levels, we hypothe-

sized that chemotherapeutic drugs may up-regulate FGF23 expression. This may result in 

higher FGF23 plasma levels in patients undergoing chemotherapy and may have clinical 

relevance. Therefore, this study aimed to explore the impact of antineoplastic drugs and 

apoptosis stimulants on FGF23 in vitro. Moreover, we aimed to elucidate underlying 

mechanisms. 

2. Materials and Methods 

2.1. Cell Culture 

Rat osteoblast-like UMR106 cells (CRL-1661; ATCC, Manassas, VA, USA) were cul-

tured in Dulbecco’s Modified Eagle Medium (DMEM) containing 25 mM glucose and 1 

mM pyruvate (Gibco, Life Technologies, Thermo Scientific, Darmstadt, Germany), sup-

plemented with 10% fetal bovine serum (FBS; Gibco, Life Technologies), 100 U/mL peni-

cillin, and 100 µg/mL streptomycin (Gibco, Life Technologies) at 5% CO2 and 37°C. Serum 

depletion was accomplished for 24 h or 48 h by incubating the cells in culture medium 

with 1% or 0% FBS and additional 10 nM 1,25(OH)2D3 (Tocris, Bioscience, Bristol, UK) to 

enhance Fgf23 expression [40]. Cells were seeded into 6-well plates (Greiner Bio-One, 

Frickenhausen, Germany) for 24 h. Subsequently, cisplatin, PAC-1 or doxorubicin (all 

from Tocris Bioscience) were added at the indicated concentrations for 24 or 48 h or the 

FBS concentration was reduced as described above. Il-6 signaling was blocked through 

gp130 inhibitor SC144 (1 µM, Tocris Bioscience). NFκB inhibitors withaferin A (Tocris Bi-

oscience) and wogonin (Merck, Darmstadt, Germany) were used at concentration of 500 

nM and 100 µM, respectively, where indicated. 

To study cell proliferation, cells were trypsinized after 24 h or 48 h, respectively, and 

counted on a Neubauer hemocytometer. 

2.2. Quantitative Real Time PCR 

Total RNA was isolated from UMR106 cells using RNA-Solv reagent (Omega Bio-

Tek, Norcross, GA, USA), and 1.2 µg thereof was used for cDNA synthesis with the 

GoScript Reverse Transcription System and random primers (Promega, Mannheim, Ger-

many) on a Biometra TAdvanced thermal cycler (Analytik Jena, Jena, Germany). 
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Two µl cDNA was subjected to quantitative real-time PCR (qRT-PCR) with the CFX 

Connect Real-Time PCR Detection System (Bio-Rad, Feldkirchen, Germany). The reaction 

mix contained 0.25 µM (Fgf23) or 0.5 µM (TATA-binding protein (Tbp), Il6, Rela) of each 

primer, 10 µl GoTaq qPCR Master Mix (Promega), and sterile water to 18 µl per sample.  

The following rat primers were used (5′→3′):  

Fgf23: TAGAGCCTATTCAGACACTTC and CATCAGGGCACTGTAGATAG;  

Tbp: ACTCCTGCCACACCAGCC and GGTCAAGTTTACAGCCAAGATTCA; 

Il6: CAGAGTCATTCAGAGCAATAC and CTTTCAAGATGAGTTGGATGG; 

Rela: GCACCCCACCATCAAGATCAA and CTTGCTCCAGGTCTCGCTTC. 

Fgf23, Il6 and Rela transcript levels were normalized to transcript levels of house-

keeping gene Tbp [41–43] and evaluated with the 2-ΔCt method.  

2.3. Viability Assay (MTT Assay) 

Cells were seeded into 96-well plates and treated for 24 or 48 h with cytostatic agents 

cisplatin or doxorubicin or apoptosis inducers PAC-1 or serum deprivation. Subsequently, 

cells were incubated with 0.5 mg/mL 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazo-

lium bromide (MTT; Sigma-Aldrich, Schnelldorf, Germany) for 1 h. Next, MTT solution 

was removed, cells lyzed in dimethyl sulfoxide (DMSO; AppliChem, Darmstadt, Ger-

many), and absorption measured at 550 nm and 690 nm (reference) on a FluoStar Omega 

plate reader (BMG Labtech, Ortenberg, Germany). Results are given as percentage of via-

ble cells compared to control cells. 

2.4. Enzyme Linked Immunosorbent Assay (ELISA) 

Cell culture supernatants were collected and concentrated using Vivaspin® 2 ultrafil-

tration columns (Sartorius, Göttingen, Germany). C-terminal FGF23 protein concentration 

was then determined by ELISA according to the manufacturer’s protocol (Immutopics, 

San Clemente, CA, USA).  

2.5. Western Blot 

UMR106 cells were seeded into T25 cell culture flasks (Greiner Bio-One) and cultured 

for 24 h under standard conditions, then treated with 10 µM cisplatin or vehicle for an-

other 24 h. Next, cells were lyzed using RIPA buffer (Cell Signaling Technology, Frank-

furt, Germany) supplemented with protease and phosphatase inhibitor cocktail and 

EDTA (Halt, Thermo Scientific), total protein concentration measured by Bradford assay 

(Bio-Rad), and 30 µg of total protein subjected to 10% SDS-PAGE and standard Western 

Blotting. The following antibodies were used: anti-phospho-p65-NFκB (Ser536; 93H1), 

anti-GAPDH (D16H11), and anti-rabbit IgG HRP-linked antibody (all from Cell Signaling 

Technology). For visualization, membranes were incubated for 2 min with Westar Nova 

2.0 (GAPDH) or Westar Supernova (phospho-p65-NFκB) ECL substrate (both from Cy-

anagen, Bologna, Italy). The densitometrical analysis was performed on a C-Digit® Blot 

scanner (Li-Cor, Lincoln, NE, USA) and phospho-p65-NFκB bands were normalized to 

GAPDH bands using the Image Studio™ software (Li-Cor). 

2.6. Statistics 

Data are shown as arithmetic means ±  standard error of the mean (SEM) with n rep-

resenting the number of independent experiments. Normal distribution was tested using 

Shapiro–Wilk normality test. Effects on cell number and viability and western blots were 

analyzed with one-sample t-test or one-sample Wilcoxon signed rank test, respectively. 

Two groups were analyzed with student’s t-test, Welch’s test, or Mann–Whitney U test. 

More than two groups were analyzed with one-way analysis of variance (ANOVA) fol-

lowed by Dunnett’s multiple comparison test, Dunnett T3 test, or with non-parametric 
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Kruskal–Wallis test followed by Dunn–Bonferroni post hoc test. Differences were consid-

ered significant if p < 0.05. Statistics were made using IBM SPSS Statistics (Version 27.0; 

Armonk, NY, USA). 

3. Results 

To investigate whether chemotherapeutics impact on Fgf23 expression, we per-

formed experiments in UMR106 osteoblast-like cells. In a first series of experiments, the 

cells were treated with platinum derivative cisplatin, an antineoplastic drug used in the 

treatment of a variety of malignancies, and Fgf23 transcript levels were determined by 

qRT-PCR. As demonstrated in Figure 1A, cisplatin enhanced Fgf23 gene expression in 

UMR106 cells in a dose-dependent manner within 24 h. By the same token, exposure to 

cisplatin reduced number (Figure 1B) and viability (Figure 1C) of UMR106 cells following 

a 24-h exposure. 

 

Figure 1. Cisplatin induced fibroblast growth factor 23 (Fgf23) expression in UMR106 cells. (A,D): 

Arithmetic means ± SEM of Fgf23 transcript abundance relative to TATA-binding protein (Tbp) in 

UMR106 cells treated with vehicle control (ctr) or cisplatin at the indicated concentrations for 24 h 

((A), n = 6; ANOVA followed by Dunnett’s multiple comparison test) or 48 h ((D), n = 6; one-way 

ANOVA followed by Dunnett T3 multiple comparison test). (B–F): Arithmetic means ± SEM of the 

number ((B); n = 7; one-sample t-test; (E), n = 6; one-sample t-test) or viability ((C); n = 6; one-sample 

t-test; (F); n = 5; one-sample t-test) of UMR106 cells treated without or with 10 µM cisplatin for 24 h 
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(B,C) or 48 h (E,F). All values are relative to the respective values of vehicle-treated cells. ** p < 0.01, 

*** p < 0.001 indicate significant difference from control cells. a. u., arbitrary units; ctr, control. 

To check whether upregulation of Fgf23 gene expression is a stress reaction only ob-

servable at 24 h, we extended exposure time in a further series of experiments. According 

to Figure 1D, also a 48-h exposure of UMR106 cells resulted in dose-dependent upregula-

tion of Fgf23 gene expression. Cell number (Figure 1E) and viability (Figure 1F), however, 

were mor e strongly reduced upon a 48-h exposure to cisplatin compared to a 24-h incu-

bation (Figure 1B,C). 

The next series of experiments was carried out to investigate whether anthracyclines, 

chemotherapeutic drugs that inhibit topoisomerase and intercalate with DNA [33], are 

similarly capable of inducing Fgf23 gene expression. UMR106 cells exposed to doxorubi-

cin (0.03–0.3 µM) for 24 h exhibited enhanced Fgf23 gene expression in a dose-dependent 

manner (Figure 2A). Similar to cisplatin, doxorubicin also compromised cell proliferation 

(Figure 2B) and viability (Figure 2C). Again, we tested whether a longer exposure simi-

larly up-regulated Fgf23. As a result, incubation of UMR106 cells with doxorubicin for 48 

h killed virtually all cells (Figure 2D). Hence, Fgf23 transcripts were not detectable after 

48 h. 

 

Figure 2. Doxorubicin enhanced Fgf23 expression in UMR106 cells. (A): Arithmetic means ± SEM of 

Fgf23 transcript abundance relative to Tbp in UMR106 cells treated for 24 h with vehicle control (ctr) 

or doxorubicin at the indicated concentrations (n = 6; one-way ANOVA followed by Dunnett T3 

multiple comparison test). (B–D): Arithmetic means ± SEM of the number ((B); n = 5; one-sample t-

test; (D); n = 4) or viability ((C); n = 5; one-sample t-test) of UMR106 cells treated without or with 0.1 

µM doxorubicin for 24 h (B,C) or 48 h (D). All values are relative to the respective values of vehicle-

treated cells. * p < 0.05, ** p < 0.01, *** p < 0.001 indicate significant difference from vehicle-treated 

cells. a.u., arbitrary units; ctr, control; n.d., not detectable. 

Our results indicate that cytotoxic reagents up-regulate Fgf23 gene expression in 

UMR106 cells. In order to test whether this effect is mimicked by direct stimulation of 

apoptosis, PAC-1, an activator of apoptosis-initiating executioner caspase 3, was applied. 

As demonstrated in Figure 3A, similar to chemotherapeutics, PAC-1 dose-dependently 

up-regulated Fgf23 gene expression in UMR106 cells within 24 h. This effect was paral-

leled by compromised cell proliferation (Figure 3B) and viability (Figure 3C), as well. A 

48-h exposure to PAC-1 did not significantly modify Fgf23 transcripts in UMR106 cells 

(Figure 3D) while suppressing cell proliferation (Figure 3E) and viability (Figure 3F). 
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Figure 3. Procaspase-activating compound 1 (PAC-1) stimulated Fgf23 expression in UMR106 cells. 

(A,D): Arithmetic means ± SEM of Fgf23 transcript abundance relative to Tbp in UMR106 cells 

treated for 24 h ((A); n = 10; Kruskal–Wallis test followed by Dunn–Bonferroni test) or 48 h ((D); n = 

10; one-way ANOVA) with vehicle control (ctr) or PAC-1 at the indicated concentrations. (B)–(F): 

Arithmetic means ± SEM of the number ((B); n = 5; one-sample t-test; (E); n = 4; one-sample Wilcoxon 

signed rank test) or viability ((C); n = 5; one-sample Wilcoxon signed rank test; (F); n = 5; one-sample 

Wilcoxon signed rank test) of UMR106 cells treated with vehicle control (ctr) or 3 µM PAC-1 for 24 

h (B,C) or 48 h (E,F). All values are relative to the respective values of control-treated cells. * p < 0.05 

indicates significant difference from vehicle-treated cells. a. u., arbitrary units; ctr, control. 

Since direct apoptosis inducer PAC-1 enhanced Fgf23 gene expression in UMR106 

cells, we performed a further series of experiments to study whether another stimulant of 

apoptosis, depletion of cell growth factors, also affects Fgf23 transcription. To this end, we 

incubated UMR106 cells for 24 h under normal conditions (10% FBS), under conditions of 
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reduced FBS (1%), and without FBS in the presence of 10 nM 1,25(OH)2D3. Serum deple-

tion resulted in a strong up-regulation of Fgf23 gene expression (Figure 4A). Again, the 

effect was paralleled by decreased proliferation (Figure 4B) and viability (Figure 4C) of 

UMR106 cells. The stimulatory effect of serum depletion on Fgf23 transcripts was followed 

by enhanced secretion of C-terminal FGF23 protein into the cell culture supernatant (Fig-

ure 4D). Also, 48 h serum depletion up-regulated Fgf23 gene expression (Figure 4E), an 

effect again paralleled by reduced proliferation (Figure 4F) and viability (Figure 4G).  

 

Figure 4. Serum depletion induced Fgf23 expression and secretion in osteoblast-like UMR106 cells. 

(A): Arithmetic means ± SEM of Fgf23 transcript level relative to Tbp in UMR106 cells incubated for 

24 h in medium containing 10% (ctr), 1%, or 0% fetal bovine serum (FBS) (n = 6; Kruskal–Wallis test 

followed by Dunn–Bonferroni post hoc test). (B,C): Arithmetic means ± SEM of the number ((B); n 

= 4; one-sample t-test) or viability ((C); n = 4; one-sample t-test) of UMR106 cells incubated for 24 h 

without FBS relative to the respective value of cells incubated in 10% FBS. (D): Arithmetic means ± 

SEM of C-terminal FGF23 protein concentration in the supernatant of UMR106 cells incubated with 

10% FBS (ctr) or without FBS for 24 h (n = 7). (E): Arithmetic means ± SEM of Fgf23 mRNA levels 

relative to Tbp levels of UMR106 cells treated for 48 h with medium containing 10% (ctr), 1%, or 0% 

FBS (n = 7; Kruskal–Wallis followed by Dunn–Bonferroni test). (F,G): Arithmetic means ± SEM of 

cell number ((F), n = 6; one-sample Wilcoxon signed rank test) or cell viability ((G), n = 5; one-sample 

t-test) of UMR106 cells incubated in culture medium with 10% FBS (ctr) or without FBS for 48 h. In 

all experiments, cell culture medium contained 10 nM 1,25(OH)2D3. * p < 0.05, ** p < 0.01, *** p < 0.001 

indicate significant difference from control cells. a. u., arbitrary units; ctr, control; n. d., not detecta-

ble. 
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Pro-inflammatory cytokines including Il-6 are major stimuli of Fgf23 expression, and 

chemotherapy has been shown to enhance inflammation [44]. A further series of experi-

ments, therefore, aimed to explore the role of Il-6 for antineoplastic drug-dependent up-

regulation of Fgf23. As illustrated in Figure 5, a 24-h exposure of UMR106 cells to 10 µM 

cisplatin (Figure 5A) or 0.3 µM doxorubicin (Figure 5B) readily stimulated Il6 gene ex-

pression. Importantly, SC144, an Il-6 signaling inhibitor blocking gp130, significantly at-

tenuated cisplatin-induced Fgf23 transcription (Figure 5C) 

 

Figure 5. Interleukin-6 (IL-6) signaling inhibitor SC144 attenuated cisplatin-induced Fgf23 gene ex-

pression in UMR106 cells. (A,B): Arithmetic means ± SEM of interleukin-6 (Il6) mRNA levels relative 

to Tbp in UMR106 cells treated without (ctr) or with 10 µM cisplatin ((A), n = 6; Welch’s test) or 0.3 

µM doxorubicin ((B), n = 6; Mann–Whitney U test) for 24 h. (C): Arithmetic means ± SEM of Fgf23 

transcript levels relative to Tbp in UMR106 cells treated without (ctr) or with 10 µM cisplatin in the 

presence or absence of 1 µM Il-6 signaling inhibitor SC144 (n = 9; Kruskal–Wallis followed by Dunn–

Bonferroni test) for 24 h. * p < 0.05, ** p < 0.01, *** p < 0.001 indicate significant differences from 

vehicle-treated cells (1st bar); # p < 0.05 indicates significant difference from absence of SC144 (2nd 

bar vs. 4th bar). a. u., arbitrary units; ctr, control. 

Downstream signaling of pro-inflammatory stimuli may eventually result in the ac-

tivation of transcription factor complex NFκB, an important driver of FGF23 production 

[30]. Further experiments, therefore, focused on the involvement of NFκB in the stimula-

tion of Fgf23 by cisplatin. Within 24 h, treatment of UMR106 cells with 10 µM cisplatin 

resulted in enhanced Rela expression, the gene encoding p65 subunit of NFκB (Figure 6A). 

As detected by Western Blotting, cisplatin (10 µM, 24 h) significantly stimulated phos-

phorylation of p65 (Figure 6B). Moreover, treatment with doxorubicin (0.3 µM, 24 h) en-

hanced Rela expression (Figure 6C). Hence, cisplatin and doxorubicin induced NFκB ac-

tivity in UMR106 cells. A last series of experiments explored whether NFκB activity is 

required for the effect of cisplatin on Fgf23. To this end, UMR106 cells were treated with 

and without cisplatin and NFκB inhibitors wogonin or withaferin A for 24 h. As depicted 

in Figure 6D, wogonin significantly attenuated the cisplatin-induced effect on Fgf23 gene 

expression. Similarly, withaferin A blunted cisplatin-induced up-regulation of Fgf23 (Fig-

ure 6E). 
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Figure 6. The contribution of NFκB to the Fgf23 effect of cisplatin. (A): Arithmetic means ± SEM of 

NFκB subunit p65 (Rela) gene expression relative to Tbp in UMR106 cells incubated without (ctr) or 

with 10 µM cisplatin for 24 h (n = 4; student’s t-test). (B): Left panel: Original Western Blot demon-

strating the abundance of phospho-p65-NFκB and GAPDH in UMR106 cells treated with (cis) or 

without (ctr) 10 µM cisplatin for 24 h. Right panel: Arithmetic means ± SEM of phospho-p65-NFκB 

relative to GAPDH abundance (n = 8; one-sample Wilcoxon signed rank test). (C): Arithmetic means 

± SEM of Rela expression relative to Tbp in UMR106 cells incubated for 24 h without (ctr) or with 0.3 

µM doxorubicin (n = 4; student’s t-test). (D,E): Arithmetic means ± SEM of Fgf23 transcript abun-

dance relative to Tbp in UMR106 cells treated for 24 h with vehicle control (ctr, white bars) or 3 µM 

cisplatin (black bars) in the presence or absence of 100 µM wogonin ((D); n = 9; Kruskal–Wallis test 

followed by Dunn–Bonferroni test) or 500 nM withaferin A ((E); n = 9; Kruskal–Wallis test followed 

by Dunn–Bonferroni test). * p < 0.05, ** p < 0.01 indicate significant difference from vehicle-treated 

cells (1st bar). # p < 0.05 indicates significant difference from the absence of NFκB inhibitors wogonin 

and withaferin A, respectively (2nd bar vs. 4th bar). a. u., arbitrary units; ctr, control. 

4. Discussion 

According to our study, two cytotoxic drugs with different cellular targets used in 

the treatment of several malignancies as well as apoptosis inducers PAC-1 and serum de-

pletion stimulated Fgf23 gene expression in UMR106 osteoblast-like cells within 24 h. The 

effect was paralleled by a reduction in cell viability and proliferation as deduced from cell 

number. 
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UMR106 osteoblast-like cells were chosen for our study because under physiological 

conditions, bone is the major site of FGF23 production [45] and these cells are a versatile 

tool employed in many studies to unravel the regulation of FGF23 [25,46–49]. 

Incubation of UMR106 cells with cisplatin or in serum-depleted medium for 48 h also 

resulted in enhanced Fgf23 expression. Prolonged incubation with doxorubicin, however, 

killed all cells. In contrast to 24 h, 48-h exposure of the cells to PAC-1 did not significantly 

modify Fgf23 expression, possibly because PAC-1-dependent apoptosis induction occurs 

much earlier and late apoptotic cells cannot up-regulate Fgf23 gene expression any longer.  

Cisplatin, doxorubicin, PAC-1 as well as serum depletion have in common that they 

cause cellular damage reducing cell number and viability, which may ultimately result in 

cell death. Cisplatin is effective by interfering with DNA replication [50], doxorubicin in-

hibits topoisomerase and intercalates with DNA [51], PAC-1 directly stimulates apoptotic 

cell death through executioner caspase 3 [35], whereas serum depletion favors apoptotic 

cell death due to lack of essential growth factors [36]. Although the mechanism of cell 

damage is different, the up-regulation of Fgf23 gene expression is consistent for all four 

inducers of cellular injury. This important finding may point to a role of FGF23 in cellular 

stress, cell death, and survival. Indeed, FGF23-Klotho signaling favors cell proliferation 

and inhibits apoptosis, elicited by vitamin D, through phosphoinositide-3 kinase (PI3K) 

signaling [52]. Moreover, FGF23 exerts many effects through serum and glucocorticoid-

dependent kinase 1 (SGK1) [53]. SGK1 is an important mediator of pro-survival signaling 

inhibiting apoptosis [54]. Moreover, in acute kidney injury (AKI), FGF23 has turned out 

to stimulate cell proliferation promoting regeneration of injured tubules through influ-

encing SDF-1/CXCR4 signaling [55]. In tumor cells, namely prostate cancer, FGF23 simi-

larly stimulates cell proliferation [56]. According to these studies, FGF23 has pro-sur-

vival/anti-apoptotic properties. Hence, up-regulation of FGF23 in cell stress as demon-

strated in our study may help the cell activate pro-survival signaling. Alternatively, FGF23 

may not only be a disease biomarker, but Fgf23 gene expression may also indicate injury 

on cellular level or even serve as a marker for moribund cells. Definitely, further research 

is required to elucidate this. 

In UMR106 cells, basal Fgf23 expression is low unless the cells are pretreated with 

1,25(OH)2D3 which strongly up-regulates Fgf23 expression [24]. Therefore, it must be kept 

in mind that although Fgf23 transcripts significantly increased upon treatment with cis-

platin, doxorubicin, or PAC-1, yet the cellular FGF23 protein concentration remained be-

low the detection limit of ELISA. Serum depletion experiments were accomplished in the 

presence of 10 nM 1,25(OH)2D3, hence, C-terminal FGF23 protein in the cell culture super-

natant could be detected by ELISA and was significantly up-regulated in serum-depleted 

cells compared to control cells.  

Chemotherapy is known to induce inflammation [37]. We demonstrated that both 

cisplatin and doxorubicin induce pro-inflammatory cytokine Il-6 within 24 h. Importantly, 

Il-6 is a stimulator of FGF23 [28]. In line with this, Il-6 signaling inhibitor SC144 signifi-

cantly blunted cisplatin-induced Fgf23 gene expression. Moreover, expression and phos-

phorylation of NFκB subunit p65 were up-regulated by cisplatin. Accordingly, wogonin 

and withaferin A, inhibitors of NFκB, significantly blunted cisplatin-induced up-regula-

tion of Fgf23 expression. This is in line with the pivotal role of NFκB and generally inflam-

mation for the stimulation of FGF23 production. Importantly, cisplatin is a powerful in-

ducer of NFκB activity [57], which may also contribute to treatment resistance [58] or ne-

phrotoxicity [59]. Doxorubicin also induces inflammation by activating NFκB [60,61]. 

Hence, it appears likely that chemotherapy-induced inflammation involving Il-6 and 

NFκB is a major contributor to the up-regulation of Fgf23 expression. In our experiments, 

wogonin and withaferin A tended to decrease Fgf23 transcript levels in untreated cells, a 

difference, however, not reaching statistical significance. Presumably, the effect of NFκB 

inhibition on Fgf23 is smaller in cells with low basal Fgf23 expression in the absence of 

1,25(OH)2D3 stimulation than in cells pre-treated with 1,25(OH)2D3 to up-regulate Fgf23 

expression [30]. 
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Direct executioner caspase-3-activator PAC-1 also up-regulated Fgf23 gene expres-

sion. The same holds true for serum depletion, which favors apoptosis through growth 

factor deficiency [62]. However, caspase 3 activation and subsequent apoptosis are rather 

associated with decreased NFκB activity and not with a pro-inflammatory response [63]. 

Hence, additional mechanisms elucidated by future studies can clearly be expected to be 

also involved in the up-regulation of Fgf23 expression of injured cells.  

Taken together, the induction of cellular injury through cytotoxic drugs, serum de-

pletion, or caspase 3 activation resulting in decreased proliferation and viability leads to 

the up-regulation of Fgf23 gene expression. This effect can in part, but not fully, be ex-

plained by IL-6 up-regulation and NFκB activation. 

Author Contributions: Conceptualisation, S.M., M.F. (Martina Feger)., B.E., M.F. (Michael Föller); 

Formal Analysis, S.M.; Supervision, M.F. (Michael Föller); Validation, Visualisation, S.M.; Writing—

Original Draft Preparation, S. M., M.F. (Michael Föller); Writing—Review and Editing, S.M., M.F. 

(Martina Feger), B.E., M.F. (Michael Föller). All authors have read and agreed to the published ver-

sion of the manuscript. 

Funding: This work was supported by Deutsche Forschungsgemeinschaft (Fo 695/6-1). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Acknowledgments: The authors thank C. Heidel and H. Froß for technical help.  

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Han, Y.; You, X.; Xing, W.; Zhang, Z.; Zou, W. Paracrine and endocrine actions of bone—The functions of secretory proteins 

from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018, 6, 1–11, doi:10.1038/s41413-018-0019-6. 

2. Leifheit-Nestler, M.; Haffner, D. Paracrine Effects of FGF23 on the Heart. Front. Endocrinol. 2018, 9, doi:10.3389/fendo.2018.00278. 

3. Hu, M.C.; Shi, M.; Moe, O.W. Role of αKlotho and FGF23 in regulation of type II Na-dependent phosphate co-transporters. 

Pflug. Arch. 2019, 471, 99–108, doi:10.1007/s00424-018-2238-5. 

4. Chanakul, A.; Zhang, M.Y.H.; Louw, A.; Armbrecht, H.J.; Miller, W.L.; Portale, A.A.; Perwad, F. FGF-23 Regulates CYP27B1 

Transcription in the Kidney and in Extra-Renal Tissues. PLoS ONE 2013, 8, e72816, doi:10.1371/journal.pone.0072816. 

5. Shimada, T.; Hasegawa, H.; Yamazaki, Y.; Muto, T.; Hino, R.; Takeuchi, Y.; Fujita, T.; Nakahara, K.; Fukumoto, S.; Yamashita, 

T. FGF-23 Is a Potent Regulator of Vitamin D Metabolism and Phosphate Homeostasis. J. Bone Miner. Res. 2004, 19, 429–435, 

doi:10.1359/JBMR.0301264. 

6. Ben-Dov, I.Z.; Galitzer, H.; Lavi-Moshayoff, V.; Goetz, R.; Kuro-o, M.; Mohammadi, M.; Sirkis, R.; Naveh-Many, T.; Silver, J. 

The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest. 2007, 117, 4003–4008, doi:10.1172/JCI32409. 

7. Hu, M.C.; Shiizaki, K.; Kuro-o, M.; Moe, O.W. Fibroblast Growth Factor 23 and Klotho: Physiology and Pathophysiology of an 

Endocrine Network of Mineral Metabolism. Annu. Rev. Physiol. 2013, 75, 503–533, doi:10.1146/annurev-physiol-030212-183727. 

8. Mytych, J.; Sołek, P.; Będzińska, A.; Rusinek, K.; Warzybok, A.; Tabęcka-Łonczyńska, A.; Koziorowski, M. Towards Age-Related 

Anti-Inflammatory Therapy: Klotho Suppresses Activation of ER and Golgi Stress Response in Senescent Monocytes. Cells 2020, 

9, 261, doi:10.3390/cells9020261. 

9. Rusinek, K.; Sołek, P.; Tabęcka-Łonczyńska, A.; Koziorowski, M.; Mytych, J. Focus on the Role of Klotho Protein in Neuro-

Immune Interactions in HT-22 Cells Upon LPS Stimulation. Cells 2020, 9, 1231, doi:10.3390/cells9051231. 

10. Imura, A.; Iwano, A.; Tohyama, O.; Tsuji, Y.; Nozaki, K.; Hashimoto, N.; Fujimori, T.; Nabeshima, Y.-I. Secreted Klotho protein 

in sera and CSF: Implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett. 2004, 

565, 143–147, doi:10.1016/j.febslet.2004.03.090. 

11. Kuro-o, M.; Matsumura, Y.; Aizawa, H.; Kawaguchi, H.; Suga, T.; Utsugi, T.; Ohyama, Y.; Kurabayashi, M.; Kaname, T.; Kume, 

E.; et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997, 390, 45–51, doi:10.1038/36285. 

12. Kurosu, H.; Yamamoto, M.; Clark, J.D.; Pastor, J.V.; Nandi, A.; Gurnani, P.; McGuinness, O.P.; Chikuda, H.; Yamaguchi, M.; 

Kawaguchi, H.; et al. Suppression of aging in mice by the hormone Klotho. Science 2005, 309, 1829–1833, doi:10.1126/sci-

ence.1112766. 

13. Razzaque, M.S.; Lanske, B. Hypervitaminosis D and premature aging: Lessons learned from Fgf23 and Klotho mutant mice. 

Trends Mol. Med. 2006, 12, 298–305, doi:10.1016/j.molmed.2006.05.002. 

14. Wahl, P.; Wolf, M. FGF23 in Chronic Kidney Disease. In Endocrine FGFs and Klothos; Kuro-o, M., Ed.; Springer: New York, NY, 

USA, 2012; pp 107–125, ISBN 9781461408864. 



Cells 2022, 11, 40 12 of 13 
 

 

15. Chu, C.; Elitok, S.; Zeng, S.; Xiong, Y.; Hocher, C.-F.; Hasan, A.A.; Krämer, B.K.; Hocher, B. C-terminal and intact FGF23 in 

kidney transplant recipients and their associations with overall graft survival. BMC Nephrol. 2021, 22, doi:10.1186/s12882-021-

02329-7. 

16. Xiao, Y.; Peng, C.; Huang, W.; Zhang, J.; Xia, M.; Zhang, Y.; Ling, W. Circulating Fibroblast Growth Factor 23 Is Associated with 

Angiographic Severity and Extent of Coronary Artery Disease. PLoS ONE 2013, 8, e72545, doi:10.1371/journal.pone.0072545. 

17. Mirza, M.A.I.; Hansen, T.; Johansson, L.; Ahlström, H.; Larsson, A.; Lind, L.; Larsson, T.E. Relationship between circulating 

FGF23 and total body atherosclerosis in the community. Nephrol. Dial. Transplant. 2009, 24, 3125–3131, doi:10.1093/ndt/gfp205. 

18. Di Giuseppe, R.; Kühn, T.; Hirche, F.; Buijsse, B.; Dierkes, J.; Fritsche, A.; Kaaks, R.; Boeing, H.; Stangl, G.I.; Weikert, C. Plasma 

fibroblast growth factor 23 and risk of cardiovascular disease: Results from the EPIC-Germany case-cohort study. Eur. J. Epi-

demiol. 2015, 30, 131–141, doi:10.1007/s10654-014-9982-4. 

19. Figurek, A.; Rroji, M.; Spasovski, G. The Complexity of FGF23 Effects on Cardiomyocytes in Normal and Uremic Milieu. Cells 

2021, 10, 1266, doi:10.3390/cells10051266. 

20. Fitzpatrick, E.A.; Han, X.; Xiao, Z.; Quarles, L.D. Role of Fibroblast Growth Factor-23 in Innate Immune Responses. Front. En-

docrinol. 2018, 9, doi:10.3389/fendo.2018.00320. 

21. Isakova, T. Fibroblast growth factor 23 and adverse clinical outcomes in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 

2012, 21, 334–340, doi:10.1097/MNH.0b013e328351a391. 

22. Vervloet, M.G.; van Ittersum, F.J.; Büttler, R.M.; Heijboer, A.C.; Blankenstein, M.A.; ter Wee, P.M. Effects of dietary phosphate 

and calcium intake on fibroblast growth factor-23. Clin. J. Am. Soc. Nephrol. 2011, 6, 383–389, doi:10.2215/CJN.04730510. 

23. Meir, T.; Durlacher, K.; Pan, Z.; Amir, G.; Richards, W.G.; Silver, J.; Naveh-Many, T. Parathyroid hormone activates the orphan 

nuclear receptor Nurr1 to induce FGF23 transcription. Kidney Int. 2014, 86, 1106–1115, doi:10.1038/ki.2014.215. 

24. Masuyama, R.; Stockmans, I.; Torrekens, S.; van Looveren, R.; Maes, C.; Carmeliet, P.; Bouillon, R.; Carmeliet, G. Vitamin D 

receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J. Clin. Invest. 2006, 116, 

3150–3159, doi:10.1172/JCI29463. 

25. Bär, L.; Feger, M.; Fajol, A.; Klotz, L.-O.; Zeng, S.; Lang, F.; Hocher, B.; Föller, M. Insulin suppresses the production of fibroblast 

growth factor 23 (FGF23). Proc. Natl. Acad. Sci. USA 2018, 115, 5804–5809, doi:10.1073/pnas.1800160115. 

26. Daryadel, A.; Bettoni, C.; Haider, T.; Imenez Silva, P.H.; Schnitzbauer, U.; Pastor-Arroyo, E.M.; Wenger, R.H.; Gassmann, M.; 

Wagner, C.A. Erythropoietin stimulates fibroblast growth factor 23 (FGF23) in mice and men. Pflug. Arch. 2018, 470, 1569–1582, 

doi:10.1007/s00424-018-2171-7. 

27. David, V.; Martin, A.; Isakova, T.; Spaulding, C.; Qi, L.; Ramirez, V.; Zumbrennen-Bullough, K.B.; Sun, C.C.; Lin, H.Y.; Babitt, 

J.L.; et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int. 2016, 89, 135–

146, doi:10.1038/ki.2015.290. 

28. Durlacher-Betzer, K.; Hassan, A.; Levi, R.; Axelrod, J.; Silver, J.; Naveh-Many, T. Interleukin-6 contributes to the increase in 

fibroblast growth factor 23 expression in acute and chronic kidney disease. Kidney Int. 2018, 94, 315–325, 

doi:10.1016/j.kint.2018.02.026. 

29. Glosse, P.; Fajol, A.; Hirche, F.; Feger, M.; Voelkl, J.; Lang, F.; Stangl, G.I.; Föller, M. A high-fat diet stimulates fibroblast growth 

factor 23 formation in mice through TNFα upregulation. Nutr. Diabetes 2018, 8, doi:10.1038/s41387-018-0037-x. 

30. Zhang, B.; Yan, J.; Umbach, A.T.; Fakhri, H.; Fajol, A.; Schmidt, S.; Salker, M.S.; Chen, H.; Alexander, D.; Spichtig, D.; et al. 

NFκB-sensitive Orai1 expression in the regulation of FGF23 release. J. Mol. Med. 2016, 94, 557–566, doi:10.1007/s00109-015-1370-

3. 

31. Bold, R.J.; Termuhlen, P.M.; McConkey, D.J. Apoptosis, cancer and cancer therapy. Surg. Oncol. 1997, 6, 133–142, 

doi:10.1016/S0960-7404(97)00015-7. 

32. Makin, G.; Hickman, J.A. Apoptosis and cancer chemotherapy. Cell Tissue Res. 2000, 301, 143–152, doi:10.1007/s004419900160. 

33. Yang, F.; Kemp, C.J.; Henikoff, S. Anthracyclines induce double-strand DNA breaks at active gene promoters. Mutat. Res. Fun-

dam. Mol. Mech. Mutagen. 2015, 773, 9–15, doi:10.1016/j.mrfmmm.2015.01.007. 

34. Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 

364–378, doi:10.1016/j.ejphar.2014.07.025. 

35. Peterson, Q.P.; Goode, D.R.; West, D.C.; Ramsey, K.N.; Lee, J.J.Y.; Hergenrother, P.J. PAC-1 activates procaspase-3 in vitro 

through relief of zinc-mediated inhibition. J. Mol. Biol. 2009, 388, 144–158, doi:10.1016/j.jmb.2009.03.003. 

36. Higuchi, A.; Shimmura, S.; Takeuchi, T.; Suematsu, M.; Tsubota, K. Elucidation of apoptosis induced by serum deprivation in 

cultured conjunctival epithelial cells. Br. J. Ophthalmol. 2006, 90, 760–764, doi:10.1136/bjo.2005.088203. 

37. Vyas, D.; Laput, G.; Vyas, A.K. Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis. On-

coTargets Ther. 2014, 7, 1015–1023, doi:10.2147/OTT.S60114. 

38. Ludwig, T.; Riethmüller, C.; Gekle, M.; Schwerdt, G.; Oberleithner, H. Nephrotoxicity of platinum complexes is related to ba-

solateral organic cation transport. Kidney Int. 2004, 66, 196–202, doi:10.1111/j.1523-1755.2004.00720.x. 

39. Volkova, M.; Russell, R. Anthracycline cardiotoxicity: Prevalence, pathogenesis and treatment. Curr. Cardiol. Rev. 2011, 7, 214–

220, doi:10.2174/157340311799960645. 

40. Saini, R.K.; Kaneko, I.; Jurutka, P.W.; Forster, R.; Hsieh, A.; Hsieh, J.-C.; Haussler, M.R.; Whitfield, G.K. 1,25-dihydroxyvitamin 

D(3) regulation of fibroblast growth factor-23 expression in bone cells: Evidence for primary and secondary mechanisms mod-

ulated by leptin and interleukin-6. Calcif. Tissue Int. 2013, 92, 339–353, doi:10.1007/s00223-012-9683-5. 



Cells 2022, 11, 40 13 of 13 
 

 

41. González-Bermúdez, L.; Anglada, T.; Genescà, A.; Martín, M.; Terradas, M. Identification of reference genes for RT-qPCR data 

normalisation in aging studies. Sci. Rep. 2019, 9, 1–11, doi:10.1038/s41598-019-50035-0. 

42. Abuna, R.P.F.; Oliveira, F.S.; Ramos, J.I.R.; Lopes, H.B.; Freitas, G.P.; Souza, A.T.P.; Beloti, M.M.; Rosa, A.L. Selection of reference 

genes for quantitative real-time polymerase chain reaction studies in rat osteoblasts. J. Cell. Physiol. 2018, 234, 749–756, 

doi:10.1002/jcp.26886. 

43. Bär, L.; Hase, P.; Föller, M. PKC regulates the production of fibroblast growth factor 23 (FGF23). PLoS ONE 2019, 14, e0211309, 

doi:10.1371/journal.pone.0211309. 

44. Oflazoglu, U.; Alacacioglu, A.; Varol, U.; Kucukzeybek, Y.; Salman, T.; Onal, H.T.; Yilmaz, H.E.; Yildiz, Y.; Taskaynatan, H.; 

Saray, S.; et al. The role of inflammation in adjuvant chemotherapy-induced sarcopenia (Izmir Oncology Group (IZOG) study). 

Support Care Cancer 2020, 28, 3965–3977, doi:10.1007/s00520-020-05477-y. 

45. Bonewald, L.F.; Wacker, M.J. FGF23 production by osteocytes. Pediatr. Nephrol. 2013, 28, 563–568, doi:10.1007/s00467-012-2309-

3. 

46. Ma, L.; Gao, M.; Wu, L.; Zhao, X.; Mao, H.; Xing, C. The suppressive effect of soluble Klotho on fibroblastic growth factor 23 

synthesis in UMR-106 osteoblast-like cells. Cell Biol. Int. 2018, 42, 1270–1274, doi:10.1002/cbin.10997. 

47. Vidal, A.; Rios, R.; Pineda, C.; Lopez, I.; Muñoz-Castañeda, J.R.; Rodriguez, M.; Aguilera-Tejero, E.; Raya, A.I. Direct regulation 

of fibroblast growth factor 23 by energy intake through mTOR. Sci. Rep. 2020, 10, 1795, doi:10.1038/s41598-020-58663-7. 

48. Samadfam, R.; Richard, C.; Nguyen-Yamamoto, L.; Bolivar, I.; Goltzman, D. Bone formation regulates circulating concentrations 

of fibroblast growth factor 23. Endocrinology 2009, 150, 4835–4845, doi:10.1210/en.2009-0472. 

49. Takashi, Y.; Kosako, H.; Sawatsubashi, S.; Kinoshita, Y.; Ito, N.; Tsoumpra, M.K.; Nangaku, M.; Abe, M.; Matsuhisa, M.; Kato, 

S.; et al. Activation of unliganded FGF receptor by extracellular phosphate potentiates proteolytic protection of FGF23 by its O-

glycosylation. Proc. Natl. Acad. Sci. USA 2019, 116, 11418–11427, doi:10.1073/pnas.1815166116. 

50. Siddik, Z.H. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene 2003, 22, 7265–7279, 

doi:10.1038/sj.onc.1206933. 

51. Wang, C.-W.; Chen, C.-L.; Wang, C.-K.; Chang, Y.-J.; Jian, J.-Y.; Lin, C.-S.; Tai, C.-J.; Tai, C.-J. Cisplatin-, Doxorubicin-, and 

Docetaxel-Induced Cell Death Promoted by the Aqueous Extract of Solanum nigrum in Human Ovarian Carcinoma Cells. In-

tegr. Cancer Ther. 2015, 14, 546–555, doi:10.1177/1534735415588826. 

52. Medici, D.; Razzaque, M.S.; Deluca, S.; Rector, T.L.; Hou, B.; Kang, K.; Goetz, R.; Mohammadi, M.; Kuro-o, M.; Olsen, B.R.; et 

al. FGF-23-Klotho signaling stimulates proliferation and prevents vitamin D-induced apoptosis. J. Cell Biol. 2008, 182, 459–465, 

doi:10.1083/jcb.200803024. 

53. Andrukhova, O.; Zeitz, U.; Goetz, R.; Mohammadi, M.; Lanske, B.; Erben, R.G. FGF23 acts directly on renal proximal tubules to 

induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone 2012, 51, 621–628, 

doi:10.1016/j.bone.2012.05.015. 

54. Bai, J.-A.; Xu, G.-F.; Yan, L.-J.; Zeng, W.-W.; Ji, Q.-Q.; Wu, J.-D.; Tang, Q.-Y. SGK1 inhibits cellular apoptosis and promotes 

proliferation via the MEK/ERK/p53 pathway in colitis. World J. Gastroenterol. 2015, 21, 6180–6193, doi:10.3748/wjg.v21.i20.6180. 

55. Chang, H.-M.; Peng, K.-Y.; Chan, C.-K.; Sun, C.-Y.; Chen, Y.-Y.; Chang, H.-M.; Huang, C.-L.; Liu, P.-C.; Chen, P.-Y.; Wang, K.-

C.; et al. FGF23 ameliorates ischemia-reperfusion induced acute kidney injury via modulation of endothelial progenitor cells: 

Targeting SDF-1/CXCR4 signaling. Cell Death Dis. 2021, 12, 409, doi:10.1038/s41419-021-03693-w. 

56. Feng, S.; Wang, J.; Zhang, Y.; Creighton, C.J.; Ittmann, M. FGF23 promotes prostate cancer progression. Oncotarget 2015, 6, 

17291–17301. 

57. Kim, S.B.; Kim, J.S.; Lee, J.H.; Yoon, W.J.; Lee, D.S.; Ko, M.S.; Kwon, B.S.; Choi, D.H.; Cho, H.R.; Lee, B.J.; et al. NF-kappaB 

activation is required for cisplatin-induced apoptosis in head and neck squamous carcinoma cells. FEBS Lett. 2006, 580, 311–

318, doi:10.1016/j.febslet.2005.12.012. 

58. Li, F.; Huang, L.; Su, X.-L.; Gu, Q.-H.; Hu, C.-P. Inhibition of nuclear factor-κB activity enhanced chemosensitivity to cisplatin 

in human lung adeno-carcinoma A549 cells under chemical hypoxia conditions. Chin. Med. J. 2013, 126, 3276–3282. 

59. Ozkok, A.; Ravichandran, K.; Wang, Q.; Ljubanovic, D.; Edelstein, C.L. NF-κB transcriptional inhibition ameliorates cisplatin-

induced acute kidney injury (AKI). Toxicol. Lett. 2016, 240, 105–113, doi:10.1016/j.toxlet.2015.10.028. 

60. Esparza-López, J.; Medina-Franco, H.; Escobar-Arriaga, E.; León-Rodríguez, E.; Zentella-Dehesa, A.; Ibarra-Sánchez, M.J. Dox-

orubicin induces atypical NF-κB activation through c-Abl kinase activity in breast cancer cells. J. Cancer Res. Clin. Oncol. 2013, 

139, 1625–1635, doi:10.1007/s00432-013-1476-3. 

61. Wang, S.; Kotamraju, S.; Konorev, E.; Kalivendi, S.; Joseph, J.; Kalyanaraman, B. Activation of nuclear factor-kappaB during 

doxorubicin-induced apoptosis in endothelial cells and myocytes is pro-apoptotic: The role of hydrogen peroxide. Biochem. J. 

2002, 367, 729–740, doi:10.1042/BJ20020752. 

62. Mason, E.F.; Rathmell, J.C. Cell metabolism: An essential link between cell growth and apoptosis. Biochim. Biophys. Acta 2011, 

1813, 645–654, doi:10.1016/j.bbamcr.2010.08.011. 

63. Wallach, D.; Kovalenko, A. Keeping inflammation at bay. eLife 2014, 3, doi:10.7554/eLife.02583. 


