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Abstract: Cyclin-dependent kinase 5 (Cdk5) is expressed in terminally differentiated cells, where it
drives development, morphogenesis, and survival. Temporal and spatial kinase activity is regulated
by specific activators of Cdk5, dependent on the cell type and environmental factors. In the kidney,
Cdk5 is exclusively expressed in terminally differentiated glomerular epithelial cells called podocytes.
In glomerular disease, signaling mechanisms via Cdk5 have been addressed by single or combined
conventional knockout of known specific activators of Cdk5. A protective, anti-apoptotic role has
been ascribed to Cdk5 but not a developmental phenotype, as in terminally differentiated neurons.
The effector kinase itself has never been addressed in animal models of glomerular disease. In the
present study, conditional and inducible knockout models of Cdk5 were analyzed to investigate the
role of Cdk5 in podocyte development and glomerular disease. While mice with podocyte-specific
knockout of Cdk5 had no developmental defects and regular lifespan, loss of Cdk5 in podocytes
increased susceptibility to glomerular damage in the nephrotoxic nephritis model. Glomerular
damage was associated with reduced anti-apoptotic signals in Cdk5-deficient mice. In summary,
Cdk5 acts primarily as master regulator of podocyte survival during glomerular disease and—in
contrast to neurons—does not impact on glomerular development or maintenance.

Keywords: proteinuria; nephrotoxic nephritis; apoptosis; cyclin I; p35

1. Introduction

The atypical cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine
kinase with prime functions in terminally differentiated cell types [1]. In neurons, Cdk5
is a crucial regulator of brain development and morphological characteristics, including
neuronal migration, axonal guidance, and synapse formation and plasticity, as well as
cytoskeletal rearrangement. Cdk5 is involved in higher cognitive abilities, e.g., learning,
memory and behavior [2–5]. The kinase is activated by specific activators, such as p35, p25,
p39, and cyclin I, and inhibited by GSTP1, cyclin D1, and cyclin E [6–11]. These activators
and inhibitors confer a tight spatial and temporal regulation of Cdk5 activity [12–14]. In
mice, the conventional knockout of Cdk5 is associated with severe structural lesions of the
central nervous system and perinatal mortality [15].

In the kidney, Cdk5 is exclusively expressed in glomerular epithelial cells called
podocytes [16]. Podocytes are postmitotic epithelial cells arrested in G0/1 phase that reside
on the outer aspect of glomerular capillaries. Podocytes protrude primary and secondary
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cellular processes, called foot processes, which interdigitate with foot processes of neigh-
boring cells. Podocyte foot processes compress the glomerular basement membrane against
positive capillary pressure and regulate mesh width of the glomerular basement mem-
brane to limit the passage of macromolecules, specifically proteins larger than 70 kDa [17].
Loss of podocytes either by detachment from the glomerular basement membrane or by
apoptosis cannot be replaced by proliferation, which results in loss of function of the
glomerular filter, indicated clinically by urinary protein loss (i.e., proteinuria/albuminuria)
and histologically by glomerular scarring.

In podocytes, Cdk5 is activated by p25, p35, and/or cyclin I, which also determine
the subcellular localization of the kinase [18]. Depending on the binding partners, Cdk5
exerts an anti-apoptotic signal via BCL-2/BCL-XL through diverse mechanisms [7,19].
Loss of Cdk5 activation, by conventional knockout of p35 or cyclin I or both, in mice was
associated with higher susceptibility to injury in the mouse model of nephrotoxic nephritis
(NTN) [20,21]. In these studies, cyclin I-Cdk5 was shown to activate ERK 1/2, leading
to increased BCL-2/BCL-XL mRNA expression, whereas p35-Cdk5 phosphorylated Bcl-2
directly, resulting in stabilization of the protein complex. In addition, p35-Cdk5 phospho-
rylates the non-selective cation channel TRPC6, thereby increasing channel activity [22].
Enhanced conductance across TRPC6 is associated with podocyte dysfunction in genetic
and sporadic diseases [23–25]. As both inhibition and promotion of Cdk5 activity may be
detrimental to the podocyte, a tight control of Cdk5 kinase activity is warranted in these
highly specialized glomerular epithelial cells. Strikingly, knockout of the Cdk5-activators,
p35 or cyclin I or both, did not affect podocyte development or function under non-stressed
conditions. In contrast, following podocyte stress in the nephrotoxic nephritis model
(NTN), apoptosis was higher in the p35/cyclin I double knockout mice compared to a
similar stress in the single p35 or cyclin I null mice.

To investigate a potential developmental role of Cdk5, which may be referred by yet
unknown activators of the kinase, we generated podocyte-specific Cdk5 knockout mice
and analyzed these animals under non-stressed conditions. In addition, we delineated the
contribution of Cdk5 in states of glomerular disease, employing inducible podocyte-specific
Cdk5 knockout mice and the NTN disease model.

2. Materials and Methods
2.1. Animal Models

Podocyte-specific Cdk5 knockout was generated by mating Cdk5flox mice obtained
from Jackson Laboratory (Bar Harbor, ME, USA) with hNPHS2.Cre mice [1,26]. Transgenic
offspring were identified by PCR amplification using specific primer sequences listed below
(Table 1).

Table 1. Primer sequences for PCR amplification.

Mouse Model Forward Reverse

Cdk5pko CAGTTTCTAGCACCCAACTGATGTA GCTGTCCTGGAACTCCATCTATAGA

Cdk5mRNA (qPCR) CAGTTTCTAGCACCCAACTGATGTA GTCGTCCTGGAACTCCATCTATAGA

Cdk5ipko GACCAGGTTCGTTCACTCA TAGCGCCGTAAATCAAT

For the assessment of Cdk5 knockout efficacy, Cdk5flox mice were mated with
mPodocin.2A.Cre.2A.mTomato mice, yielding mTomato-fluorescent podocytes in the off-
spring [3]. Glomeruli were isolated and primary podocytes purified by fluorescence-
activated cell sorting (FACS), as previously described [27–29]. Cdk5 expression levels were
quantified in isolated podocytes by quantitative PCR (primer sequences in Table 1).

In all animal studies, only male mice were employed. Mice were bred into mixed
FVB/N and 129S4/SvJae backgrounds and maintained under standardized, pathogen-free
conditions in the University of Washington animal facility, as well as in the University
of Cologne animal facility. The experimental protocol was reviewed and approved by
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the Animal Care Committee of the University of Washington, Seattle, USA and by the
State Agency for Nature, Environment, and Consumer Protection, North Rhine-Westphalia,
Germany (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen).

2.2. Generation of Inducible Cdk5 Knockout

Temporal control of Cdk5 knockout in podocytes was achieved by mating Cdk5flox
mice with hNPHS/rtTA/TetO-Cre mice. In the offspring, transgene transcription was
controlled by a podocin-driven promoter which expressed Cre recombinase specifically
in podocytes in the presence of doxycycline [30]. Doxycycline (Sigma/Merck, Darmstadt,
Germany) was administered for 14 days via the drinking water (0.2 mg/mL in 5% sucrose),
between the ages of 8 and 10 weeks. Water was exchanged twice weekly, and the bottles
were protected from light to prevent doxycycline degradation. Transgenic mice were
identified by PCR amplification. Primer sequences are listed in the following table.

2.3. Experimental Glomerular Disease

Nephrotoxic nephritis was induced by intraperitoneal injections of sheep anti-rabbit
glomerular antibody, as previously described [31]. Fourteen days after the induction of
Cdk5-deletion in podocytes, nephrotoxic serum (20 mg/20 g body weight) was injected
intraperitoneally into 10–12 week-old mice on two consecutive days. Mice were sacrificed
on day 7 after the second injection.

2.4. Immunohistochemistry

Immunohistochemical analyses were performed on kidney sections of podocyte-
specific Cdk5-knockout (Cdk5pko) and wild type mice and stained with primary antibodies
listed in the Table 2. Briefly, formaldehyde-fixed, paraffin-embedded kidneys were cut into
4 µm tissue sections, deparaffinized in xylene, and rehydrated in graded alcohol. Anti-
gen retrieval was performed by boiling kidney sections for 10 min in 10 mmol/L citrate
buffer, pH 9. Endogenous peroxidase activity was blocked with 3% hydrogen peroxide,
and endogenous biotin was inhibited by Avidin/Biotin blocking kit (Vector Laboratories,
Burlingam, CA, USA). Kidney sections were incubated overnight at 4 ◦C, with the respec-
tive primary antibody diluted in 1% PBS/BSA buffer. Subsequently, biotin-conjugated
anti-rabbit secondary antibody (Jackson ImmunoResearch) was diluted in 1% PBS buffer
and incubated for one hour at room temperature. Repeated washing steps were performed
with PBS buffer at least three times. The ABC kit (Vector Laboratories, Burlingam, CA,
USA) was used for signal amplification. Chromogen 3,3′-diaminobenzamine (DAB; Sigma,
St. Louis, MO, USA) was used. Finally, sections were counterstained with hematoxylin
(Sigma Aldrich, St. Louis, MO, USA), dehydrated in xylol, and mounted with Histomount
(National Diagnostics, Atlanta, GA, USA).

Table 2. Primary antibodies for IHC analyses.

Name Company ID Dilution

Bcl-2 Santa Cruz Biotechnology, Dallas, TX, USA Sc-492 1:200

Bcl-XL Cell Signaling Tech., Danvers, MA, USA CST-2762 1:150

CC3 Cell Signaling Tech., Danvers, MA, USA CST-9661 1:200

Podocin Sigma, St. Louis, MO, USA P0372 1:100

WT-1 Santa Cruz Biotechnology, Dallas, TX, USA sc-393498 1:100

2.5. Quantitative Assessment of Podocyte Number and Apoptosis

Podocyte number was quantified on stained paraffin-embedded kidney sections with
a specific primary antibody against Wilms’ tumor 1 protein (WT1) [4]. Six animals of
each genotype were analyzed in a blinded fashion by counting WT1-positive cells in, at
a minimum, 50 glomeruli per section. Apoptotic cells were quantified by immunohisto-
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chemical staining for cleaved caspase-3 on formaldehyde-fixed kidney sections. Cleaved
caspase-3-positive cells per glomerulus were counted in at least 50 glomeruli per animal of
each cohort (inducible podocyte-specific Cdk5-knockout (Cdk5ipko), wt; n = 6 each).

2.6. Evaluation of Glomerulosclerosis

Glomerulosclerosis was quantified on paraffin-embedded kidney sections stained
with periodic acid-Schiff reagent as percentage of involved glomeruli per representative
section, in all individual groups (for each, n = 6). In addition, the glomerulosclerosis index
was assessed. To this end, 50 glomeruli minimum per individual animal were categorized
based on their percentage of scarred glomerular tuft area, divided into 4 groups: grade 1,
<25%; grade 2, 25–50%; grade 3, 50–75%; and grade 4, 75–100% [7,22].

2.7. Imaging

All stained tissue sections were scanned with a slide scanner for brightfield images
Leica SCN400 (Leica Biosystems, Wetzlar, Germany) and further assessed with ImageScope
(Aperio) image-processing software v12.1 (Leica Biosystems, Wetzlar, Germany).

2.8. STED Imaging and Computed Analyses

A simplified version of a previously published protocol was used [32]. Formaldehyde-
fixed kidneys were embedded in 3% agarose in DI water and sectioned to 200 µm thickness
using a vibratome. Slices were then incubated in clearing solution (200 mM boric acid,
4% SDS, pH 8.5) at 50 ◦C overnight. Sections were washed in PBST (0.1% Triton-X in 1X
PBS, pH 7.4) for 10 min before incubation in a sheep polyclonal antibody against nephrin
(R&D systems, Minneapolis, MI, USA, AF4269) diluted 1:50 in 10 mM HEPES, pH 7.5 with
200 mM NaCl and 10% TritonX-100 at 37 ◦C for 4 h with shaking at 500 rpm. After primary
antibody incubation, samples were washed in PBST for 5 min at 37 ◦C and were then
incubated in a donkey anti-sheep secondary antibody conjugated to Abberior STAR635P
(Abberior, Goettingen, Germany, 2-0142-007-2, dilution 1:50) at 37 ◦C for 4 h. Samples
were incubated in 80% wt/wt fructose (1 mL of dH2O added to 4 g of fructose) at 37 ◦C for
15 min and then mounted in a MatTek dish with a cover slip on top, prior to imaging with
a Leica SP8 3× gSTED system (Leica Biosystems, Wetzlar, Germany) using a 100× 1.4 NA
objective. To quantify the slit diaphragm length per area, a previously published ImageJ
macro was used [17].

2.9. Measurement of Proteinuria

For the assessment of proteinuria, spot urine was collected from animals of each cohort
at day 0, as baseline, and at the following days as indicated. Initial analyses were performed
by Coomassie blue staining after SDS-PAGE of small volumes of urine. Quantitative assess-
ment was performed by measuring urinary protein using the sulfosalicylic acid method [33]
and urinary creatinine using the Creatinine Colorimetric Assay Kit (Cayman Chemical,
Ann Arbor, MI, USA). Assays were performed according to manufacturers’ instructions.

2.10. Statistics

Statistical calculations were performed with PalmPrism. For histological assessment,
Image Scope (Aperio Version 12.1, Leica Biosystems, Wetzlar, Germany) was used.

3. Results
3.1. Podocyte-Specific Knockout of Cdk5 Shows Regular Glomerular Histology and Function

Conditional podocyte-specific Cdk5 knockout mice (Cdk5pko) were generated by
crossing mice carrying the floxed Cdk5 allele with mice containing Cre recombinase
under the podocyte-specific human podocin promoter (Figure 1A). In Cdk5flox mice, the
first five exons are flanked by loxP sites. Cdk5 expression was determined by qPCR on
samples of primary podocytes isolated from mice carrying heterozygous hNPHS.Cre and
homozygous Cdk5-floxed (Cdk5pko), heterozygous Cdk5-floxed (Cdk5het), or homozygous
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wild type Cdk5 (Cdk5wt) alleles. Expression of Cdk5 was reduced to 46.31% (SD 11.86)
in Cdk5het and 13.1% (SD 2.26) in Cdk5pko mice, compared to Cdk5 wild type littermates
(Figure 1B).
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Figure 1. Breeding scheme and validation of podocyte-specific Cdk5 knockout. (A) Cdk5flox/flox mouse mated to the
hNPHS2.Cre mouse yields podocyte-specific deletion of the Cdk5 gene (Cdk5pko). (B) Remaining expression of Cdk5
was quantified by qPCR from primary isolated podocytes. Cdk5 expression relative to wild type (Cdk5wt) is indicated.
In podocyte-specific Cdk5flox-heterozygous mice (Cdk5het), Cdk5 expression was reduced to 46.31% (SD 11.86). For
podocyte-specific knockout of Cdk5 (Cdk5pko), the remaining expression of Cdk5 was 13.1% (SD 2.26). ** p-value < 0.01, In
each cohort, n = 3.

Cdk5pko mice were born in a regular Mendelian ratio with no apparent developmental
defects. Life expectancy was not reduced compared to Cdk5 wild type littermates (data
not shown). Phenotyping included screening for proteinuria, and kidney histology was
performed in Cdk5pko mice at 70 weeks of age. Coomassie staining of urine samples
showed no detectable proteinuria, specifically, no albuminuria (Figure 2A). PAS- and AFOG-
staining revealed normal kidney morphology without evidence of glomerular disease
(Figure 2B). The regular, garland-like immunostaining pattern of podocin, tracing the
glomerular slit diaphragm, was similarly detected in Cdk5pko and Cdk5het mice (Figure 2C).
Podocyte number per glomerulus, assessed by staining for WT1, was similar in Cdk5pko

and heterozygous control mice (Figure 2C,D). To exclude subtle structural defects of foot
process architecture at the nanoscale, we utilized STED-imaging on cleared kidney tissue
after immunofluorescent labeling of nephrin (Figure 2E). STED-images revealed an evenly
distributed podocin signal and a regular pattern of foot processes in all samples. Computed
analysis of STED-images did not identify significant differences in slit diaphragm length
between Cdk5pko, Cdk5het, and Cdk5wt littermates (Figure 2F).
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Figure 2. Baseline characterization of podocyte-specific Cdk5 knockout mice. (A): Coomassie gel of urine samples from
Cdk5het and Cdk5pko mice at 70 weeks of age detects no relevant proteinuria. (B) PAS- and AFOG-staining of Cdk5het and
Cdk5pko kidney sections show regular glomerular architecture. In each cohort, n = 6. (C) Expression of podocyte-specific
markers podocin and WT1 is not affected by Cdk5 manipulation. (D) Podocyte number, quantified as WT1-positive cells per
glomerulus, is not altered by podocyte-specific deletion of Cdk5. Dots: Cdk5het; triangles: Cdk5pko. In each cohort, n = 6.
(E) Visualization of the slit diaphragm pattern on Cdk5pko, Cdk5het, and Cdkwt kidney sections using STED microscopy
on nephrin-stained kidney samples. Yellow lines denote the slit diaphragm segmented by the ImageJ macro. The blue
line denotes the ROI within which the analysis is carried out (some minor areas with poor staining quality are excluded).
Scale bar 2 µm. (F) SD length per area for the different genotypes. Each dot/square/triangle shows the SD length per
area for one image (5 images per animal, n = 2 per genotype). Tukey’s multiple comparison test showed no significant
difference between groups. Dots: Cdk5wt; squares: Cdk5het; triangles: Cdk5pko. Line represents mean and error bars
represent standard deviation.
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3.2. Podocyte-Specific Knockout of Cdk5 Shows Higher Susceptibility to Glomerulosclerosis and
Reduced Kidney Function in the Nephrotoxic Nephritis Model

We next assessed the biological impact of podocyte Cdk5 deficiency in glomerular
disease. To exclude undetected developmental aberrations following Cdk5 deficiency,
or compensatory mechanisms that might be activated in the absence of Cdk5 during
development, inducible Cdk5 knockout mice (Cdk5ipko) were generated (Figure 3A). In
these mice, activity of Cre recombinase leading to knockout of Cdk5 was induced at the
age of 8–10 weeks by administration of doxycycline in the drinking water over 14 days
(Figure 3B). Baseline urine samples were obtained before doxycycline administration and
bi-weekly thereafter up to day 56. Quantitative analysis of urinary protein and creatinine
revealed no relevant proteinuria at baseline (Figure 3C).

1 
 

 

Figure 3. Mating scheme of inducible podocyte-specific knockout of Cdk5 and baseline characteriza-
tion. (A) Cdk5flox/flox mouse mated to hNPHS2rtTA/TetO-Cre yields podocyte-specific doxycyline-
inducible deletion of the Cdk5 gene (Cdk5ipko). (B) Schematic representation of doxycycline adminis-
tration (14 days) and urine sampling in mice of 8–10 weeks of age. (C) Urine protein/creatinine ratio
(g/g), followed over 56 days after initiation of doxycycline, is stable within normal limits. n = 6.

Experimental glomerular disease was induced after doxycycline-dependent Cdk5
knockout by intraperitoneal injection of nephrotoxic serum (NTS) in mice 10 weeks of age
(Figure 4A). Histological analysis and quantification of proteinuria were performed on
day 7 after induction of glomerular disease. PAS- and AFOG-staining revealed glomerular
sclerosis in Cdk5ipko as well as control animals (Figure 4B). Glomerular scarring was
greater in Cdk5 knockout compared to control animals (mean grade Cdk5ipko: 1.79 (SD
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0.10) vs. Cdk5contr: 1.37 (SD 0.16); p < 0.05) (Figure 4C). In addition, the extent of glomerular
involvement (percentage of glomeruli with sclerosis) was quantified at 56% (SD 5) in Cdk5
knockout mice, as compared to 30% (SD 7) in control mice (Figure 4D). No glomerular
damage was detected in control Cdk5ipko and Cdk5contr given vehicle (saline) (Figure 4C,D).
Nephrotic range proteinuria detected in both mouse strains at day 7 of disease was higher
in Cdk5ipko mice (Cdk5ipko: 62.46 g/g (SD 15.35) vs. Cdk5contr: 22.11 g/g (SD 5.10); p < 0.05).
No significant proteinuria was detected in control saline-treated mice (Figure 4E).
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Figure 4. Nephrotoxic nephritis model in inducible podocyte-specific Cdk5 knockout mice.
(A) Timing scheme of the NTN study including doxycycline treatment, nephrotoxic serum (NTS)
application, urine sampling, and histologic analysis. (B) PAS- and AFOG-staining of Cdk5contr and
Cdk5ipko kidney sections after NTS application reveals aggravated glomerular damage in Cdk5ipko.
In each cohort, n = 6. (C) Quantification of glomerular sclerosis according to grades of percentage of
the glomerular tuft area involved. The average glomerular fibrosis index per glomerular cross section
was 1.79 (SD 0.10) for Cdk5ipko, as compared to 1.37 (SD 0.16) in Cdk5contr after NTS application
(* p < 0.05). No glomerular damage was detected in Cdk5ipko and Cdk5contr treated with saline in-
stead of NTS. In each cohort, n = 6. (D) Extent of glomerular involvement quantified as percentage of
glomeruli with sclerosis. Cdk5ipko mice showed involvement of 56% (SD 5) of the glomeruli, whereas
Cdk5contr showed involvement of 30% (SD 7). In each cohort, n = 6; * p < 0.05. (E) Protein/creatinine
ratio (g/g) of Cdk5ipko compared to Cdk5contr shows aggravated proteinuria of 62.46 (SD 15.35) g/g
creatinine in Cdk5ipko vs. 22.11 (SD 5.10) in Cdk5contr (* p < 0.05). No significant proteinuria was
detected in mice treated with saline instead of NTS. In each cohort, n = 6.

3.3. Cdk5-Deficient Mice Show Higher Rate of Apoptosis and Decreased Anti-Apoptotic Signal

Previously, we and others established the pro-survival signals referred by Cdk5 in
podocytes and other post-mitotic cells [7,19,20,34]. In podocytes, cyclin I-Cdk5 activates
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MAP kinases MEK1/2, followed by promotion by ERK1/2 of the expression of the anti-
apoptotic genes BCL-2 and BCL-XL. In addition, p35-Cdk5 phosphorylates the Bcl-2 protein
to enhance its stability [7].

Podocyte apoptosis, quantitated by cleaved caspase-3 (CC3) staining, was not detected
in Cdk5ipko mice or controls prior to disease induction (day 0) (Figure 5A,B). At day 7 of
disease, podocyte apoptosis was threefold higher in Cdk5ipko mice compared to control
mice. At baseline, there was no significant difference in Bcl-2 staining in Cdk5ipko mice
compared to control, although, in Cdk5 knockout mice, a trend to less positive cells was
noted (Figure 5C,D). In diseased Cdk5ipko mice, Bcl-2 staining was significantly lower
compared to Cdk5 control mice. For Bcl-XL, however, already at baseline, a significant
reduction of staining-positive glomerular cells was detected in Cdk5 knockout as compared
to control (Figure 5E,F). Even though they increased in both control and Cdk5ipko mice
after NTS challenge, Bcl-XL positive cells were more abundant in control compared to
Cdk5 knockout tissue.
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Figure 5. Analysis of pro- and anti-apoptotic signals dependent on podocyte expression of Cdk5 in the
nephrotoxic nephritis model. (A,B): Detection of apoptotic cells by staining for cleaved caspase-3 (CC3)
on kidney sections of Cdk5contr and Cdk5ipko mice. CC3-positive cells are more abundant in Cdk5ipko
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as compared to Cdk5contr (0.26 ± 0.05 vs. 0.12 ± 0.04; * p < 0.05). No CC3-positive cells were detected
in mice treated with saline instead of NTS. In each cohort, n = 6. (C,D): Detection of anti-apoptotic
Bcl-2 on kidney sections of Cdk5contr and Cdk5ipko mice. Increase in Bcl-2 expression after NTS
challenge is lesser in Cdk5ipko as compared to Cdk5contr (3.7 ± 0.3 vs. 6.8 ± 0.5; * p < 0.05). Only few
Bcl-2-positive cells were detected in mice treated with saline instead of NTS. In each cohort, n = 6.
(E,F): Detection of anti-apoptotic Bcl-XL on kidney sections of Cdk5contr and Cdk5ipko mice. Increase
of Bcl-XL expression after NTS challenge is lesser in Cdk5ipko as compared to Cdk5contr (1.3 ± 0.7
vs. 3.1 ± 0.5; p < 0.05). Expression of Bcl-XL was also reduced in Cdk5ipko as compared to Cdk5contr

in the absence of NTN, i.e., after treatment with saline (0.4 ± 0.2 vs. 1.3 ± 0.3; * p < 0.05). In each
cohort, n = 6.

4. Discussion

Cdk5 is an ubiquitously expressed proline-directed serine/threonine kinase impli-
cated in both physiological and pathological cellular processes. Amongst these are cytokine
production, regulation of insulin levels, migration and invasion, angiogenesis, myogenesis,
apoptosis, and senescence (reviewed in Sharma and Sicinski [35]). Importantly, tight control
of Cdk5 activity is crucial since both hyperactivity and inhibition of Cdk5 result in cellular
dysfunction. Noteworthy is that cell-specific regulation of Cdk5 activity is controlled by
cell type-specific activators. For example, in post-mitotic neurons, p35 and p39 are the
major regulators of Cdk5 activity. Combined loss of p35 and p39 mimics the phenotype of
Cdk5 deficiency, with perinatal lethality due to defective development of the brain [15,36].
In contrast, mice with a combined deletion of both p35 and cyclin I develop normally and
show no phenotype under non-stressed conditions [20]. The results of the present study
show that podocyte-specific deletion of Cdk5 does not impact development. In addition,
even in advanced age, Cdk5 deficiency in podocytes is not associated with a pathological
phenotype under non-stressed conditions. These results are in striking contrast to the se-
vere phenotype in neuronal cells following CDK5 deletion [37,38]. This finding comes not
without surprise since the podocytes’ branching morphology, supported by a microtubular
lattice and F-actin-based foot processes, shares high similarity with the cytoskeleton of
dendrite-forming neurons [39,40]. By phosphorylation of Rho-GTPases, Cdk5 plays a
crucial role in controlling actin cytoskeletal modification and synaptic plasticity in neuronal
cells [41,42]. In podocytes, however, highly active regulation of the actin cytoskeleton ap-
pears to be independent of Cdk5 activity and is, therefore, not affected by Cdk5 deficiency,
neither during glomerulogenesis nor later in life. Quantification of podocytes per glomeru-
lar cross section was performed on the basis of immunostaining for WT1. WT1 staining
detects mature podocytes and is not the ideal marker in disease states when podocytes
de-differentiate and lose WT1 reactivity. In this study employing non-stressed mice, how-
ever, WT1 staining reliably estimated podocyte number. Consistent podocyte number in
Cdk5pko vs. control, reflected by the regular glomerular architecture and function, i.e.,
absence of proteinuria, argues against a role of Cdk5 in podocyte development.

Recently, several studies in podocytes investigated the beneficial role of the interme-
diate filament protein nestin in states of stress and its regulation of Cdk5/p35 inhibition
of apoptosis [43–45]. The concept of apoptosis as a relevant mechanism of cell death in
podocytes was often challenged over the past years [46,47]. A common critique arguing
against apoptosis in podocytes concerns a lack of evidence of classical morphological signs
of apoptosis, such as chromatin condensation, DNA fragmentation, and membrane bleb-
bing in human glomerular disease or animal models. However, this argument disregards
the three phases of apoptosis and the implication of the unique anatomical localization
of podocytes in this context. The process of apoptosis progresses in three phases: induc-
tion, execution, and clearance. Caspase-mediated proteolysis, chromatin condensation,
and DNA fragmentation occur during the execution phase. During the entire process of
execution, plasma membrane integrity must be maintained to avoid the release of toxic
waste products and injury to neighboring cells [48]. However, the first step in the execution
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phase is the release of focal adhesions and extracellular matrix interactions while actin
rearranges to membrane-associated cortical rings [49–51]. For the podocyte, residing on
the outer aspect of the glomerular tuft, release from the extracellular matrix and focal
adhesions during the execution phase of apoptosis will result in detachment from the
glomerular basement membrane and, also, from neighboring podocytes, followed by loss
of podocytes in the urine. Therefore, podocytes showing classical apoptotic figures that
appear later in the process of apoptosis will hardly be detected. In podocytes, the “point of
no return”, which is usually mediated by permeability transition pores of the mitochondrial
membrane and cytochrome c release, is reached during states of cytoskeletal rearrangement
and lost ECM anchoring. This emphasizes the necessity of tight control of apoptosis in
podocytes during the induction phase. The lack of any direct evidence for regulated,
mitochondria-triggered forms of cell death in podocytes also raises the question of which
intracellular signaling events control these pathways. Staining for cleaved caspase-3 and
TUNEL staining are most commonly used to assess for apoptotic cells in tissue sections.
However, TUNEL staining does not discriminate between apoptosis and other modes
of cell death reliably [52]. Therefore, in the present study, apoptotic cells were detected
by staining for cleaved caspase-3. We acknowledge that cleaved caspase-3 staining may
underestimate the number of apoptotic podocytes, due to the loss of podocytes early in
the process of apoptosis. Quantification of Bcl-2 and Bcl-XL expression was performed
to assess the role of Cdk5 during initiation of apoptosis. Increased expression levels of
both anti-apoptotic proteins recapitulated the mechanism proposed previously in which
Cdk5/p35 increases BCL-2/BCL-XL expression and, in addition, stabilizes Bcl-2 at the
protein level [7].

In conclusion, our study demonstrated that Cdk5 was not implicated in podocyte
development but served a central role in the regulation of podocyte apoptosis. Cdk5
activity is crucial after toxic stimuli to avoid initiation of apoptosis, cytoskeletal remodeling,
detachment from the glomerular basement membrane, and, eventually, loss of podocytes
in the urine. Several studies on Cdk5 in neurological and oncological disorders showed
good transferability of results gained in mice to human disease [53,54]. Consequently, it
is tempting to speculate that activation of Cdk5 could be a novel therapeutic approach in
human inflammatory glomerular disease.
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