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Abstract: Circadian clocks have evolved in most light-sensitive organisms, from unicellular organ-
isms to mammals. Consequently, a myriad of biological functions exhibits circadian rhythmicity,
from behavior to physiology, through tissue and cellular functions to subcellular processes. Circa-
dian rhythms in intracellular organelles are an emerging and exciting research arena. We summa-
rize herein the current literature for rhythmicity in major intracellular organelles in mammals. These
include changes in the morphology, content, and functions of different intracellular organelles.
While these data highlight the presence of rhythmicity in these organelles, a gap remains in our
knowledge regarding the underlying molecular mechanisms and their functional significance. Fi-
nally, we discuss the importance and challenges faced by spatio-temporal studies on these orga-
nelles and speculate on the presence of oscillators in organelles and their potential mode of commu-
nication. As circadian biology has been and continues to be studied throughout temporal and spatial
axes, circadian organelles appear to be the next frontier.

Keywords: circadian clocks; rhythms; organelles; mitochondria; nucleus; endoplasmic reticulum;
lysosomes

1. Introduction

“Clocks, processes measuring absolute time, occur in living organisms”, wrote Colin
Pittendrigh in 1954 [1]. Considered one of the founding fathers of the clock field, Pit-
tendrigh was among the first to deliberately adopt the term “clock”. This was done in
contemplation of the growing body of evidence for daily rhythmic behaviors in various
organisms [2]. To name a few: leaf movement in plants, bird navigation, and fly emer-
gence from puparia, all had clear rhythms with daily periodicity. While some researchers
initially objected to the concept of an internal clock and advocated for an (unknown) ex-
ternal factor that regulates these rhythms, most readily adopted the current view that
light-sensitive organisms have an internal capacity to tell time.

In addition to internal timekeeping capacities, adopting the clock terminology insti-
gated basic questions regarding its nature and clock-like properties [3]. For one, since a
clock is a physical object and therefore must have a distinct location, an important ques-
tion emerges: where is this biological clock located? This question has been echoed
throughout decades in the search for, and subsequent discovery of, the location of the
clock in a number of model organisms. In the 1970s, seminal lesion experiments in rodents
revealed that the “master clock” in mammals resides in the Suprachiasmatic Nucleus
(SCN) region of the brain [4,5]. Years later, clocks were found in almost every cell through-
out the body [6-9] and were shown to function in a self-sustained and cell-autonomous
manner in culture. Importantly, this latter finding goes together with the presence of cir-
cadian clocks in unicellular organisms, such as cyanobacteria [10].

Another fundamental implementation of the clock terminology is that a clock has
parts, and consequently, chronobiologists were ever-eager to answer the question: what
is the biological clock made of? The first to be identified of what are now termed “clock
genes” was the period gene in Drosophila melanogaster, as its mutated forms were found to
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disrupt behavioral rhythms [11]. Intensive cloning efforts and genetic investigations ena-
bled, by 1990, the introduction of a negative transcription and translation feedback loop
(TTFL) model to explain how these genes and their products generate self-sustained os-
cillations [12-14]. Subsequent studies identified similar TTFLs consisting of additional
clock genes in other organisms. Consequently, the TTFL is widely considered as a univer-
sal clock mechanism [15]. In mammals, the Circadian Locomotor Output Cycles Kaput
(CLOCK) was the first clock component to be identified [16,17]. Successive studies further
deciphered the mammalian clockwork, which consists of an intricate network of molecu-
lar feedback loops. The rhythmic heterodimerization of BMAL1 and CLOCK (or its pa-
ralog NPAS2) drives the expression of Period (Per1, Per2, and Per3) and Cryptochrome (Cryl
and Cry2) genes. In turn, PERIOD and CRYPTOCHROME proteins accumulate and re-
press the transcription of their own genes. Another central feedback loop involves the
expression of the nuclear receptors NR1D1/2 (REV-ERBa/p) and ROR, which are targets
of BMALI1 transcription and regulate Bmall expression [18,19] (Figure 1). Throughout the
years, additional transcription regulators have been identified to participate in the tran-
scriptional feedback loops (e.g., DEC1 and DEC2 [20,21]) and control rhythmic gene ex-
pression (e.g., the PARbZip transcription factors [22]). It is noteworthy that several studies
also reported on circadian rhythmicity that is independent of a functional TTFL, for ex-
ample [23,24].
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Figure 1. Circadian rhythmicity across multiple levels. Circadian rhythmicity occurs in myriad of biological functions,
from behavior to physiology at the whole animal level and through specific tissue functions and cellular functions to
subcellular processes. The circadian clock functions at the molecular level based on transcription-translation feedback

loops.

The term circadian was coined as a conjugation of the Latin words circa (about) and
diem (day) [25]. This was due to the fact that the actual period length of these clocks is
close but seldom identical to 24 h. This frequency can be longer or shorter than a day,
depending on the organism or environmental conditions, but for any given context, it
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would always be very stable. Importantly, the deviation from 24 h is only observable un-
der what is called “free running conditions”, i.e., in constant routine experiments. The
clock can continue to tick on its own, with a fixed period, highlighting its autonomous,
internal nature. Any process which continues to cycle, with one major peak in ~24 h, in a
constant environmental setup, is said to be under circadian clock control, or simply, cir-
cadian. Alternatively, a rhythmic phenomenon that repeats itself, but in a rhythmic envi-
ronment such as the normal light/dark cycles would be called a “daily” or “diurnal”
rhythm, as the rhythms might occur merely in response to the external cues. Such a
rhythm can ultimately be deemed circadian, but only if it maintains its oscillations in free
running settings. Often, the terms circadian and daily are unfortunately misused in the
literature without adhering to their true definition.

Another circadian property is the capacity of adjusting to external time, also termed
phase resetting, or entrainment. Many environmental signals can serve as timing cues, or
zeitgebers (time givers, in German); prominent examples amongst them are light/dark,
feeding/fasting, and temperature cycles [26-28]. Molecular input signals include, among
others: glucocorticoids, cAMP, growth factors [29], glucose [30], insulin [31], and gases
such as oxygen [32] and carbon dioxide [33].

From an evolutionary perspective, the presence of circadian clocks from unicellular
organisms to plants, flies, and mammals suggests that the circadian clock confers survival
advantages. For one, it can allow for temporal separation of conflicting processes and an-
ticipation of the cycling environmental conditions (e.g., coordination between metabolic
gene expression and activity with feeding—fasting rhythms). Thus, countless biological
functions are rhythmic at multiple scales, from behavior to physiology and various cellu-
lar functions, even in subcellular compartments.

In this review, we summarize the evidence for ~24 h rhythmicity in the following
membrane-bound organelles: nuclei, mitochondria, Endoplasmic Reticulum (ER), and ly-
sosomes, as the majority of the literature relates to them. However, there have been some
sporadic reports on other organelles, such as the Golgi network [34] or peroxisomes [35].
Notably, the lion’s share of these studies was performed in rodents and predominantly
the liver, which is highly rhythmic [36]. We concentrated on the organelles’ structure and
function, as could be gleaned by their morphology and key biochemical processes. We
also discuss the importance, alongside the challenges, of studying the rhythmicity of in-
tracellular organelles, as well as the potential implications of what we know so far. We
hope this will leave the reader with a comprehensive view and serve as “food for thought”
for future studies along this line of research.

2. Rhythms in Organelles
2.1. Nucleus

Polyploidy, an increase in the number of chromosome sets per cell, is a common fea-
ture of the mammalian liver, with a range of 30-90% polyploid hepatocytes in different
organisms [37,38]. Polyploidy prevalence is generally associated with aging, senescence,
and pathological conditions [38]. Nevertheless, the process is considered reversible, and
daily rhythmicity in polyploidy was shown in mouse liver using both histological slices
and flow cytometry of isolated nuclei [39]. For instance, bi-nucleated diploid hepatocytes
peaked during the light phase, while mono-nucleated tetraploid hepatocytes peaked in
the dark. Along these lines, Chao and colleagues observed a marked increase in hepatic
polyploidy in clock-disrupted Per1,2,3 triple negative mice and therefore hypothesized
this to be clock-controlled [40]. However, as these experiments were carried out only at a
single time of the day, it remains unclear whether the circadian clock controls temporal
dynamics in ploidy.

Within the nuclei, DNA is folded into 3D structures, which are non-random and de-
fine spatial positioning between regulatory elements and coding regions [41,42]. The over-
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all spread of chromatin spans throughout the nucleus, from areas which are centrally lo-
cated and rich in transcriptionally active genes (called “compartment A”) as opposed to
areas more peripherally localized with the nuclear lamina with repressed genes (“com-
partment B”). Within these “megastructures”, anchored by cohesin and CCCTC-binding
factor (CTCF) proteins, are Topologically Associating Domains (TADs), which are mostly
conserved and stable between different tissues and cell-states. At a small genomic scale,
the spatial arrangement of genes and their regulating elements, namely, proximity be-
tween enhancers and promoters, was found to be very dynamic, and the chronobiology
field was not late to the game.

The first attempts to unravel daily chromatin rhythmicity were made in cell cultures.
Using chromosome conformation capture-on-chip (4C) on the Dbp gene in Mouse Embry-
onic Fibroblasts (MEFs), [43] circadian rhythms in chromatin changes were detected.
These rhythms in chromatin association appeared altered in clock-disrupted MEFs,
though due to the low temporal resolution, the conclusions in this respect were limited.
In the human colon cancer cell line HCT116, [44] rthythmic repressive Lamina Associated
Domains (LADs) were shown following the interaction between PARP1 (Poly (ADP-Ri-
bose) Polymerase 1), a chromatin modifier and integrator of feeding with the circadian
clock [45], and CTCEF. Evidence for interaction between the nuclear periphery and circa-
dian rhythmicity had also been obtained in vivo, as levels of the nuclear envelope protein
LaminA were shown to affect the rhythmicity of PER2 protein in mouse liver, and genetic
manipulation of additional nuclear envelope-related proteins affected the period of be-
havioral rhythms in constant dark [46,47]. In addition, daily changes in open and closed
configurations of chromatin compartments A and B were identified using Principal Com-
ponent Analysis (PCA) analysis on Hi-C data [48].

While the functional significance of some of the long-range interactions remains de-
batable [41], and not all initial findings were recapitulated in vivo [49], a stream of studies
has since underscored the importance of temporal examination of chromatin architecture,
at least on the smaller genomic scale [41,42,50]. Circadian chromosome dynamics have
been shown to involve clock components such as Cry1 in mouse liver, which is controlled
by Rev-erba [51] and Bmall [52]. Rhythmic enhancer activity of Bmall and Period2 was as-
sociated with transcription of these genes [53]. These clock genes, among others, present
daily changes in their promoter contact sites [48]. In addition, several clock output genes
undergo rhythmic cis element binding, such as: Gys2 [52] and Mreg [53].

Though further studies are expected to produce a more complete picture, compart-
mentalization of the nuclear interior is by now established as a mechanism for generating
diurnal rhythms in gene expression [41,42,50]. Gene transcription, which occurs in the
nucleus, is the molecular basis for circadian clock function and control of its many rhyth-
mic outputs. This notion, together with the rapid advancement in technologies for gene
expression analyses in recent years, has positioned transcriptomic as one of the most
prominent techniques in the chronobiologist toolkit. Over the past three decades, gene
expression analyses have been fertile grounds for circadian studies and suggest that up to
40% of the genes in mammals are transcribed in a circadian manner [42,54,55]. Not only
do transcription factor bindings cycle in a daily manner, but rhythms are also prevalent
throughout major steps of transcription regulation and RNA processing such as chroma-
tin accessibility, Polll activity, RNA capping, splicing, and export to cytoplasm [56].

Hence, gene transcription, which is a hallmark of nuclear function, is clearly rhyth-
mic. Moreover, it carries wide implications on the rhythmicity of other cellular organelles
as detailed below. That said, rhythmic transcription is not the end of the story, and as a
matter of fact, not all rhythmic transcripts yield rhythmic protein levels [57,58]. Several
studies in recent years applied proteomics and phospho-proteomics on whole cells as well
as nuclear fractions isolated from mouse liver around the clock [39,57-60]. Under a rhyth-
mic environment (light/dark and feeding/fasting cycles), the nuclear proteome undergoes
significant diurnal changes with night-time enrichment for protein complexes involved in
cytoskeleton organization, protein transport, proteolysis, and chaperoning of proteins
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[39]. Comparison of total and nuclear liver proteome shows a discrepancy between the
two datasets, which implies that protein translocation from the cytoplasm into the nucleus
plays a role in nuclear protein rhythmicity. In support of that, UniProt annotation of the
nucleus-rhythmic proteins shows many are shuttling-related. In this respect, it is interest-
ing to note that specific clock components themselves undergo rhythmic import into the
nucleus, e.g., PER1 via Transportin 1 [61] as well as PERs and CRYs via NRON complex
[62] and via KPNBI1 [63].

Aside from transcriptomics and proteomics, circadian metabolomics have been at the
forefront in recent years. In the last decade, following major technological advances, cir-
cadian lipid molecules were discovered across many cell types as blood, saliva, muscle
cells and whole liver [64-67]. Following biochemical fractionations for the nucleus and
mitochondria from mouse liver, lipids were found to undergo vast daily changes in these
compartments [68]. In the nucleus, over 30% of the lipids are rhythmic, with higher levels
in the beginning of the light phase. Their rhythmicity and overall abundance greatly re-
spond to the feeding regimen. Interestingly, the nuclear lipid phases mirror those in mi-
tochondria and suggest coupling and potential daily lipid shuttling between these orga-
nelles, which is further discussed below.

Taken together, the above detailed findings suggest temporal compartmentalization
of key basic biological functions of the nucleus.

2.2. Mitochondria

Mitochondria have been of major interest for chronobiologists, and several aspects of
circadian mitochondrial biology have been elucidated. Generally, there are three main
facets through which the circadian clock exerts its control over mitochondprial function: (1)
mitochondrial dynamics, namely cycles of fission and fusion to maintain shape, size, and
number; (2) molecular content, namely expression of mitochondrial related genes (both
nuclear and mitochondrial encoded) as well as proteins (e.g., enzymes) and metabolite
levels; and (3) major mitochondrial functions such as oxidative phosphorylation, probed
mostly through examination of Oxygen Consumption Rate (OCR). These three broad and
interconnected categories (dynamics, content, and function) will serve here to navigate
through the mitochondrial circadian literature [69,70].

Dynamic changes in morphology, from fragmented to tubular forms, contribute to
mitochondrial functionality and involve continuous fission and fusion cycles to maintain
their abundance, morphology, quality, and function [71]. Specifically, mitochondrial fis-
sion results in small and round mitochondria, while mitochondrial fusion generates thin
and elongated mitochondria with highly interconnected networks.

Upon nutrient availability, mitochondria are mostly fragmented, and when nutrients
are scarce, mitochondria become tubular and thus more supportive of ATP production
[70,72]. Therefore, mitochondrial dynamics likely respond to daily rest/activity and feed-
ing/fasting cycles due to differences in nutrient availability and energy demands. Indeed,
early observations made on rat hepatocytes using electron microscopy reported signifi-
cant differences in the volume and shape of mitochondria between rest and active phases
[73]. Studies in mouse liver showed that mitochondrial dynamics are coupled with daily
feeding—fasting cycle in part through BMALI1, which regulates the rhythmic expression
levels of fission and mitophagy genes [74]. Mitochondrial morphology in cultured fibro-
blasts also displays circadian rhythmicity and is regulated through clock-dependent mod-
ification of the mitochondrial fission protein DRP1 [75]. Control of mitochondrial mor-
phology by clock genes was also observed in livers from liver-specific Bmall knockout
mice [74] and from Clock219 mice [76] as well as in mouse skeletal muscle and heart
[77,78]. Mitochondrial dynamics involve massive changes in the organelles’” membranes.
Indeed, lipidomics analyses performed on isolated mitochondria from mouse liver at dif-
ferent times of the day revealed that about a third of the mitochondrial lipidome exhibits
daily rhythms [68]. Both the phase and the composition of the rhythmic lipids is depend-
ent on feeding/fasting cycles and on the clock components PER1,2.
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Of the approximately thousand different proteins that reside in mitochondria [79],
most are encoded by the nuclear genome and imported into the mitochondria, while only
13 proteins are encoded by the mitochondrial DNA and are locally transcribed and syn-
thesized [80]. The transcript levels of several nuclear-encoded mitochondrial proteins are
altered in clock-deficient mice [78,81]. ChIP analysis also revealed that these genes” pro-
moters are occupied by BMALL1 [74,82,83]. Indeed, over a third of mitochondrial proteins
accumulate in a daily manner and include key enzymes in carbohydrate metabolism, fatty
acid uptake and oxidation, Krebs cycle, and the respiratory chain complexes [57,58,84].

Proteomic analysis of isolated mitochondria around the clock revealed that the rhyth-
mic mitochondrial proteins mostly peak during the early light phase, while their respec-
tive transcripts are elevated in the beginning of the dark phase [84]. This suggests that
posttranscriptional mechanisms, such as protein-translation [85,86] and various protein
modifications (e.g., acetylation [87-89]), alongside the mitochondrial protein import ma-
chinery, potentially shape the phase of the rhythmic mitochondrial proteome [69]. In ad-
dition, a wide range of metabolites associated with mitochondrial metabolism display cir-
cadian rhythmicity, including ATP and NAD~ [75,87,90,91]. Such metabolic rhythms are
likely to feed back to the clock function [92,93].

Respiration through oxidative phosphorylation is perhaps the most prominent role
of mitochondria. Assays that measure OCR performed on cells and isolated mitochondria
were used to uncover the circadian control of mitochondrial nutrient utilization and res-
piration. Circadian fluctuations in OCR measurements were observed in cultured cells,
including C2C12 [87], HepG2 [94,95], and fibroblasts [96]. OCR measurements in primary
hepatocytes isolated from mice in the beginning of the light and dark phase revealed
higher respiration in the latter. This daily difference was diminished in hepatocytes iso-
lated from liver-specific Bmall knockout mice [74]. Experiments performed with mito-
chondria isolated from mouse liver around the clock provided further insight on mito-
chondrial nutrient utilization throughout the day [84]. In the presence of substrates such
as palmitoyl+carnitine and palmitoyl-CoA+carnitine, mitochondria exhibit rhythmic res-
piration with zenith level early in the light phase, in accordance with elevated Carnitine
palmitoyltransferase 1 (CPT1) protein levels. Carbohydrate (i.e., pyruvate and malate) uti-
lization is rhythmic as well but peaks later during the light phase in line with Pyruvate
dehydrogenase (PDH) accumulation. Remarkably, these daily rhythms in mitochondrial
respiration are strongly influenced not only by the molecular circadian clock (i.e., Per1,2
null mice), but also by nutrition type (e.g., high fat diet) and mealtime (i.e., nighttime re-
stricted feeding).

Together, these studies suggest that mitochondrial biology exhibits daily rhythms, at
least in mouse liver. It is conceivable that the observed temporal changes in mitochondrial
fission-fusion, protein content, and the organelles” function evolved in response to daily
changes in nutrient availability and energetic demands.

2.3. Endoplasmic Reticulum (ER)

The ER is an elaborate network of lipid membranes that forms sites in which secre-
tory and transmembrane proteins undergo folding and posttranslational modifications
that are required for their function. Interconnected with the nuclear membrane as well as
mitochondria, these organelles offer a range of functions for spatio-temporal investiga-
tions.

As early as the 1970s and onwards, microscopic studies described diurnal changes in
ER morphology that occur in rat hepatocytes [97,98]. Both the rough and smooth ER (with
and without ribosomes, respectively) were proposed to vary in surface area and volume
densities, presenting anti-phasic daily trends [98].

The ER constitutes the first step in the protein secretion pathway, which transports
an estimated 30% of proteins, at least in humans [79,99]. In recent years, this process was
proposed to oscillate throughout the day, based on around the clock mouse liver prote-
omics [57,58]. In these studies, the rhythmic proteome was enriched for secreted proteins
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with various functions: apolipoproteins, coagulation factors, complement factors, and ser-
ine protease inhibitors [57]. Furthermore, many components of the secretory pathway it-
self, such as ribosome docking, ER chaperones, ER, and Golgi vesicle-mediated transport-
ers were found to be rhythmic [58]. This supports the assumption that regulation of pro-
tein secretion is rhythmic, yet functional assays are still lacking. Remarkably, similar to
the rhythmic mitochondrial proteome detailed above, both studies note that the rhyth-
micity of many of these secretory proteins do not correspond to their transcript levels,
suggesting a role for post-transcriptional mechanisms in control of their daily rhythmicity.

Collagen, the most abundant Extra Cellular Matrix (ECM) protein, is often thought
to be found in constant levels [100,101]. Indeed, neither its transcript level nor its total
protein levels are rhythmic; however, its synthesis, transport, and degradation are all cir-
cadian [100]. For instance, in mouse tendons, daily dynamics were recently detected
across a range of different collagen fibrils, which differed in their peak times, thus explain-
ing how the net effect is constant. In support of this, oscillations were observed in collagen
secretion, transport, and degradation-related transcripts (e.g., Sec61a2, Mia3, Pde4d, and
Vps33b), as well as their ribosome occupancy. Moreover, such collagen fiber assembly and
disassembly maintain their circadian rhythmicity in a cell-autonomous manner in cul-
tured fibroblasts.

It is noteworthy that enrichment for the “protein folding” functional category was
also reported in the daily rhythmic proteome [58]. These proteins’ expression was rela-
tively aligned with their rhythmic transcripts. Protein folding in ER is crucial for cellular
function and requires tight regulation. Following excessive accumulation of unfolded pro-
teins, specific signaling pathways are activated, collectively termed Unfolded Protein Re-
sponse (UPR) [102]. Treatment with the UPR-inducer tunicamycin at different times
around the clock revealed that induction of several UPR components in mouse liver is
dependent on the time of day [103]. Curiously, UPR-related genes undergo the rhythmic
expression of a 12 h period (a harmonic of 24 h) with synchronized peak times. Phosphor-
ylation of the UPR-related kinase IREla (Inositol-requiring transmembrane kinase/en-
doribonuclease 1) and nuclear accumulation of the XBP1 (X-Box Binding Protein-1) tran-
scription factor show corresponding rhythmicity. These rhythms persist in animals
housed in constant dark and that are food-deprived, suggesting that they are endoge-
nously driven [103]. In fact, XBP1 was recently further shown to regulate 12 h rhythmicity
that goes beyond the UPR [104-106].

In other works, several mnRNAs encoding for UPR signaling components were shown
to oscillate in mouse liver with 24 h rhythmicity [107]. The UPR-activated transcription
factor, ATF4 (Activating Transcription Factor 4), was shown to undergo circadian cycles,
both in transcript and protein levels, both in mouse liver and cultured cells [108]. While
Clock knockout animals show complete disruption of Atf4 rhythms [108], Cry1,2 double
knockouts subjected to night-restricted feeding exhibit rhythmic activation of the pathway
with a 24 h periodicity [103], highlighting the complex regulation of UPR.

As depicted above, several aspects of ER function, such as protein secretion and UPR,
are rhythmic, and it would be interesting to examine in future studies the underlying mo-
lecular mechanisms as well as the functional implications.

2.4. Lysosomes

The lysosomal degradation system sequesters hydrolytic enzymes into membrane
compartments, segregating their activity within the cell. Lysosomes, “digestive bodies” in
Greek, were serendipitously discovered by biochemical fractionation [109,110] and soon
after were identified in situ within cells by direct microscopy [111], which also revealed
that they are morphologically heterogeneous among various cell types [112]. In the fol-
lowing years, it also became clear that lysosomes vary in their size and shape throughout
the day, at least in rat heart and liver [98,113]. These rhythms do not come as a surprise,
since lysosomes are highly influenced by feeding/fasting conditions. Starvation induces
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recycling and removal of unnecessary cytoplasmic components such as metabolites, pro-
teins, lipids, and even other organelles. Accordingly, lysosome volume is larger during
the light phase, namely when nocturnal rodents do not ingest food [113].

Lysosomes have received attention in chronobiology literature, somewhat indirectly,
in relation to autophagy, a process in which they play a key role. Many aspects of autoph-
agy are by now established as rhythmic. These include autophagy-related gene expression
and protein accumulation, autophagic flux, as well as the appearance of autophagosomes
[114,115]. The role of specific clock components in autophagy regulation has been exam-
ined. Interestingly, while an early study testing Bmall-liver specific knockout mice
showed that autophagy rhythmicity, and the overall autophagic response, is largely di-
minished [114], a recent study showed that whole body Bmall-null mice present rhythmic
autophagic flux similar to wild-type mice [115]. Future research is required to settle this
apparent discrepancy. It is noteworthy that mitochondrial autophagy was found to be
regulated by the circadian Clock gene in cardiac myocytes during ischemic stress [116]. In
addition, REV-ERBa, AMPK, mTOR, and the autophagy-inducing kinase ULK1, which
themselves exhibit circadian rhythmicity, were suggested to act as integrators of the nu-
trition—clocks—autophagy axis, as detailed in relevant reviews [117-119].

A case for circadian phagocytosis was recently made in a retinal-cell culture (ARPE-
19 monolayers), which show rhythmic expression of phagocytosis-related genes, as well
as lysosomal-associated membrane protein 1 (LAMP1) [120]. LAMP1, a lysosomal marker,
is activated in these cells in a time-dependent manner, downstream to photoreceptor re-
moval demands, demonstrating circadian regulation of lysosomal activation.

Overall, different aspects of lysosomal biology show circadian rhythmicity from mor-
phology to related gene expression, protein accumulation, as well as some relevant func-
tions, yet the underlying molecular mechanisms in conjunction with the circadian clock
are still lacking.

3. Discussion

In his incessant wit, the world-renowned chronobiologist Michael Rosbash concludes
his “50-year journey” in circadian genetics with: “The moral of the story is, as in real estate,
“location, location, location.”” [121]. That is to say, in retrospect, his Nobel-prize-level suc-
cess can be attributed to location in terms of where he performed his research, or his former
student Paul Harding’s breakthrough approach in using fly heads instead of whole ani-
mals, and other fortuitous paths. To adopt and double-down on his sage advice, we dis-
cuss below the benefits of studying circadian rhythms in organelles.

3.1. The Importance of Circadian Organelle Research

Much like different organs throughout the body, organelles have distinct functions,
as were described throughout this review (Figure 2). Thus, investigating isolated parts can
provide better resolution and deeper understanding of localized processes. For example,
coverage of scarcely expressed proteins and transcription factors in whole cells is low, but
they are more readily detected using purified nuclei.
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Figure 2. Circadian rhythmicity in subcellular organelles. Illustration of the major organelles discussed in this review:
nuclei, mitochondria, endoplasmic reticulum, and lysosomes. Rhythmicity can be observed in the organelles’ structure

and function, morphology,

and key biochemical processes.

Detectability of the target of interest is of obvious importance for every study, re-
gardless of the aspect of time. However, when addressing rhythmic properties, selecting
the proper location becomes even more critical. Consider our group’s personal experience
with circadian lipid research: in an earlier work [67], we utilized a lipidomics approach
on mouse liver around the clock and detected rhythmicity in 17% of the lipids, the major-
ity of them being triacylglycerols (TAGs). Interestingly, when we applied the same lip-
idomics technique on isolated nuclei and mitochondria, we saw a twofold increase in
rhythmic lipids, but each organelle had opposing peak times of lipid molecules [68]. This
demonstrates that, in practice, if a tissue contains anti-phasic rhythms in different orga-
nelles, these will be averaged-out when analyzing the tissue as a whole. Similar conclu-
sions were drawn in respect to rhythmic protein levels, as described in [39].

3.2. The Challenges of Circadian Organelle Research

Despite the apparent advantages, studying isolated organelles brings about many
challenges. While subcellular fractionation protocols are established (for example
[122,123]), their purity is not always very high, and they might contain other organelle
contaminants. Furthermore, a time-course experiment would require significant efforts in
applying these additional steps around the clock and would likely require more biological
material to start with (i.e., compared with straightforward sample collection).

While of great interest and potential implications, much of the organelle-related
rhythms known today and described herein are in fact based on descriptive methods and
mostly rely on high-throughput omics techniques. Our knowledge regarding the func-
tional significance of these changes is still lagging behind, predominantly because many
of the relevant assays are demanding and difficult to perform around the clock. Further-
more, the presence of oscillations in isolated organelles may not be representative of their
behavior within tissues or living organisms.

Furthermore, questions regarding the effect of rhythmicity in one organelle on an-
other organelle are extremely challenging to perform as it is currently near impossible to
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directly interfere with a specific organelle in view of their indispensable roles. Having said
that, there are some exceptions. For example, although mitochondria are considered as
the cellular energy power plants, in cell culture, cells can perfectly grow and survive in
the absence of mitochondrial DNA and consequently defective mitochondria (i.e., 0° cells),
[124]. Hence, it would be interesting to examine the effect of mitochondria on rhythmicity
of other cellular processes using these cells.

Despite some efforts to uncover the molecular mechanisms underlying different fac-
ets of organelle rhythmicity, relatively little is known. It is unclear to which extent these
rhythms are driven by the molecular circadian clocks, how much is controlled at the tran-
scriptional vs. the posttranscriptional levels, as well as within or outside the organelles.
Obviously, this type of questions requires advanced expertise and methodologies both
from the molecular and cell biology arenas.

3.3. Potential and Speculative Implications of Circadian Organelle Research

Importantly, the rhythmicity observed in different organelles and detailed above is
most likely driven either directly or indirectly by the molecular circadian clock. Although
currently there is no evidence to support this idea, one can speculate that organelles might
harbor their own internal clock. Of particular interest are mitochondria, in view of their
evolutionary shared past with prokaryotes, some of which harbor a circadian clock
[125,126]. However, unlike cells that can be cultured for days to weeks without any inter-
vention, to date it has been virtually impossible to keep isolated organelles viable in cul-
ture for several days. Such ex vivo “organelle-cultures” are extremely critical in order to
determine organelle specific thythmicity. Nonetheless, the notion of an organelle-intrinsic
clock could be very appealing for exciting future research avenues relating to the hierar-
chy of the circadian system. Following the above-mentioned endeavor to find the clock’s
location, and the historical transition in studying mammalian time-measuring capacity
from whole organisms, to the SCN region of the brain, and subsequently to every cell in
the body, adding another layer of circadian complexity, potentially in the form of “orga-
nelle-clocks”, seems to be a conceivable trajectory.

Following this narrative, irrespective of whether organelles harbor their own clock,
it is likely that their circadian rhythmicity should be coordinated with the rhythmicity of
other cellular compartments to optimize cellular functions, very similar to the observation
that circadian rhythmicity of different organs in mammals is phase-coordinated through
clock-dependent and independent mechanisms [127]. For example, temporal communi-
cation between organelles can be achieved through different metabolites, proteins, contact
sites, as well as various signaling pathways. Based on the notion that the cell functions as
a unit with internal logic and flow, it is tempting to speculate that oftentimes various mo-
lecular cargos can serve as time cues to support a sort of temporal organelle crosstalk. In
this light, the observed temporal correlation between lipids in nuclei and mitochondria
[68] could suggest that the same lipid species shuttle from one compartment to the other.
Metabolites shuttling from mitochondria to the nucleus is known as “retrograde signal-
ing” and is an important part of the cellular stress response, conveying information of
metabolic status to the nucleus. One could conceive of a hypothetical cross-organelle co-
operation in which stress response activates both mitochondria signaling to the nucleus
and lysosomal autophagy to control organelle remodeling. Recently, a connection be-
tween retrograde signals and circadian clocks was shown in plants, with signals from mi-
tochondria and chloroplasts affecting the plant clock system [128].

4. Summary

Technological advances and conceptual breakthroughs have occurred throughout
the last decades in the fields of circadian and organelle biology. Growing evidence sug-
gests that intracellular organelles are rhythmic, yet this line of research is still in its in-
fancy. Many key questions regarding the functional significance and the underlying
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mechanisms remain open and pose exciting challenges for future molecular and cell biol-
ogists as they continue to push temporal and spatial boundaries.
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